Patents by Inventor Yu-Feng Yin

Yu-Feng Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220310907
    Abstract: In a method of manufacturing a semiconductor device, a cell structure is formed. The cell structure includes a bottom electrode, a magnetic tunnel junction (MTJ) stack disposed on the bottom electrode and a hard mask layer disposed on the MTJ stack. A first insulating cover layer is formed over sidewall of the MTJ stack. A second insulating cover layer is formed over the first insulating cover layer and the hard mask layer. A first interlayer dielectric (ILD) layer is formed. The hard mask layer is exposed by etching the first ILD layer and the second insulating cover layer. A second ILD layer is formed. A contact opening is formed in the second ILD layer by patterning the second ILD layer and removing the hard mask layer. A conductive layer is formed in the contact opening so that the conductive layer contacts the MTJ stack.
    Type: Application
    Filed: September 28, 2021
    Publication date: September 29, 2022
    Inventors: Tsung-Chieh HSIAO, Yu-Feng YIN, Liang-Wei WANG, Dian-Hau CHEN
  • Patent number: 11417832
    Abstract: The present disclosure provides a semiconductor structure, including a substrate, including a first region and a second region adjacent to the first region, a magnetic tunnel junction (MTJ) over the first region, a spacer on a sidewall of the MTJ, a hard mask over the MTJ, a first dielectric layer laterally surrounding the spacer and the hard mask, a top electrode over the hard mask, and an etch stop stack laterally surrounding the top electrode.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Feng Yin, Tai-Yen Peng, An-Shen Chang, Han-Ting Tsai, Qiang Fu, Chung-Te Lin
  • Publication number: 20220069201
    Abstract: The present disclosure provides a semiconductor structure, including a substrate, including a first region and a second region adjacent to the first region, a magnetic tunnel junction (MTJ) over the first region, a spacer on a sidewall of the MTJ, a hard mask over the MTJ, a first dielectric layer laterally surrounding the spacer and the hard mask, a top electrode over the hard mask, and an etch stop stack laterally surrounding the top electrode.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: YU-FENG YIN, TAI-YEN PENG, AN-SHEN CHANG, HAN-TING TSAI, QIANG FU, CHUNG-TE LIN
  • Publication number: 20220029091
    Abstract: A method for forming a memory device structure is provided. The method includes providing a substrate, a first dielectric layer, a conductive via, a magnetic tunnel junction cell, a first etch stop layer, and a first spacer layer. The substrate has a first region and a second region, the first dielectric layer is over the substrate, the conductive via passes through the first dielectric layer over the first region. The method includes removing the first etch stop layer, which is not covered by the first spacer layer. The method includes removing the first dielectric layer, which is not covered by the first etch stop layer.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 27, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsing-Hsiang WANG, Han-Ting LIN, Yu-Feng YIN, Sin-Yi YANG, Chen-Jung WANG, Yin-Hao WU, Kun-Yi LI, Meng-Chieh WEN, Lin-Ting LIN, Jiann-Horng LIN, An-Shen CHANG, Huan-Just LIN
  • Publication number: 20210399207
    Abstract: A magnetic tunnel junction (MTJ) memory cell comprising a connection via structure, a bottom electrode disposed on the connection via structure, a memory material stack disposed on the bottom electrode, and a conductive contact structure disposed on the memory material stack, in which a bottom surface of the conductive contact structure is in direct contact with a memory material layer of the memory material stack.
    Type: Application
    Filed: April 14, 2021
    Publication date: December 23, 2021
    Inventors: Hsing-Hsiang WANG, Yu-Feng YIN, Jiann-Horng LIN, Huan-Just LIN
  • Publication number: 20210391532
    Abstract: A memory array device includes an array of memory cells located over a substrate, a memory-level dielectric layer laterally surrounding the array of memory cells, and top-interconnection metal lines laterally extending along a horizontal direction and contacting a respective row of top electrodes within the memory cells. Top electrodes of the memory cells are planarized to provide top surfaces that are coplanar with the top surface of the memory-level dielectric layer. The top-interconnection metal lines do not extend below the horizontal plane including the top surface of the memory-level dielectric layer, and prevent electrical shorts between the top-interconnection metal lines and components of memory cells.
    Type: Application
    Filed: April 7, 2021
    Publication date: December 16, 2021
    Inventors: Yu-Feng YIN, Tai-Yen PENG, An-Shen CHANG, Han-Ting TSAI, Qiang FU, Chung-Te LIN
  • Publication number: 20210376231
    Abstract: A magnetic tunnel junction (MTJ) memory cell and a metallic etch mask portion are formed over a substrate. At least one dielectric etch stop layer is deposited over the metallic etch mask portion, and a via-level dielectric layer is deposited over the at least one dielectric etch stop layer. A via cavity may be etched through the via-level dielectric layer, and a top surface of the at least one dielectric etch stop layer is physically exposed. The via cavity may be vertically extended by removing portions of the at least one dielectric etch stop layer and the metallic etch mask portion. A contact via structure is formed directly on a top surface of the top electrode in the via cavity to provide a low-resistance contact to the top electrode.
