Patents by Inventor Yu-Ling Lin

Yu-Ling Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130246990
    Abstract: A computer implemented system comprises a processor programmed to analyze a circuit to determine a response of the circuit to an input radio frequency (RF) signal, for at least one of designing, manufacturing, and testing the circuit. An interposer model is tangibly embodied in a non-transitory machine readable storage medium to be accessed by the processor. The interposer model is processed by the computer to output data representing a response of a though substrate via (TSV) to the radio frequency (RF) signal. The interposer model comprises a plurality of TSV models. Each TSV model has a respective three-port network. One of the ports of each three-port network is a floating node. The floating nodes of each of the three-port networks are connected to each other.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung YEN, Yu-Ling Lin, Chin-Wei Kuo
  • Publication number: 20130234305
    Abstract: A transmission line structure for semiconductor RF and wireless circuits, and method for forming the same. The transmission line structure includes embodiments having a first die including a first substrate, a first insulating layer, and a ground plane, and a second die including a second substrate, a second insulating layer, and a signal transmission line. The second die may be positioned above and spaced apart from the first die. An underfill is disposed between the ground plane of the first die and the signal transmission line of the second die. Collectively, the ground plane and transmission line of the first and second die and underfill forms a compact transmission line structure. In some embodiments, the transmission line structure may be used for microwave applications.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Ling LIN, Hsiao-Tsung YEN, Feng Wei KUO, Ho-Hsiang CHEN, Chin-Wei KUO
  • Publication number: 20130228894
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor structure disposed on the substrate. The capacitor structure includes a first conductive component; a second conductive component and a third conductive component symmetrically configured on opposite sides of the first conductive component. The first, second and third conductive components are separated from each other by respective dielectric material.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20130200448
    Abstract: A meander line resistor structure comprises a first resistor formed on a first active region, wherein the first resistor is formed by a plurality of first vias connected in series, a second resistor formed on a second active region, wherein the second resistor is formed by a plurality of second vias connected in series and a third resistor formed on the second active region, wherein the third resistor is formed by a plurality of third vias connected in series. The meander line resistor further comprises a first connector coupled between the first resistor and the second resistor.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin
  • Publication number: 20130200447
    Abstract: An adjustable meander line resistor comprises a plurality of series circuits. Each series circuit comprises a first resistor formed on a first doped region of a transistor, a second resistor formed on a second doped region of the transistor and a connector coupled between the first resistor and the second resistor. A control circuit is employed to control the on and off of the transistor so as to achieve the adjustable meander line resistor.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin
  • Publication number: 20130168809
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a first inductor formed on a first substrate; a second inductor formed on a second substrate and conductively coupled with the first inductor as a transformer; and a plurality of micro-bump features configured between the first and second substrates. The plurality of micro-bump features include a magnetic material having a relative permeability substantially greater than one and are configured to enhance coupling between the first and second inductors.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Ying-Ta Lu, Huan-Neng Chen, Ho-Hsiang Chen
  • Publication number: 20130154053
    Abstract: A device using an inductor with one or more through vias, and a method of manufacture is provided. In an embodiment, an inductor is formed in one or more of the metallization layers. One or more through vias are positioned directly below the inductor. The through vias may extend through one or more dielectric layers interposed between a substrate and the inductors. Additionally, the through vias may extend completely or partially through the substrate.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin
  • Publication number: 20130147023
    Abstract: The present disclosure provides an Integrated Circuit (IC) device. The IC device includes a first die that contains an electronic component. The IC device includes second die that contains a ground shielding structure. The IC device includes a layer disposed between the first die and the second die. The layer couples the first die and the second die together. The present disclosure also involves a microelectronic device. The microelectronic device includes a first die that contains a plurality of first interconnect layers. An inductor coil structure is disposed in a subset of the first interconnect layers. The microelectronic device includes a second die that contains a plurality of second interconnect layers. A patterned ground shielding (PGS) structure is disposed in a subset of the second interconnect layers. The microelectronic device includes an underfill layer disposed between the first and second dies. The underfill layer contains one or more microbumps.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Ling Lin, Hsiao-Tsung Yen, Ho-Hsiang Chen, Chewn-Pu Jou
  • Publication number: 20130134553
    Abstract: Interposer and semiconductor package embodiments provide for the isolation and suppression of electronic noise such as EM emissions in the semiconductor package. The interposer includes shield structures in various embodiments, the shield structures blocking the electrical noise from the noise source, from other electrical signals or devices. The shields include solid structures and some embodiments and decoupling capacitors in other embodiments. The coupling structures includes multiple rows of solder balls included in strips that couple the components and surround and contain the source of electrical noise.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 30, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng Wei Kuo, Hui Yu Lee, Huan-Neng Chen, Yen-Jen Chen, Yu-Ling Lin, Chewn-Pu Jou
  • Publication number: 20130115426
