Patents by Inventor Yu-Gyun Shin

Yu-Gyun Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7396761
    Abstract: In a semiconductor device and a method of manufacturing the semiconductor device, a plug and a channel structure are formed. The plug fills an opening and the channel structure extends upwardly from the plug. The channel structure has a substantially vertical sidewall. The opening is formed through an insulation structure located on a substrate. The plug and the channel structure comprise a material in a single crystalline state that is changed from an amorphous state by an irradiation of a laser beam. The channel structure is doped with impurities such as boron, phosphorus or arsenic.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Kwan Kang, Jong-Wook Lee, Yong-Hoon Son, Yu-Gyun Shin, Jun-Ho Lee
  • Publication number: 20080157095
    Abstract: Methods of manufacturing semiconductor devices having at least one single crystal silicon layer are provided. Pursuant to these methods, a first seed layer that includes silicon is formed. A first non-single crystalline silicon layer is then formed on the first seed layer. The first non-single crystalline silicon layer is irradiated with a laser to transform the first non-single crystalline silicon layer into a first single crystalline silicon layer. Corresponding semiconductor devices are also disclosed.
    Type: Application
    Filed: March 11, 2008
    Publication date: July 3, 2008
    Inventors: Yong-Hoon Son, Yu-Gyun Shin
  • Patent number: 7393700
    Abstract: Methods of etching a semiconductor substrate may include providing a first gas that is chemically reactive with respect to the semiconductor substrate, and while providing the first gas, providing a second gas different than the first gas. More particularly, a molecule of the second gas may include a hydrogen atom, and the second gas may lower a temperature at which the first gas chemically reacts with the semiconductor substrate. The mixture of the first and second gases may be provided adjacent the semiconductor substrate to etch the semiconductor substrate.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: July 1, 2008
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Sun-Ghil Lee, Yu-Gyun Shin, Jong-Wook Lee, Deok-Hyung Lee, In-Soo Jung, Young-Eun Lee
  • Patent number: 7390719
    Abstract: A semiconductor device having a dual gate is formed on a substrate having a dielectric layer. A first metallic conductive layer is formed on the dielectric layer to a first thickness, and annealed to have a reduced etching rate. A second metallic conductive layer is formed on the first metallic conductive layer to a second thickness that is greater than the first thickness. A portion of the second metallic conductive layer formed in a second area of the substrate is removed using an etching selectivity. A first gate structure having a first metallic gate including the first and the second metallic conductive layers is formed in a first area of the substrate. A second gate structure having a second metallic gate is formed in the second area. A gate dielectric layer is not exposed to an etching chemical due to the first metallic conductive layer, so its dielectric characteristics are not degraded.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: June 24, 2008
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Taek-Soo Jeon, Yu-Gyun Shin, Sang-Bom Kang, Hag-Ju Cho, Hye-Lan Lee, Sang-Yong Kim
  • Patent number: 7364955
    Abstract: Methods of manufacturing semiconductor devices having at least one single crystal silicon layer are provided. Pursuant to these methods, a first seed layer that includes silicon is formed. A first non-single crystalline silicon layer is then formed on the first seed layer. The first non-single crystalline silicon layer is irradiated with a laser to transform the first non-single crystalline silicon layer into a first single crystalline silicon layer. Corresponding semiconductor devices are also disclosed.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Yu-Gyun Shin
  • Patent number: 7364990
    Abstract: First and second preliminary epitaxial layers are grown from single-crystalline seeds in openings in an insulation layer until the first and second epitaxial layers are connected to each other. While the first and second preliminary epitaxial layers are being grown, a connection structure of a material having an amorphous state is formed on a portion of the insulation layer located between the first and second preliminary epitaxial layers. The material having an amorphous state is then changed into material having a single-crystalline state. Thus, portions of the first and second epitaxial layers are connected to each other through the connection structure so that the epitaxial layers and the connection structure constitute a single-crystalline structure layer that is free of voids for use as a channel layer or the like of a semiconductor device.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Yu-Gyun Shin, Jong-Wook Lee
  • Publication number: 20080093674
    Abstract: In a fin field effect transistor (FET), an active pattern protrudes in a vertical direction from a substrate and extends across the substrate in a first horizontal direction. A first silicon nitride pattern is formed on the active pattern, and a first oxide pattern and a second silicon nitride pattern are sequentially formed on the substrate and on a sidewall of a lower portion of the active pattern. A device isolation layer is formed on the second silicon nitride pattern, and a top surface of the device isolation layer is coplanar with top surfaces of the oxide pattern and the second silicon nitride pattern. A buffer pattern having an etching selectivity with respect to the second silicon nitride pattern is formed between the first oxide pattern and the second silicon nitride pattern.