    Type: Application
    Filed: March 12, 2021
    Publication date: December 2, 2021
    Inventors: Yu-Feng YIN, Tai-Yen PENG, An-Shen CHANG, Han-Ting TSAI, Qiang FU, Chung-Te LIN
  • Publication number: 20210376228
    Abstract: In an embodiment, a device includes: a magnetoresistive random access memory (MRAM) array including MRAM cells arranged in rows and columns, where a first column of the columns includes: first bottom electrodes arranged along the first column; first magnetic tunnel junction (MTJ) stacks over the first bottom electrodes; a first shared electrode over each of the first MTJ stacks; second bottom electrodes arranged along the first column; second MTJ stacks over the second bottom electrodes; a second shared electrode over each of the second MTJ stacks; and a bit line electrically connected to the first shared electrode and the second shared electrode.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventors: Tai-Yen Peng, Yu-Feng Yin, An-Shen Chang, Han-Ting Tsai, Qiang Fu
  • Publication number: 20210167179
    Abstract: A semiconductor structure includes a metal gate structure comprising a gate dielectric layer and a gate electrode, a conductive layer disposed over the metal gate structure, and a contact feature in direct contact with the top portion of the conductive layer, where the conductive layer includes a bottom portion disposed below a top surface of the metal gate structure and a top portion disposed over the top surface of the metal gate structure, and where the top portion laterally extends beyond a sidewall of the bottom portion.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Patent number: 10923573
    Abstract: A conductive layer is formed between a metal gate structure, which includes a high-k gate dielectric layer and a gate electrode, and a contact feature. The conductive layer can be selectively deposited on a top surface of the gate electrode or, alternatively, non-selectively formed on the top surface of the gate electrode and the gate dielectric layer by controlling, for example, time of deposition. The conductive layer can have a bottom portion embedded into the gate electrode. The conductive layer and the contact feature can include the same composition, though they may be formed using different deposition techniques.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: February 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Publication number: 20200388504
    Abstract: A semiconductor structure includes a metal gate structure including a gate dielectric layer and a gate electrode, the gate electrode including at least a first metal; a conductive layer formed above the gate electrode, the conductive layer including an alloy layer, the alloy layer including at least the first metal and a second metal different from the first metal, the alloy layer extending from a position below a top surface of the metal gate structure to a position above the top surface of the metal gate structure; and a contact feature disposed above the metal gate structure, wherein the contact feature is in direct contact with a top surface of the conductive layer.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Patent number: 10755945
    Abstract: A method includes forming a metal gate structure, wherein the metal gate structure includes a gate dielectric layer and a gate electrode; performing a surface treatment to a top surface of the metal gate structure, wherein the surface treatment converts a top portion of the gate electrode to an oxidation layer; forming a conductive layer above the gate electrode, wherein the forming of the conductive layer includes substituting oxygen in the oxidation layer with a metallic element; and forming a contact feature above the metal gate structure, wherein the contact feature is in direct contact with the conductive layer.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: August 25, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Publication number: 20200020541
    Abstract: A method includes forming a metal gate structure, wherein the metal gate structure includes a gate dielectric layer and a gate electrode; performing a surface treatment to a top surface of the metal gate structure, wherein the surface treatment converts a top portion of the gate electrode to an oxidation layer; forming a conductive layer above the gate electrode, wherein the forming of the conductive layer includes substituting oxygen in the oxidation layer with a metallic element; and forming a contact feature above the metal gate structure, wherein the contact feature is in direct contact with the conductive layer.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Publication number: 20200013866
    Abstract: A conductive layer is formed between a metal gate structure, which includes a high-k gate dielectric layer and a gate electrode, and a contact feature. The conductive layer can be selectively deposited on a top surface of the gate electrode or, alternatively, non-selectively formed on the top surface of the gate electrode and the gate dielectric layer by controlling, for example, time of deposition. The conductive layer can have a bottom portion embedded into the gate electrode. The conductive layer and the contact feature can include the same composition, though they may be formed using different deposition techniques.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Patent number: 10418453
    Abstract: A conductive layer is formed between a metal gate structure, which includes a high-k gate dielectric layer and a gate electrode, and a contact feature. The conductive layer can be selectively deposited on a top surface of the gate electrode or, alternatively, non-selectively formed on the top surface of the gate electrode and the gate dielectric layer by controlling, for example, time of deposition. The conductive layer can have a bottom portion embedded into the gate electrode. The conductive layer and the contact feature can include the same composition, though they may be formed using different deposition techniques.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Publication number: 20190157409
    Abstract: A conductive layer is formed between a metal gate structure, which includes a high-k gate dielectric layer and a gate electrode, and a contact feature. The conductive layer can be selectively deposited on a top surface of the gate electrode or, alternatively, non-selectively formed on the top surface of the gate electrode and the gate dielectric layer by controlling, for example, time of deposition. The conductive layer can have a bottom portion embedded into the gate electrode. The conductive layer and the contact feature can include the same composition, though they may be formed using different deposition techniques.
    Type: Application
    Filed: January 30, 2018
    Publication date: May 23, 2019
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao