Patents by Inventor Yu-Lung Huang

Yu-Lung Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220375813
    Abstract: A heat dissipation structure is provided and includes a heat dissipation body and an adjustment channel. A carrying area and an active area adjacent to the carrying area are defined on a surface of the heat dissipation body, the carrying area is used for applying a first heat dissipation material thereonto, and the adjustment channel is formed in the active area, where one end of the adjustment channel communicates with the outside of the heat dissipation structure, and the other end communicates with the carrying area. Therefore, when the heat dissipation body is coupled to the electronic component by the first heat dissipation material, the adjustment channel can adjust a volume of the first heat dissipation material.
    Type: Application
    Filed: January 25, 2022
    Publication date: November 24, 2022
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yu-Lung Huang, Kuo-Hua Yu, Chang-Fu Lin
  • Publication number: 20220363150
    Abstract: A vehicle electrical connector includes an outer shell, an inner shell, and a conductive assembly. The outer shell includes a groove and assembling channels. The assembling channel extends from an opening on an outer side of the groove toward an inner tubular wall surface of the groove. The inner shell is in the outer shell and includes a base and a casing. The casing extends outward from one side of the base. The inner shell includes buckle blocks outside the casing. The buckle block is guided in the assembling channel through a path of the assembling channel, so that the buckle block is positioned in the assembling channel. Hence, after the inner shell is axially inserted into the outer shell and then rotated into a predetermined position, the inner shell and the outer shell can be stably held with each other.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 17, 2022
    Inventors: Sheng-Hsiang Huang, Yu-Feng Ke, Ming-Lung Chien
  • Publication number: 20220367604
    Abstract: A semiconductor processing system is provided to form a capacitor dielectric layer in a metal-insulator-metal capacitor. The semiconductor processing system includes a precursor tank configured to generate a precursor gas from a metal organic solid precursor, a processing chamber configured to perform a plasma enhanced chemical vapor deposition, and at least one buffer tank between the precursor tank and the processing chamber. The at least one buffer tank is coupled to the precursor tank via a first pipe and coupled to the processing chamber via a second pipe.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 17, 2022
    Inventors: Wei-Liang CHEN, Yu-Lung YEH, Chihchous CHUANG, Yen-Hsiu CHEN, Tsai-Ji LIOU, Yung-Hsiang CHEN, Ching-Hung HUANG
  • Patent number: 11502160
    Abstract: A semiconductor processing system is provided to form a capacitor dielectric layer in a metal-insulator-metal capacitor. The semiconductor processing system includes a precursor tank configured to generate a precursor gas from a metal organic solid precursor, a processing chamber configured to perform a plasma enhanced chemical vapor deposition, and at least one buffer tank between the precursor tank and the processing chamber. The at least one buffer tank is coupled to the precursor tank via a first pipe and coupled to the processing chamber via a second pipe.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: November 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Liang Chen, Yu-Lung Yeh, Chihchous Chuang, Yen-Hsiu Chen, Tsai-Ji Liou, Yung-Hsiang Chen, Ching-Hung Huang
  • Publication number: 20220351948
    Abstract: An apparatus includes a chamber, a pedestal configured to receive and support a semiconductor wafer in the chamber, and an edge ring disposed over the pedestal. The edge ring includes a first portion having a first top surface, a second portion coupled to the first portion and having a second top surface lower than the first top surface, and a recess defined in the first portion. The second top surface is under the semiconductor wafer. The recess has a depth, and a distance between the pedestal and an inner surface of the recess is substantially equal to the depth of the recess.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: HUNG-BIN LIN, LI-CHAO YIN, SHIH-TSUNG CHEN, YU-LUNG YANG, YING CHIEH WANG, BING KAI HUANG, SU-YU YEH
  • Patent number: 11482470
    Abstract: An electronic package is provided and includes an electronic element, an intermediary structure disposed on the electronic element, and a heat dissipation element bonded to the electronic element through the intermediary structure. The intermediary structure has a flow guide portion and a permanent fluid combined with the flow guide portion so as to be in contact with the electronic element, thereby achieving a preferred heat dissipation effect and preventing excessive warping of the electronic element or the heat dissipation element due to stress concentration.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: October 25, 2022
    Assignee: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yu-Lung Huang, Chee-Key Chung, Chang-Fu Lin, Yuan-Hung Hsu
  • Publication number: 20220336323
    Abstract: An electronic package is provided and includes an electronic element, an intermediary structure disposed on the electronic element, and a heat dissipation element bonded to the electronic element through the intermediary structure. The intermediary structure has a flow guide portion and a permanent fluid combined with the flow guide portion so as to be in contact with the electronic element, thereby achieving a preferred heat dissipation effect and preventing excessive warping of the electronic element or the heat dissipation element due to stress concentration.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yu-Lung Huang, Chee-Key Chung, Chang-Fu Lin, Yuan-Hung Hsu
  • Publication number: 20220314552
    Abstract: An additive manufacturing (AM) method includes using an AM tool to fabricate a plurality of workpiece products; measuring qualities of the first workpiece products respectively; performing a temperature measurement on each of the melt pools on the powder bed; performing photography on each of the melt pools on the powder bed; extracting a length and a width of each of the melt pools; performing a melt-pool feature processing operation; first converting each of the workspace images to a gray level co-occurrence matrix (GLCM); building a conjecture model by using a plurality of sets of first process data and the actual metrology values of the first workpiece products in accordance with a prediction algorithm; and predicting a virtual metrology value of the second workpiece product by using the conjecture model based on a set of second process data.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Haw-Ching YANG, Yu-Lung LO, Hung-Chang HSIAO, Shyh-Hau WANG, Min-Chun HU, Chih-Hung HUANG, Fan-Tien CHENG
  • Publication number: 20220308346
    Abstract: A head-up display system for a vehicle having a windshield is provided. The head-up display system includes a first image generation device and an optical system. The first image generation device is configured to provide a first light. The optical system is configured to reflect the first light. A first distance between the first image generation device and the optical system is greater than a second distance between the optical system and the windshield.
    Type: Application
    Filed: February 23, 2022
    Publication date: September 29, 2022
    Applicant: Innolux Corporation
    Inventors: Yu-Chia Huang, Tsung-Han Tsai, Chin-Lung Ting
  • Publication number: 20220297383
    Abstract: An additive manufacturing (AM) method includes using an AM tool to fabricate a plurality of workpiece products; measuring qualities of the first workpiece products respectively; performing a temperature measurement on each of the melt pools on the powder bed during a fabrication of each of the workpiece products; performing photography on each of the melt pools on the powder bed during the fabrication of each of the workpiece products; extracting a length and a width of each of the melt pools; performing a melt-pool feature processing operation; building a conjecture model by using a plurality of sets of first process data and the actual metrology values of the first workpiece products in accordance with a prediction algorithm; and predicting a virtual metrology value of the second workpiece product by using the conjecture model based on a set of second process data.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Patent number: 11447971
    Abstract: An energy dissipation device includes an inner tube, a core tube, an outer tube and a fixing member. The inner tube includes a first protruding structure. The core tube includes a second protruding structure, and the core tube is sleeved outside the inner tube. The outer tube is sleeved outside the core tube. The fixing member is connected to the inner tube, the core tube and the outer tube.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: September 20, 2022
    Assignee: WELL-LINK INDUSTRY Co., LTD
    Inventors: Chun-Lung Lee, Yi Chang Hsieh, Yu Li Huang
  • Patent number: 11448859
    Abstract: An optical lens system using ultraviolet for imaging includes, in order from a magnified side to a minified side, a first lens group of positive refractive power and a second lens group of positive refractive power. The second lens group includes at least one cemented lens and at least one aspheric lens. The optical lens system satisfies the condition of TE(?=400)>94%, where TE(?=400) denotes an overall transmittance of all of the lenses in the optical lens system measured at a wavelength of 400 nm and is equal to a product of respective internal transmittances of all of the lenses measured at a wavelength of 400 nm.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: September 20, 2022
    Assignee: YOUNG OPTICS INC.
    Inventors: Hung-You Cheng, Yu-Hung Chou, Ching-Lung Lai, Yi-Hua Lin, Wei-Hao Huang
  • Publication number: 20220282513
    Abstract: An energy dissipation device includes an inner tube, a core tube, an outer tube and a fixing member. The inner tube includes a first protruding structure. The core tube includes a second protruding structure, and the core tube is sleeved outside the inner tube. The outer tube is sleeved outside the core tube. The fixing member is connected to the inner tube, the core tube and the outer tube.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 8, 2022
    Applicant: WELL-LINK INDUSTRY Co.,LTD
    Inventors: Chun-Lung Lee, Yi Chang Hsieh, Yu Li Huang
  • Publication number: 20220268991
    Abstract: A single-mode crystal fiber is provided. The fiber has a core. The core is made of a crystalline material with a melting point above 1900 degrees Celsius (° C.). The core has a coat. The coat is made of a crystalline material the same as that of the core. Through immersion plating under a low vacuum pressure and a high temperature, the material of the coat is sintered to form an outer layer covering the core. Thus, the thickness of the coat is controlled. A single crystal totally the same as that of the core is grown in a solid state with no ceramics contained. Consequently, the crystal contains no ceramics; and, through being sintered in a vacuum environment, the crystal has pores the smallest in size and the fewest in number, as compared to those sintered under a normal pressure.
    Type: Application
    Filed: March 22, 2021
    Publication date: August 25, 2022
    Inventors: Teng-I Yang, Yu-Chan Lin, Sheng-Lung Huang
  • Patent number: 11410954
    Abstract: Provided is an electronic package, including a first substrate of a first conductive structure and a second substrate of a second conductive structure, where a first conductive layer, a bump body and a metal auxiliary layer of the first conductive structure are sequentially formed on the first substrate, and a metal pillar, a second conductive layer, a metal layer and a solder layer of the second conductive structure are sequentially formed on the second substrate, such that the solder layer is combined with the bump body and the metal auxiliary layer to stack the first substrate and the second substrate.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: August 9, 2022
    Assignee: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yu-Lung Huang, Chee-Key Chung, Chang-Fu Lin, Yuan-Hung Hsu
  • Patent number: 11406022
    Abstract: A method of fabricating a substrate having a through via includes: providing a carrier board having a release layer thereon; attaching the substrate onto the carrier board via the release layer; applying a light beam to the substrate to form a first blind hole in the substrate, wherein the first blind hole penetrates a first surface and a second surface of the substrate; performing an enlargement process on the first blind hole to form a second blind hole; forming a through via in the second blind hole; and performing a de-bonding process to release the substrate having a through via from the carrier board.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: August 2, 2022
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-I Wu, Shih-Ming Lin, Pin-Hao Hu, Yu-Chung Lin, Hsin-Yu Chang, Fu-Lung Chou, Chien-Jung Huang
  • Patent number: 11393937
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Patent number: 11383450
    Abstract: An additive manufacturing (AM) system, an AM method, and an AM feature extraction method are provided. The AM system includes an AM tool, a product metrology system, an in-situ metrology system, a virtual metrology (VM) system, a compensator, a track planner, a controller, a simulator and an augmented reality (AR) device. The simulator is used to find feasible parameter ranges, while the AR device is used to support operations and maintenance of the AM tool. The product metrology system, the in-situ metrology system and the VM system are integrated to estimate the variation of material on a powder bed of the AM tool. The compensator is used for compensating the process variation by adjusting process parameters. The product metrology system is used to measure the quality of products. The in-situ metrology system is used to collect features of melt pools on the powder bed.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: July 12, 2022
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Patent number: 11383446
    Abstract: An additive manufacturing (AM) system, an AM method, and an AM feature extraction method are provided. The AM system includes an AM tool, a product metrology system, an in-situ metrology system, a virtual metrology (VM) system, a compensator, a track planner, a controller, a simulator and an augmented reality (AR) device. The simulator is used to find feasible parameter ranges, while the AR device is used to support operations and maintenance of the AM tool. The product metrology system, the in-situ metrology system and the VM system are integrated to estimate the variation of material on a powder bed of the AM tool. The compensator is used for compensating the process variation by adjusting process parameters. The product metrology system is used to measure the quality of products. The in-situ metrology system is used to collect features of melt pools on the powder bed.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: July 12, 2022
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Publication number: 20220208570
    Abstract: A multiple die container load port may include a housing with an opening, and an elevator to accommodate a plurality of different sized die containers. The multiple die container load port may include a stage supported by the housing and moveable within the opening of the housing by the elevator. The stage may include one or more positioning mechanisms to facilitate positioning of the plurality of different sized die containers on the stage, and may include different portions movable by the elevator to accommodate the plurality of different sized die containers. The multiple die container load port may include a position sensor to identify one of the plurality of different sized die containers positioned on the stage.
    Type: Application
    Filed: January 7, 2022
    Publication date: June 30, 2022
    Inventors: Chih-Hung HUANG, Cheng-Lung WU, Yi-Fam SHIU, Yu-Chen CHEN, Yang-Ann CHU, Jiun-Rong PAI