    Type: Application
    Filed: December 7, 2007
    Publication date: April 24, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Deok-Hyung Lee, Yu-Gyun Shin, Jong-Wook Lee, Min-Gu Kang
  • Patent number: 7351622
    Abstract: A method of forming a semiconductor device includes forming a three-dimensional structure formed of a semiconductor on a semiconductor substrate, and isotropically doping the three-dimensional structure by performing a plasma doping process using a first source gas and a second source gas. The first source gas includes n-type or p-type impurity elements, and the second source gas includes a dilution element regardless of the electrical characteristic of a doped region.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: April 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyoung-Ho Buh, Chang-Woo Ryoo, Yu-Gyun Shin, Tai-Su Park, Jin-Wook Lee
  • Patent number: 7326608
    Abstract: In a fin field effect transistor (FET), an active pattern protrudes in a vertical direction from a substrate and extends across the substrate in a first horizontal direction. A first silicon nitride pattern is formed on the active pattern, and a first oxide pattern and a second silicon nitride pattern are sequentially formed on the substrate and on a sidewall of a lower portion of the active pattern. A device isolation layer is formed on the second silicon nitride pattern, and a top surface of the device isolation layer is coplanar with top surfaces of the oxide pattern and the second silicon nitride pattern. A buffer pattern having an etching selectivity with respect to the second silicon nitride pattern is formed between the first oxide pattern and the second silicon nitride pattern.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 5, 2008
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Deok-Hyung Lee, Yu-Gyun Shin, Jong-Wook Lee, Min-Gu Kang
  • Patent number: 7315063
    Abstract: A CMOS transistor structure and related method of manufacture are disclosed in which a first conductivity type MOS transistor comprises an enhancer and a second conductivity type MOS transistor comprises a second spacer formed of the same material as the enhancer. The second conductivity type MOS transistor also comprises a source/drain region formed in relation to an epitaxial layer formed in a recess region.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: January 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-eun Lee, Seong-ghil Lee, Yu-gyun Shin, Jong-wook Lee, Young-pil Kim
  • Publication number: 20070231976
    Abstract: A method of fabricating a semiconductor device includes forming an insulation layer structure on a single-crystalline silicon substrate, forming a first insulation layer structure pattern comprising a first opening by etching a portion of the insulation layer structure, filling the first opening with a non-single-crystalline silicon layer, and forming a single-crystalline silicon pattern by irradiating a first laser beam onto the non-single-crystalline silicon layer. The method also includes forming a second insulation layer structure pattern comprising a second opening by etching a portion of the first insulation layer structure, filling the second opening with a non-single-crystalline silicon-germanium layer, and forming a single-crystalline silicon-germanium pattern by irradiating a second laser beam onto the non-single-crystalline silicon-germanium layer.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 4, 2007
    Inventors: Sung-Kwan Kang, Yu-Gyun Shin, Jong-Wook Lee, Yong-Hoon Son
  • Publication number: 20070215959
    Abstract: A semiconductor device may include a semiconductor substrate, first and second source/drain regions on a surface of the semiconductor substrate, and a channel region on the surface of the semiconductor substrate with the channel region between the first and second source/drain regions. An insulating layer pattern may be on the channel region, a first conductive layer pattern may be on the insulating layer, and a second conductive layer pattern may be on the first conductive layer pattern. The insulating layer pattern may be between the first conductive layer pattern and the channel region, and the first conductive layer pattern may include boron doped polysilicon with a surface portion having an accumulation of silicon boronide. The first conductive layer pattern may be between the second conductive layer pattern and the insulating layer pattern, and the second conductive layer pattern may include tungsten. Related methods are also discussed.
    Type: Application
    Filed: March 5, 2007
    Publication date: September 20, 2007
    Inventors: Jin-Wook Lee, Chang-Woo Ryoo, Tai-Su Park, U-In Chung, Yu-Gyun Shin
  • Publication number: 20070166931
    Abstract: A method of manufacturing a semiconductor device includes depositing a high-dielectric film on a semiconductor substrate and performing an oxygen plasma treatment on the high-dielectric film deposited on the semiconductor substrate. The method further includes forming an electrode on the oxygen-plasma treated high-dielectric film.
