Patents by Inventor Yu-Ren Wang

Yu-Ren Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170365703
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure formed over the semiconductor substrate, and an epitaxial structure formed partially within the semiconductor substrate. A vertically extending portion of the epitaxial structure extends vertically above a top surface of the semiconductor substrate in an area adjacent the gate structure. A laterally extending portion of the epitaxial structure extends laterally at an area below the top surface of the semiconductor substrate in a direction toward an area below the gate structure and beyond an area where the epitaxial structure extends vertically. The device further includes an interlayer dielectric layer between a side surface of the vertically extending portion of the epitaxial structure and a side surface of the gate structure. A top surface of the laterally extending portion of the epitaxial structure directly contacts the interlayer dielectric layer.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 21, 2017
    Inventors: Yu-Ying LIN, Kuan Hsuan KU, I-Cheng HU, Chueh-Yang LIU, Shui-Yen LU, Yu Shu LIN, Chun Yao YANG, Yu-Ren WANG, Neng-Hui YANG
  • Patent number: 9847247
    Abstract: A method for filling gaps of semiconductor device and a semiconductor device with insulation gaps formed by the same are provided. First, a silicon substrate with plural protruding portions is provided, and the protruding portions are spaced apart from each other by gaps with predetermined depths. A nitride-containing layer is formed above the silicon substrate for covering the protruding portions and surfaces of the gaps as a liner nitride. Then, an amorphous silicon layer is formed on the nitride-containing layer. An insulating layer is formed on the amorphous silicon layer, and the gaps are filled up with the insulating layer.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 19, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ping-Wei Huang, Keng-Jen Lin, Yi-Hui Lin, Yu-Ren Wang
  • Publication number: 20170330742
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes fin shaped structures and a recessed insulating layer. The fin shaped structures are disposed on a substrate. The recessed insulating layer covers a bottom portion of each of the fin shaped structures to expose a top portion of each of the fin shaped structures. The recessed insulating layer has a curve surface and a wicking structure is defined between a peak and a bottom of the curve surface. The wicking structure is disposed between the fin shaped structures and has a height being about 1/12 to 1/10 of a height of the top portion of the fin shaped structures.
    Type: Application
    Filed: June 29, 2017
    Publication date: November 16, 2017
    Inventors: Hsu Ting, Chun-Wei Yu, Chueh-Yang Liu, Yu-Ren Wang
  • Publication number: 20170309485
    Abstract: An apparatus for semiconductor wafer treatment includes a wafer holding unit configured to receive a single wafer, at least a solution supply unit configured to apply a solution onto the wafer and an irradiation unit configured to emit irradiation to the wafer. The irradiation unit further includes at least a plurality of first light sources configured to emit irradiation in FIR range and a plurality of second light sources configured to emit irradiation in UV range.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 26, 2017
    Inventors: Yu-Ying Lin, Chueh-Yang Liu, Yu-Ren Wang, Chun-Wei Yu, Kuang-Hsiu Chen, Yi-Liang Ye, Hsu Ting, Neng-Hui Yang
  • Patent number: 9793174
    Abstract: A fin field effect transistor (FinFET) on a silicon-on-insulator and method of forming the same are provided in the present invention. The FinFET includes first fin structure, second fin structure and an insulating layer. The first fin structure and the second fin structure are disposed on a substrate. The insulating layer covers the first fin structure and the second fin structure and exposes a first portion of the first fin structure and a second portion of the second fin structure. The first fin structure has a first height and the second fin structure has a second height different from the first height, and a top surface of the first fin structure and a top surface of the second fin structure are at different levels.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: October 17, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ping-Wei Huang, Yu-Ren Wang, Keng-Jen Lin, Shu-Ming Yeh
  • Patent number: 9793105
    Abstract: The invention provides a fabricating method of a FinFET, comprising: providing a substrate having fin structures; depositing an dielectric layer on the substrate filling between the fin structures; forming recesses to reveal a portion of the fin structure by removing a portion of the dielectric layer; performing a cleaning process on using a cleaning solution selected from one of a first solution, consisting of dHF and H2O2, and a second solution, consisting of dHF and DIO3; forming a gate structure across on the fin structures; and forming a source/drain structure on the substrate at two lateral sides of the gate structure. The present invention also provides a fabricating method of a FinFET having an improved cleaning step using a cleaning solution having one of a third solution, consisting of dHF and DIO3, and a fourth solution, consisting of NH4OH and DIO3 before formation of the source/drain structure.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: October 17, 2017
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chun-Wei Yu, Hsu Ting, Chueh-Yang Liu, Yu-Ren Wang, Kuang-Hsiu Chen, Yi-Liang Ye
  • Publication number: 20170263730
