Patents by Inventor Yu-Feng Yin

Yu-Feng Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099149
    Abstract: Semiconductor structure and methods of forming the same are provided. An exemplary method includes receiving a workpiece including a magnetic tunneling junction (MTJ) and a conductive capping layer disposed on the MTJ, depositing a first dielectric layer over the workpiece, performing a first planarization process to the first dielectric layer, and after the performing of the first planarization process, patterning the first dielectric layer to form an opening exposing a top surface of the conductive capping layer, selectively removing the conductive capping layer. The method also includes depositing an electrode layer to fill the opening and performing a second planarization process to the workpiece such that a top surface of the electrode layer and a top surface of the first dielectric layer are coplanar.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Yu-Feng Yin, Min-Kun Dai, Chien-Hua Huang, Chung-Te Lin
  • Patent number: 11901426
    Abstract: A method for forming a semiconductor device includes forming a metal gate stack having a gate dielectric layer and a gate electrode disposed over the gate dielectric layer. The gate electrode includes a first metal layer and a second metal layer. The method further includes performing a plasma treatment to a top surface of the metal gate stack and forming a conductive layer over the treated top surface of the metal gate stack. A top portion of the conductive layer is formed above a top surface of the gate dielectric layer, and a bottom portion of the conductive layer penetrates into the first and the second metal layers of the gate electrode at different distances.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Patent number: 11856869
    Abstract: The present disclosure provides a semiconductor structure, including a first metal line over a first region of the substrate, a first magnetic tunnel junction (MTJ) and a second MTJ over the first region of the substrate, and a top electrode extending over the first MTJ and the second MTJ, wherein the top electrode includes a protruding portion at a bottom surface of the top electrode.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Feng Yin, Tai-Yen Peng, An-Shen Chang, Han-Ting Tsai, Qiang Fu, Chung-Te Lin
  • Patent number: 11856854
    Abstract: Semiconductor structure and methods of forming the same are provided. An exemplary method includes receiving a workpiece including a magnetic tunneling junction (MTJ) and a conductive capping layer disposed on the MTJ, depositing a first dielectric layer over the workpiece, performing a first planarization process to the first dielectric layer, and after the performing of the first planarization process, patterning the first dielectric layer to form an opening exposing a top surface of the conductive capping layer, selectively removing the conductive capping layer. The method also includes depositing an electrode layer to fill the opening and performing a second planarization process to the workpiece such that a top surface of the electrode layer and a top surface of the first dielectric layer are coplanar.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Feng Yin, Min-Kun Dai, Chien-Hua Huang, Chung-Te Lin
  • Publication number: 20230329123
    Abstract: A memory array device includes an array of memory cells located over a substrate, a memory-level dielectric layer laterally surrounding the array of memory cells, and top-interconnection metal lines laterally extending along a horizontal direction and contacting a respective row of top electrodes within the memory cells. Top electrodes of the memory cells are planarized to provide top surfaces that are coplanar with the top surface of the memory-level dielectric layer. The top-interconnection metal lines do not extend below the horizontal plane including the top surface of the memory-level dielectric layer, and prevent electrical shorts between the top-interconnection metal lines and components of memory cells.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 12, 2023
    Inventors: Yu-Feng Yin, Tai-Yen Peng, An-Shen Chang, Qiang Fu, Chung-Te Lin, Han-Ting Tsai
  • Publication number: 20230255120
    Abstract: In an embodiment, a device includes: a magnetoresistive random access memory (MRAM) array including MRAM cells arranged in rows and columns, where a first column of the columns includes: first bottom electrodes arranged along the first column; first magnetic tunnel junction (MTJ) stacks over the first bottom electrodes; a first shared electrode over each of the first MTJ stacks; second bottom electrodes arranged along the first column; second MTJ stacks over the second bottom electrodes; a second shared electrode over each of the second MTJ stacks; and a bit line electrically connected to the first shared electrode and the second shared electrode.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Tai-Yen Peng, Yu-Feng Yin, An-Shen Chang, Han-Ting Tsai, Qiang Fu
  • Patent number: 11723284
    Abstract: A memory array device includes an array of memory cells located over a substrate, a memory-level dielectric layer laterally surrounding the array of memory cells, and top-interconnection metal lines laterally extending along a horizontal direction and contacting a respective row of top electrodes within the memory cells. Top electrodes of the memory cells are planarized to provide top surfaces that are coplanar with the top surface of the memory-level dielectric layer. The top-interconnection metal lines do not extend below the horizontal plane including the top surface of the memory-level dielectric layer, and prevent electrical shorts between the top-interconnection metal lines and components of memory cells.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yu-Feng Yin, Tai-Yen Peng, An-Shen Chang, Han-Ting Tsai, Qiang Fu, Chung-Te Lin
  • Patent number: 11665977
    Abstract: In an embodiment, a device includes: a magnetoresistive random access memory (MRAM) array including MRAM cells arranged in rows and columns, where a first column of the columns includes: first bottom electrodes arranged along the first column; first magnetic tunnel junction (MTJ) stacks over the first bottom electrodes; a first shared electrode over each of the first MTJ stacks; second bottom electrodes arranged along the first column; second MTJ stacks over the second bottom electrodes; a second shared electrode over each of the second MTJ stacks; and a bit line electrically connected to the first shared electrode and the second shared electrode.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-Yen Peng, Yu-Feng Yin, An-Shen Chang, Han-Ting Tsai, Qiang Fu
  • Publication number: 20230157032
    Abstract: The present disclosure relates integrated chip structure. The integrated chip structure includes a memory array having a plurality of memory devices arranged in a plurality of rows and a plurality of columns. A word-line is coupled to a first set of the plurality of memory devices disposed within a first row of the plurality of rows. A bit-line is coupled to a second set of the plurality of memory devices disposed within a first column of the plurality of columns. A local interconnect extends in parallel to the bit-line and is coupled to the bit-line and two or more of the second set of the plurality of memory devices. The local interconnect is coupled to the bit-line by a plurality of interconnect vias that are between the local interconnect and the bit-line.