    Type: Application
    Filed: December 7, 2006
    Publication date: July 19, 2007
    Inventors: Hong-Bae Park, Hag-Ju Cho, Yu-Gyun Shin, Sang-Bom Kang
  • Publication number: 20070131159
    Abstract: A method for growing an epitaxial layer includes obtaining a semiconductor substrate having a plurality of insulating and conductive surfaces, adsorbing a first source gas into the plurality of conductive surfaces to grow a first epitaxial layer thereon, such that the first epitaxial layer has lateral portions overhanging the insulating surfaces, etching the first epitaxial layer to form an etched epitaxial layer, such that the etched epitaxial layer has curved surfaces, and supplying a second source gas to trigger additional epitaxial growth in the etched epitaxial layer.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 14, 2007
    Inventors: Young-Pil Kim, Jin Kim, Min-Gu Kang, Yu-Gyun Shin, Jong-Wook Lee
  • Publication number: 20070134415
    Abstract: An oxidation treatment apparatus for oxidizing a surface of a substrate includes a process chamber for performing a process, a boat supporting the substrate and disposed in the process chamber during the process and a first ozone supply unit supplying ozone to the process chamber. The first ozone supply unit includes an ozone generator disposed at an exterior of the process chamber and an ozone spray nozzle disposed in the process chamber to spray the ozone supplied from the ozone generator into the process chamber.
    Type: Application
    Filed: November 28, 2006
    Publication date: June 14, 2007
    Inventors: Ki-Hyun Hwang, U-In Chung, Yu-Gyun Shin, Jae-Young Ahn, Jin-Gyun Kim
  • Publication number: 20070132022
    Abstract: First and second preliminary epitaxial layers are grown from single-crystalline seeds in openings in an insulation layer until the first and second epitaxial layers are connected to each other. While the first and second preliminary epitaxial layers are being grown, a connection structure of a material having an amorphous state is formed on a portion of the insulation layer located between the first and second preliminary epitaxial layers. The material having an amorphous state is then changed into material having a single-crystalline state. Thus, portions of the first and second epitaxial layers are connected to each other through the connection structure so that the epitaxial layers and the connection structure constitute a single-crystalline structure layer that is free of voids for use as a channel layer or the like of a semiconductor device.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Yong-Hoon Son, Yu-Gyun Shin, Jong-Wook Lee
  • Publication number: 20070128775
    Abstract: A method of manufacturing a gate electrode of a MOS transistor including a tungsten carbon nitride layer is disclosed. After a high dielectric layer is formed on a substrate, a source gas including tungsten amine derivative flows onto the high dielectric layer. A tungsten carbon nitride layer is formed on the high dielectric layer by decomposing the source gas. Thereafter, a gate electrode is formed by patterning the tungsten carbon nitride layer. According to the present invention, a gate electrode having a work function of over 4.9 eV is formed.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 7, 2007
    Inventors: Taek-Soo Jeon, Hag-ju Cho, Hye-Lan Lee, Yu-Gyun Shin, Sang-Bom Kang
  • Publication number: 20070120179
    Abstract: A SONOS type non-volatile memory device includes a substrate having source/drain regions doped with impurities and a channel region between the source/drain regions. A tunnel insulation layer including silicon oxide is formed on the channel region of the substrate. A charge-trapping insulation layer including silicon nitride is formed on the tunnel insulation layer. A blocking insulation layer is formed on the charge-trapping insulation layer. The blocking insulation layer has a laminate layered structure in which a plurality of layers, at least one of which includes a metal oxide layer, are sequentially stacked. An electrode is formed on the blocking insulation layer.
    Type: Application
    Filed: August 16, 2006
    Publication date: May 31, 2007
    Inventors: Hong-Bae Park, Yu-Gyun Shin
  • Publication number: 20070123062
    Abstract: In a semiconductor device and a method of manufacturing the semiconductor device, a plug and a channel structure are formed. The plug fills an opening and the channel structure extends upwardly from the plug. The channel structure has a substantially vertical sidewall. The opening is formed through an insulation structure located on a substrate. The plug and the channel structure comprise a material in a single crystalline state that is changed from an amorphous state by an irradiation of a laser beam. The channel structure is doped with impurities such as boron, phosphorus or arsenic.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 31, 2007
    Inventors: Sung-Kwan Kang, Jong-Wook Lee, Yong-Hoon Son, Yu-Gyun Shin, Jun-Ho Lee
  • Publication number: 20070111453
    Abstract: In a semiconductor device with dual gates and a method of manufacturing the same, a dielectric layer and first and second metallic conductive layers are successively formed on the semiconductor substrate having first and second regions. The second metallic conductive layer which is formed on the first metallic conductive layer of the second region is etched to form a metal pattern. The first metallic conductive layer is etched using the metal pattern as an etching mask. A polysilicon layer is formed on the dielectric layer and the metal pattern. The first gate electrode is formed by etching portions of the polysilicon layer, the metal pattern, and the first metallic conductive layer of the first region. The second gate electrode is formed by etching a portion of the polysilicon layer formed directly on the dielectric layer of the second region.
    Type: Application
    Filed: August 1, 2006
    Publication date: May 17, 2007
    Inventors: Hye-Lan Lee, Hag-Ju Cho, Taek-Soo Jeon, Yu-Gyun Shin, Sang-Bom Kang