    Abstract: A method for manufacturing a flexible electronic device includes forming a first layer on a substrate to define a first area and a second area surrounding the first area such that the substrate is exposed at least partially in the first area and the first layer is in the second area, forming a second layer on the first area and the first layer over the second area such that an adhesion force between the second layer and the substrate in the first area is weaker than that between the second and first layers in the second area, forming an electronic device layer (EDL) on the second layer over the first area, the EDL defining a boundary projectively within the first area, and separating the EDL from the substrate by cutting through the first and second layers along a contour within the first area but not less than the boundary.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Chun-Hsiang Fang, Yu-Ling Lin
  • Publication number: 20130099352
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having an integrated circuit (IC) device; an interconnect structure disposed on the semiconductor substrate and coupled with the IC device; and a transformer disposed on the semiconductor substrate and integrated in the interconnect structure. The transformer includes a first conductive feature; a second conductive feature inductively coupled with the first conductive feature; a third conductive feature electrically connected to the first conductive feature; and a fourth conductive feature electrically connected to the second conductive feature. The third and fourth conductive features are designed and configured to be capacitively coupled to increase a coupling coefficient of the transformer.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8399961
    Abstract: A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng Hung Lee, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20130032799
    Abstract: A method includes providing on a substrate having at least two through substrate vias (“TSVs”) a plurality of test structures for de-embedding the measurement of the intrinsic characteristics of a device under test (DUT) including at least two of the TSVs; measuring the intrinsic characteristics [L] for a first and a second test structure on the substrate including two pads coupled with a transmission line of length L; using simultaneous solutions of ABCD matrix or T matrix form equations, and the measured intrinsic characteristics, solving for the intrinsic characteristics of the pads and the transmission lines; de-embedding the measurements of the third and fourth test structures using the intrinsic characteristics of the pads and the transmission lines; and using simultaneous solutions of ABCD matrix or T matrix form equations for BM_L and BM_LX, and the measured intrinsic characteristics, solving for the intrinsic characteristics of the TSVs.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Victor Chih Yuan Chang, Min-Chie Jeng
  • Publication number: 20120299778
    Abstract: An antenna includes a substrate and a top plate disposed over the substrate. At least one feed line is connected to the top plate, and each feed line comprises a first through-silicon via (TSV) structure passing through the substrate. At least one ground line is connected to the top plate, and each ground line comprises a second TSV structure passing through the substrate. The top plate is electrically conductive, and the at least one feed line is arranged to carry a radio frequency signal. The at least one ground line is arranged to be coupled to a ground.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung YEN, Jhe-Ching LU, Yu-Ling LIN, Chin-Wei KUO, Min-Chie JENG
  • Publication number: 20120268229
    Abstract: A device includes a substrate, and a vertical inductor over the substrate. The vertical inductor includes a plurality of parts formed of metal, wherein each of the parts extends in one of a plurality of planes perpendicular to a major surface of the substrate. Metal lines interconnect neighboring ones of the plurality of parts of the vertical inductor.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Huan-Neng Chen, Yu-Ling Lin, Chin-Wei Kuo, Mei-Show Chen, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8264288
    Abstract: A circuit includes an oscillator circuit including a first oscillator and a second oscillator. The first and the second oscillators are configured to generate signal having a same frequency and different phases. A transmission line is coupled between the first and the second oscillators.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: September 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ling Lin, Ying-Ta Lu, Hsiao-Tsung Yen, Ho-Hsiang Chen, Chewn-Pu Jou, Fu-Lung Hsueh
  • Publication number: 20120153433
    Abstract: A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng Hung Lee, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20120153231
    Abstract: A cathode material structure and a method for preparing the same are described. The cathode material structure includes a material body and a composite film coated thereon. The material body has a particle size of 0.1-50 ?m. The composite film has a porous structure and electrical conductivity.
    Type: Application
    Filed: March 14, 2011
    Publication date: June 21, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tsung-Hsiung Wang, Jing-Pin Pan, Chung-Liang Chang, Yu-Ling Lin
  • Publication number: 20120146680
    Abstract: A transmission line is provided. In one embodiment, the transmission line comprises a substrate, a well within the substrate, a shielding layer over the well, and a plurality of intermediate metal layers over the shielding layer, the plurality of intermediate metal layers coupled by a plurality of vias. The transmission line further includes a top metal layer over the plurality of intermediate metal layers. A test structure for de-embedding an on-wafer device, and a wafer are also disclosed.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Sa-Lly Liu
  • Publication number: 20120146741
    Abstract: An electronic device comprises first, second and third inductors connected in series and formed in a metal layer over a semiconductor substrate. The first and second inductors have a mutual inductance with each other. The second and third inductors having a mutual inductance with each other. A first capacitor has a first electrode connected to a first node. The first node is conductively coupled between the first and second inductors. A second capacitor has a second electrode connected to a second node. The second node is conductively coupled between the second and third inductors.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung YEN, Yu-Ling Lin, Ying-Ta Lu, Chin-Wei Kuo, Ho-Hsiang Chen