    Type: Application
    Filed: March 9, 2022
    Publication date: May 18, 2023
    Inventors: Yu-Feng Yin, Min-Kun Dai, Chien-Hua Huang, Chung-Te Lin
  • Patent number: 11637203
    Abstract: A semiconductor device includes a transistor. The transistor includes a gate electrode, a channel layer, a gate dielectric layer, a first source/drain region and a second source/drain region and a first spacer. The channel layer is disposed on the gate electrode. The gate dielectric layer is located between the channel layer and the gate electrode. The first source/drain region and the second source/drain region are disposed on the channel layer at opposite sides of the gate electrode, and at least one of the first and second source/drain regions includes a first portion and a second portion between the first portion and the gate electrode. The first spacer is disposed on the channel layer. The first spacer is disposed on a first sidewall of the second portion of the at least one of the first and second source/drain regions, and the first portion is disposed on the first spacer.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Yin, Chia-Jung Yu, Pin-Cheng Hsu, Chung-Te Lin
  • Publication number: 20230121981
    Abstract: A method for forming a semiconductor device includes forming a metal gate stack having a gate dielectric layer and a gate electrode disposed over the gate dielectric layer. The gate electrode includes a first metal layer and a second metal layer. The method further includes performing a plasma treatment to a top surface of the metal gate stack and forming a conductive layer over the treated top surface of the metal gate stack. A top portion of the conductive layer is formed above a top surface of the gate dielectric layer, and a bottom portion of the conductive layer penetrates into the first and the second metal layers of the gate electrode at different distances.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Patent number: 11575043
    Abstract: A semiconductor device includes a transistor. The transistor includes a gate electrode, a channel layer, a gate dielectric layer, a first source/drain region and a second source/drain region and a dielectric pattern. The channel layer is disposed on the gate electrode. The gate dielectric layer is located between the channel layer and the gate electrode. The first source/drain region and the second source/drain region are disposed on the channel layer at opposite sides of the gate electrode. The dielectric pattern is disposed on the channel layer. The first source/drain region covers a first sidewall and a first surface of the dielectric pattern, and a second sidewall opposite to the first sidewall of the dielectric pattern is protruded from a sidewall of the first source/drain region.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: February 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Yin, Chia-Jung Yu, Pin-Cheng Hsu, Chung-Te Lin
  • Publication number: 20230024174
    Abstract: A semiconductor device includes a transistor. The transistor includes a gate electrode, a channel layer, a gate dielectric layer, a first source/drain region and a second source/drain region and a first spacer. The channel layer is disposed on the gate electrode. The gate dielectric layer is located between the channel layer and the gate electrode. The first source/drain region and the second source/drain region are disposed on the channel layer at opposite sides of the gate electrode, and at least one of the first and second source/drain regions includes a first portion and a second portion between the first portion and the gate electrode. The first spacer is disposed on the channel layer. The first spacer is disposed on a first sidewall of the second portion of the at least one of the first and second source/drain regions, and the first portion is disposed on the first spacer.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 26, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Yin, Chia-Jung Yu, Pin-Cheng Hsu, Chung-Te Lin
  • Publication number: 20230022020
    Abstract: A semiconductor device includes a transistor. The transistor includes a gate electrode, a channel layer, a gate dielectric layer, a first source/drain region and a second source/drain region and a dielectric pattern. The channel layer is disposed on the gate electrode. The gate dielectric layer is located between the channel layer and the gate electrode. The first source/drain region and the second source/drain region are disposed on the channel layer at opposite sides of the gate electrode. The dielectric pattern is disposed on the channel layer. The first source/drain region covers a first sidewall and a first surface of the dielectric pattern, and a second sidewall opposite to the first sidewall of the dielectric pattern is protruded from a sidewall of the first source/drain region.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 26, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Yin, Chia-Jung Yu, Pin-Cheng Hsu, Chung-Te Lin
  • Patent number: 11545619
    Abstract: A method for forming a memory device structure is provided. The method includes providing a substrate, a first dielectric layer, a conductive via, a magnetic tunnel junction cell, a first etch stop layer, and a first spacer layer. The substrate has a first region and a second region, the first dielectric layer is over the substrate, the conductive via passes through the first dielectric layer over the first region. The method includes removing the first etch stop layer, which is not covered by the first spacer layer. The method includes removing the first dielectric layer, which is not covered by the first etch stop layer.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: January 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsing-Hsiang Wang, Han-Ting Lin, Yu-Feng Yin, Sin-Yi Yang, Chen-Jung Wang, Yin-Hao Wu, Kun-Yi Li, Meng-Chieh Wen, Lin-Ting Lin, Jiann-Horng Lin, An-Shen Chang, Huan-Just Lin
  • Patent number: 11532717
    Abstract: A semiconductor structure includes a metal gate structure comprising a gate dielectric layer and a gate electrode, a conductive layer disposed over the metal gate structure, and a contact feature in direct contact with the top portion of the conductive layer, where the conductive layer includes a bottom portion disposed below a top surface of the metal gate structure and a top portion disposed over the top surface of the metal gate structure, and where the top portion laterally extends beyond a sidewall of the bottom portion.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Publication number: 20220336733
    Abstract: Semiconductor structure and methods of forming the same are provided. An exemplary method includes providing a substrate having a first region and a second region, forming an array of memory cells over the first region of the substrate, and forming a memory-level dielectric layer around the array of memory cells. Each of the memory cells includes, from bottom to top, a bottom electrode, a memory material layer stack, and a top electrode. The exemplary method also includes forming a metal line directly interfacing a respective row of top electrodes of the array of memory cells. The metal line also directly interfaces a top surface of the memory-level dielectric layer.
    Type: Application
    Filed: September 1, 2021
    Publication date: October 20, 2022
    Inventors: Yu-Feng Yin, Min-Kun Dai, Chien-Hua Huang, Chung-Te Lin
  • Publication number: 20220328758
    Abstract: Semiconductor structure and methods of forming the same are provided. An exemplary method includes receiving a workpiece including a magnetic tunneling junction (MTJ) and a conductive capping layer disposed on the MTJ, depositing a first dielectric layer over the workpiece, performing a first planarization process to the first dielectric layer, and after the performing of the first planarization process, patterning the first dielectric layer to form an opening exposing a top surface of the conductive capping layer, selectively removing the conductive capping layer. The method also includes depositing an electrode layer to fill the opening and performing a second planarization process to the workpiece such that a top surface of the electrode layer and a top surface of the first dielectric layer are coplanar.
    Type: Application
    Filed: September 2, 2021
    Publication date: October 13, 2022
    Inventors: Yu-Feng Yin, Min-Kun Dai, Chien-Hua Huang, Chung-Te Lin
  • Publication number: 20220328755
    Abstract: The present disclosure provides a semiconductor structure, including a first metal line over a first region of the substrate, a first magnetic tunnel junction (MTJ) and a second MTJ over the first region of the substrate, and a top electrode extending over the first MTJ and the second MTJ, wherein the top electrode includes a protruding portion at a bottom surface of the top electrode.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: YU-FENG YIN, TAI-YEN PENG, AN-SHEN CHANG, HAN-TING TSAI, QIANG FU, CHUNG-TE LIN
  • Publication number: 20220310907
    Abstract: In a method of manufacturing a semiconductor device, a cell structure is formed. The cell structure includes a bottom electrode, a magnetic tunnel junction (MTJ) stack disposed on the bottom electrode and a hard mask layer disposed on the MTJ stack. A first insulating cover layer is formed over sidewall of the MTJ stack. A second insulating cover layer is formed over the first insulating cover layer and the hard mask layer. A first interlayer dielectric (ILD) layer is formed. The hard mask layer is exposed by etching the first ILD layer and the second insulating cover layer. A second ILD layer is formed. A contact opening is formed in the second ILD layer by patterning the second ILD layer and removing the hard mask layer. A conductive layer is formed in the contact opening so that the conductive layer contacts the MTJ stack.
    Type: Application
    Filed: September 28, 2021
    Publication date: September 29, 2022
    Inventors: Tsung-Chieh HSIAO, Yu-Feng YIN, Liang-Wei WANG, Dian-Hau CHEN