    Abstract: A semiconductor process including the following steps is provided. An epitaxial layer is formed on a substrate. An oxide layer is formed on the epitaxial layer, wherein the oxide layer includes a chemical oxide layer, a high-temperature oxide (HTO) layer or a surface modification oxide layer. An ion implant process is performed to the epitaxial layer to form a doped region in the epitaxial layer. The oxide layer is removed by using a diluted hydrofluoric acid (DHF) solution after performing the ion implant process, wherein a volume ratio of water to a hydrofluoric acid (HF) in the DHF solution is 200:1 to 1000:1.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 14, 2017
    Inventors: Chun-Wei Yu, Kuang-Hsiu Chen, Chueh-Yang Liu, Yu-Ren Wang
  • Patent number: 9748111
    Abstract: A method for fabricating a semiconductor structure includes following steps. First, a first layer, a second layer and a third layer are sequentially formed on the substrate. The second layer is conformally disposed on the top surface of the first layer. The second layer and the first layer have different compositions, and the third layer and the second layer also have different compositions. Then, a planarizing process is performed on the third layer until portions of the second layer are exposed. Afterwards, hydrofluoric acid and aqueous oxidant are concurrently or sequentially provided to the remaining second and third layers. Finally, an etch back process is carried out to remove all the second layer and portions of the first layer.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: August 29, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Liang Ye, Kuang-Hsiu Chen, Chueh-Yang Liu, Yu-Ren Wang
  • Publication number: 20170243952
    Abstract: A semiconductor device and a method for manufacturing the same are provided in the present invention. The semiconductor device includes a substrate, agate structure on the substrate and two spacers on both sidewalls of the gate structure. Each spacer comprises an inner first spacer portion made of SiCN and an outer second spacer portion made of SiOCN.
    Type: Application
    Filed: May 10, 2017
    Publication date: August 24, 2017
    Inventors: Chia-Ming Kuo, Po-Jen Chuang, Fu-Jung Chuang, Tsai-Yu Wen, Tsuo-Wen Lu, Yu-Ren Wang, Fu-Yu Tsai
  • Publication number: 20170243749
    Abstract: A method of forming an oxide layer is provided in the present invention. The method includes the following steps. A first oxide layer is formed on a semiconductor substrate, and a quality enhancement process is then performed to etch the first oxide layer and densify the first oxide layer at the same time for forming a second oxide layer. The first oxide layer is etched and densified at the same time by a mixture of dilute hydrofluoric acid (DHF) and hydrogen peroxide (H2O2) in the quality enhancement process. The thickness of the second oxide layer may be reduced and the quality of the second oxide layer may be enhanced by the quality enhancement process at the same time.
    Type: Application
    Filed: February 22, 2016
    Publication date: August 24, 2017
    Inventors: Chueh-Yang Liu, Chun-Wei Yu, Yu-Ying Lin, Yu-Ren Wang
  • Publication number: 20170243780
    Abstract: A method for filling gaps of semiconductor device and a semiconductor device with insulation gaps formed by the same are provided. First, a silicon substrate with plural protruding portions is provided, and the protruding portions are spaced apart from each other by gaps with predetermined depths. A nitride-containing layer is formed above the silicon substrate for covering the protruding portions and surfaces of the gaps as a liner nitride. Then, an amorphous silicon layer is formed on the nitride-containing layer. An insulating layer is formed on the amorphous silicon layer, and the gaps are filled up with the insulating layer.
    Type: Application
    Filed: May 9, 2017
    Publication date: August 24, 2017
    Inventors: Ping-Wei Huang, Keng-Jen Lin, Yi-Hui Lin, Yu-Ren Wang
  • Patent number: 9741572
    Abstract: A method of forming an oxide layer is provided in the present invention. The method includes the following steps. A first oxide layer is formed on a semiconductor substrate, and a quality enhancement process is then performed to etch the first oxide layer and densify the first oxide layer at the same time for forming a second oxide layer. The first oxide layer is etched and densified at the same time by a mixture of dilute hydrofluoric acid (DHF) and hydrogen peroxide (H2O2) in the quality enhancement process. The thickness of the second oxide layer may be reduced and the quality of the second oxide layer may be enhanced by the quality enhancement process at the same time.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 22, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chueh-Yang Liu, Chun-Wei Yu, Yu-Ying Lin, Yu-Ren Wang
  • Patent number: 9741818
    Abstract: A manufacturing method of a semiconductor structure for improving quality of an epitaxial layer is provided in the present invention. The manufacturing method includes the following steps. A gate structure is formed on a semiconductor substrate, and two lightly doped regions are formed in the semiconductor substrate at two sides of the gate structure. A capping layer is formed on the gate structure and the lightly doped regions. Two epitaxial layers are formed at the two sides of the gate structure after the step of forming the capping layer. An oxide film formed on the lightly doped regions will influence the growth condition of the epitaxial layers. A removing process is performed to remove the oxide film on the lightly doped regions before the step of forming the capping layer so as to improve the quality of the epitaxial layers.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: August 22, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chueh-Yang Liu, Yu-Ying Lin, I-cheng Hu, Tien-I Wu, Yu-Shu Lin, Yu-Ren Wang
  • Patent number: 9735235
    Abstract: A method of forming a nanowire includes providing a substrate. The substrate is etched to form at least one fin. Subsequently, a first epitaxial layer is formed on an upper portion of the fin. Later, an undercut is formed on a middle portion the fin. A second epitaxial layer is formed to fill into the undercut. Finally, the fin, the first epitaxial layer and the second epitaxial layer are oxidized to condense the first epitaxial layer and the second epitaxial layer into a germanium-containing nanowire.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 15, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tsai-Yu Wen, Chin-Sheng Yang, Chun-Jen Chen, Tsuo-Wen Lu, Yu-Ren Wang
  • Patent number: 9728397
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes fin shaped structures and a recessed insulating layer. The fin shaped structures are disposed on a substrate. The recessed insulating layer covers a bottom portion of each of the fin shaped structures to expose a top portion of each of the fin shaped structures. The recessed insulating layer has a curve surface and a wicking structure is defined between a peak and a bottom of the curve surface. The wicking structure is disposed between the fin shaped structures and has a height being about 1/12 to 1/10 of a height of the top portion of the fin shaped structures.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: August 8, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hsu Ting, Chun-Wei Yu, Chueh-Yang Liu, Yu-Ren Wang
  • Publication number: 20170221723
    Abstract: A method for fabricating a semiconductor structure includes following steps. First, a first layer, a second layer and a third layer are sequentially formed on the substrate. The second layer is conformally disposed on the top surface of the first layer. The second layer and the first layer have different compositions, and the third layer and the second layer also have different compositions. Then, a planarizing process is performed on the third layer until portions of the second layer are exposed. Afterwards, hydrofluoric acid and aqueous oxidant are concurrently or sequentially provided to the remaining second and third layers. Finally, an etch back process is carried out to remove all the second layer and portions of the first layer.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: Yi-Liang Ye, Kuang-Hsiu Chen, Chueh-Yang Liu, Yu-Ren Wang
  • Patent number: 9716165
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure formed over the semiconductor substrate, and an epitaxial structure formed partially within the semiconductor substrate. A vertically extending portion of the epitaxial structure extends vertically above a top surface of the semiconductor substrate in an area adjacent the gate structure. A laterally extending portion of the epitaxial structure extends laterally at an area below the top surface of the semiconductor substrate in a direction toward an area below the gate structure and beyond an area where the epitaxial structure extends vertically. The device further includes an interlayer dielectric layer between a side surface of the vertically extending portion of the epitaxial structure and a side surface of the gate structure. A top surface of the laterally extending portion of the epitaxial structure directly contacts the interlayer dielectric layer.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: July 25, 2017
    Assignee: United Microelectronics Corporation
    Inventors: Yu-Ying Lin, Kuan Hsuan Ku, I-Cheng Hu, Chueh-Yang Liu, Shui-Yen Lu, Yu Shu Lin, Chun Yao Yang, Yu-Ren Wang, Neng-Hui Yang
  • Publication number: 20170200824
    Abstract: A semiconductor device includes: a substrate; a gate structure on the substrate; and an epitaxial layer in the substrate adjacent to the gate structure, in which the epitaxial layer includes a planar surface and protrusions adjacent to two sides of the planar surface. Preferably, a contact plug is embedded in part of the epitaxial layer, and a silicide is disposed under the contact plug, in which a bottom surface of the silicide includes an arc.
    Type: Application
    Filed: March 26, 2017
    Publication date: July 13, 2017
    Inventors: Chun-Wei Yu, Hsu Ting, Chueh-Yang Liu, Yu-Ren Wang, Kuang-Hsiu Chen
  • Publication number: 20170186617
    Abstract: A semiconductor structure includes a dielectric layer located on a substrate, wherein the dielectric layer includes nitrogen atoms, and the concentration of the nitrogen atoms in the dielectric layer is lower than 5% at a location wherein the distance between this location in the dielectric layer to the substrate is less than 20% of the thickness of the dielectric layer. Moreover, the present invention provides a semiconductor process including the following steps: a dielectric layer is formed on a substrate. Two annealing processes are performed in-situly on the dielectric layer, wherein the two annealing processes have different imported gases and different annealing temperatures.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 29, 2017
    Inventors: Chien-Liang Lin, Yu-Ren Wang, Ying-Wei Yen
  • Publication number: 20170179286
    Abstract: A method for forming a semiconductor device includes steps as follows: Firstly, a semiconductor substrate having a circuit element with at least one spacer formed thereon is provided. Next, an acid treatment is performed on a surface of the spacer. A disposable layer is then formed on the circuit element and the spacer. Thereafter, an etching process is performed to form at least one recess in the semiconductor substrate adjacent to the circuit element. Subsequently, a selective epitaxial growth (SEG) process is performed to form an epitaxial layer in the recess.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Yi-Liang Ye, Kuang-Hsiu Chen, Chueh-Yang Liu, Yu-Ren Wang