Patents by Inventor Yu Chong

Yu Chong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180229038
    Abstract: Neurostimulator devices are described. An example neurostimulator device includes a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord. The neurostimulator device also includes an interface and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the interface and performing a machine learning algorithm on the at least one complex stimulation pattern.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 16, 2018
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, JR., Yangsheng Chen
  • Publication number: 20180229037
    Abstract: Methods comprising applying electrical stimulation to patients in conjunction with physical training are described.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 16, 2018
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Patent number: 10031348
    Abstract: A contact lens fluid delivery device having a liquid reservoir connected to a channel with a flow regulator is described. Other eye hydration and variable dioptric power contact lenses are described herein. Also described are implantable liquid delivery apparatuses having a liquid storage reservoir connected to a channel with a flow regulator. These devices and apparatuses are useful for specific, targeted delivery of therapeutic liquids within a subject. In some embodiments, the devices incorporate actuation chambers which provide a driving force releasing the fluid into the targeted area e.g., the eye. The actuation chambers described herein can contain phase change materials or osmotic chambers or a combination thereof to drive the release of fluid.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: July 24, 2018
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Yu-Chong Tai, Nicholas E. Scianmarello, Charles M. T. DeBoer, Mark S. Humayun
  • Publication number: 20180185648
    Abstract: Neuromodulation systems are described. An example neuromodulation system includes a controller wirelessly communicatively coupled to a host computer, a signal generator communicatively coupled to the controller, and a plurality of electrodes communicatively coupled to the signal generator. The controller, in conjunction with the signal generator and the at least one electrode are configured to deliver a stimulation to a mammal based on an instruction received from the host computer. The stimulation is configured to induce voluntary movement or restore function in the mammal.
    Type: Application
    Filed: September 22, 2017
    Publication date: July 5, 2018
    Inventors: Mandheerej Nandra, Yu-Chong Tai
  • Patent number: 10008071
    Abstract: Disclosed are methods, apparatus, and systems implementing techniques for using a central determination system with multi-play gaming machines having sub-games and with gaming machines having a base game and a bonus game. A seed value is provided for each of the games (i.e., each of the sub-games or the base game and the bonus game). This ensures that all possible game outcomes may be displayed for each of the games.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: June 26, 2018
    Assignee: IGT
    Inventors: Tracy Powell, Meng Oh, Steven G. LeMay, Wei Yang, Eric Rasmussen, Joshua Robinson, Yu Chong, Wensheng Liu, Paul W. Bolton, Nick Scheffel
  • Patent number: 10008443
    Abstract: The invention provides chip packaging and processes for the assembly of retinal prosthesis devices. Advantageously, photo-patternable adhesive or epoxy such as photoresist is used as glue to attach a chip to the targeted thin-film (e.g., parylene) substrate so that the chip is used as an attachment to prevent delamination.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: June 26, 2018
    Assignee: California Institute of Technology
    Inventors: Yu-Chong Tai, Han-Chieh Chang
  • Patent number: 9987417
    Abstract: In various embodiments, a tool is employed in filling a drug-delivery device. The tool may include, for example, a needle that is admitted through a fill port of the drug-delivery device.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: June 5, 2018
    Assignee: MINIPUMPS, LLC
    Inventors: Jason Shih, Yu-Chong Tai, Changlin Pang, Sean Caffey, Raymond Peck, Fukang Jiang, Mark Humayun
  • Patent number: 9980388
    Abstract: A biocompatible, micro-fabricated ribbon cable is described in which at least one set of conductors diverges laterally into a bypass wing that forms an aperture through the ribbon cable. The bypass wing is folded in a line through the aperture and over a central portion of the ribbon cable, resulting in a ribbon cable with a narrow, stacked region. The narrow region can fit through small incisions in membranes, such as through an incision in a sclera of an eyeball. The ribbon cable can have an integrally-formed electrode array for attaching to a retina of an eyeball and other electronics for sending signals to the electrode array.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 22, 2018
    Assignee: California Institute of Technology
    Inventors: Yu-Chong Tai, Han-Chieh Chang
  • Publication number: 20180104199
    Abstract: Niclosamide derivatives are provided in the present invention. More particularly, the methods of using niclosamide derivatives for the manufacture of medicaments for suppressing platelet aggregation and preventing thrombosis-related diseases are provided. The niclosamide derivatives in the medicaments inhibit the production of thromboxane A2, therefore suppress platelet aggregation and prevent thrombosis-related diseases.
    Type: Application
    Filed: April 6, 2017
    Publication date: April 19, 2018
    Inventors: KOWIT-YU CHONG, CHING-PING TSENG
  • Patent number: 9943405
    Abstract: Advances in filling apparatus, handheld tools, surgical techniques and intraoperative biometry for implanting and adjusting an accommodative liquid lens are disclosed. The lens may be attached to or retained within a handheld surgical tool, which can be fluidly connectable to a filling console to fill the lens with a liquid. In various embodiments, a filling console facilitates aspirating liquid out of the lens in order to ensure the absence of residual bubbles and filling of the lens with fluid during surgery, as well as during post-operative adjustments to the lens. Actuated by the surgeon, the filling console can aspirate fluid from the lens and inject fluid into the lens following insertion thereof.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: April 17, 2018
    Assignee: ICO, INC.
    Inventors: Sean Caffey, Charles DeBoer, Mark Humayun, Yu-Chong Tai
  • Publication number: 20180092738
    Abstract: Embodiments of the present disclosure are directed to a phototherapy eye device. In an example, the phototherapy eye device includes a number of radioluminescent light sources and an anchor. Each radioluminescent light source includes an interior chamber coated with phosphor material, such as zinc sulfide, and containing a radioisotope material, such as gaseous tritium. The volume, shape, phosphor material, and radioisotope material are selected for emission of light at a particular wavelength and delivering a particular irradiance on the retina (when implanted in an eyeball). The wavelength is in the range of 400 to 600 nm and the irradiance is substantially 109 to 1011 photons per second per cm2.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 5, 2018
    Applicant: California Institute of Technology
    Inventors: Yu-Chong Tai, Colin A Cook
  • Patent number: 9931508
    Abstract: Neurostimulator devices are described comprising: a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord; one or more sensors; and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the one or more sensors and performing a machine learning method implementing a Gaussian Process Optimization on the at least one complex stimulation pattern. Methods of use are also described.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 3, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, NEURORECOVERY TECHNOLOGIES, INC.
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, Yangsheng Chen
  • Publication number: 20180080578
    Abstract: Microscale valves for use in, e.g., micropump devices, may be formed of a slitted diaphragm bonded o the interior of a valve tube. A bump in the diaphragm and/or a backward-leakage stopper may increase the breakdown pressure of the valve. A push-rod may be used to pre-load the valve membrane to thereby increase the cracking pressure.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 22, 2018
    Inventors: Yu-Chong Tai, Po-Ying Li, Fukang Jiang, Changlin Pang, Natasha Yvette Bouey, Man Ting Chou, Atoosa Lotfi
  • Patent number: 9919140
    Abstract: An implantable oxygenator may have a configuration that is suitable for implantation within a human body be implanted within a human body, such as within a human eye. The implantable oxygenator may include an electrolyte reservoir having a configuration suitable for storing electrolyte and an electrolysis system having a configuration that performs electrolysis on a portion of the electrolyte, thereby producing oxygen in the region of the electrolysis system.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: March 20, 2018
    Assignee: University of Southern California
    Inventors: Mark S. Humayun, Karthik Murali, Ramiro Magalhaes Ribeiro, Yu-chong Tai, Nicholas Scianmarello
  • Patent number: 9919099
    Abstract: Implanted drug pump devices can be refilled via a fill port in the drug reservoir that includes a self-resealable septum.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: March 20, 2018
    Assignee: MINIPUMPS, LLC
    Inventors: Yu-Chong Tai, Jason Shih, Julian D. Kavazov
  • Patent number: 9907958
    Abstract: Methods of enabling locomotor control, postural control, voluntary control of body movements (e.g., in non-weight bearing conditions), and/or autonomic functions in a human subject having spinal cord injury, brain injury, or neurological neuromotor disease are described.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: March 6, 2018
    Assignees: The Regents of the University of California, California Institute of Technology, University of Louisville Research Foundation, Inc.
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Publication number: 20180016533
    Abstract: A polymer or other substrate optimized for growing cells is described, which takes the form of a micro-thin bag with gas permeable sides. Sides of the bag can be held at a fixed distance from one another with a multitude of tiny micropillars or other spacers extending between them, keeping the bag at a predetermined thickness and preventing the bag from collapsing and the sides from sticking together. In other embodiments, the sides may be held apart by gas pressure alone. A 0.01 ?m to 1000 ?m parylene or other biocompatible coating over the bag outsides controls the permeability of the bag material and provides a bio-safe area for cell growth. An alternate configuration uses open-cell foam with skins coated with a biocompatible coating. Tubes going into multiple bags can be connected to a manifold that delivers gaseous oxygen or removes carbon dioxide and other waste gases.
    Type: Application
    Filed: July 11, 2017
    Publication date: January 18, 2018
    Applicants: California Institute of Technology, City of Hope
    Inventors: Yu-Chong Tai, Yang Liu, Colin A. Cook, Yuman Fong, Nanhai G. Chen
  • Patent number: 9861525
    Abstract: Embodiments of method of manufacturing an implantable pump, including providing an upper layer comprising a dome structure for housing a drug chamber and a cannula in fluid communication with the drug chamber, providing a middle deflection layer adjacent the drug chamber, providing a bottom layer comprising electrolysis electrodes, and bonding the upper layer, middle deflection layer, and bottom layer to form the pump.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: January 9, 2018
    Assignee: MINIPUMPS, LLC
    Inventors: Changlin Pang, Fukang Jiang, Jason Shih, Sean Caffey, Mark S. Humayun, Yu-Chong Tai
  • Patent number: 9845895
    Abstract: Microscale valves for use in, e.g., micropump devices, may be formed of a slitted diaphragm bonded to the interior of a valve tube. A bump in the diaphragm and/or a backward-leakage stopper may increase the breakdown pressure of the valve. A push-rod may be used to pre-load the valve membrane to thereby increase the cracking pressure.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: December 19, 2017
    Assignee: MINIPUMPS, LLC
    Inventors: Yu-Chong Tai, Po-Ying Li, Fukang Jiang, Changlin Pang, Natasha Yvette Bouey, Man Ting Chou, Atoosa Lotfi
  • Publication number: 20170348147
    Abstract: An implantable medical device is described. The implantable medical device includes a small molecule generator, a small molecule diffusor, and a cannula that connects the two. The small molecule generator includes an electrolyte reservoir and a set of electrodes. A first portion of the electrolyte reservoir is impermeable to a predetermined class of small molecules. A second portion of the electrolyte reservoir is permeable to the small molecules. The set of electrodes is disposed inside the electrolyte reservoir and is configured to facilitate electrolysis of the small molecules based on an electric power application to the set of electrodes and on presence of electrolyte inside the electrolyte reservoir. At least a portion of the small molecule diffusor is permeable to the small molecules.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Applicants: California Institute of Technology, University of Southern California, Doheny Eye Institute
    Inventors: Yu-Chong Tai, Nicholas E. Scianmarello, Karthik Murali, Mark S. Humayun, Ramiro Magalhaes Ribeiro