Patents by Inventor Yu-Yun Peng

Yu-Yun Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9412648
    Abstract: A method includes forming a dielectric layer, forming a photo resist over the dielectric layer, forming a first mask layer over the photo resist, and forming a second mask layer over the first mask layer. A first-photo-first-etching is performed to form a first via pattern in the second mask layer, wherein the first-photo-first-etching stops on a top surface of the first mask layer. A second-photo-second-etching is performed to form a second via pattern in the second mask layer, wherein the second-photo-second-etching stops on the top surface of the first mask layer. The first mask layer is etched using the second mask layer as an etching mask. The photo resist and the dielectric layer are etched to simultaneously transfer the first via pattern and the second via pattern into the dielectric layer.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: August 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Hau Shiu, Chung-Chi Ko, Tze-Liang Lee, Wen-Kuo Hsieh, Yu-Yun Peng
  • Publication number: 20160155663
    Abstract: A method of making a semiconductor device including forming a first adhesion layer over a substrate. The method further includes forming a second adhesion layer over the first adhesion layer, where the second adhesion layer is formed using an inert gas with a first flow rate under a first RF power. Additionally, the method includes forming a low-k dielectric layer over the second adhesion layer, where the low-k dielectric layer is formed using the inert gas with a second flow rate under a second RF power under at least one of the following two conditions: 1) the second flow rate is different from the first flow rate; or 2) the second RF power is different from the first RF power. Furthermore, the method includes forming an opening in the dielectric layer, the second adhesion layer, and the first adhesion layer. Additionally, the method includes forming a conductor in the opening.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Po-Cheng Shih, Yu-Yun Peng, Chia Cheng Chou, Joung-Wei Liou
  • Patent number: 9257331
    Abstract: A method of making a semiconductor device including forming a first adhesion layer over a substrate. The method further includes forming a second adhesion layer over the first adhesion layer, where the second adhesion layer is formed using an inert gas with a first flow rate under a first RF power. Additionally, the method includes forming a low-k dielectric layer over the second adhesion layer, where the low-k dielectric layer is formed using the inert gas with a second flow rate under a second RF power under at least one of the following two conditions: 1) the second flow rate is different from the first flow rate; or 2) the second RF power is different from the first RF power. Furthermore, the method includes forming an opening in the dielectric layer, the second adhesion layer, and the first adhesion layer. Additionally, the method includes forming a conductor in the opening.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Cheng Shih, Yu-Yun Peng, Chia Cheng Chou, Joung-Wei Liou
  • Patent number: 9177918
    Abstract: Methods and apparatus for a low k dielectric layer of porous SiCOH. A method includes placing a semiconductor substrate into a vapor deposition chamber; introducing reactive gases into the vapor deposition chamber to form a dielectric film comprising SiCOH and a decomposable porogen; depositing the dielectric film to have a ratio of Si—CH3 to SiOnetwork bonds of less than or equal to 0.25; and performing a cure for a cure time to remove substantially all of the porogen from the dielectric film. In one embodiment the porogen comprises a cyclic hydrocarbon. The porogen may be UV curable. In embodiments, different lowered Si—CH3 to SiOnetwork ratios for the deposition of the dielectric film are disclosed. An apparatus of a semiconductor device including the low k dielectric layers is disclosed.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: November 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Hui-Chun Yang
  • Publication number: 20150270189
    Abstract: A system and method for a low-k dielectric layer are provided. A preferred embodiment comprises forming a matrix and forming a porogen within the matrix. The porogen comprises an organic ring structure with fewer than fifteen carbons and a large percentage of single bonds. Additionally, the porogen may have a viscosity greater than 1.3 and a Reynolds numbers less than 0.5.
    Type: Application
    Filed: June 8, 2015
    Publication date: September 24, 2015
    Inventors: Joung-Wei Liou, Hui-Chun Yang, Yu-Yun Peng, Keng-Chu Lin
  • Patent number: 9054110
    Abstract: A system and method for a low-k dielectric layer are provided. A preferred embodiment comprises forming a matrix and forming a porogen within the matrix. The porogen comprises an organic ring structure with fewer than fifteen carbons and a large percentage of single bonds. Additionally, the porogen may have a viscosity greater than 1.3 and a Reynolds numbers less than 0.5.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: June 9, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Joung-Wei Liou, Hui-Chun Yang, Yu-Yun Peng, Keng-Chu Lin
  • Publication number: 20150048488
    Abstract: Semiconductor devices, methods of manufacture thereof, and IMD structures are disclosed. In some embodiments, a semiconductor device includes an adhesion layer disposed over a workpiece. The adhesion layer has a dielectric constant of about 4.0 or less and includes a substantially homogeneous material. An insulating material layer is disposed over the adhesion layer. The insulating material layer has a dielectric constant of about 2.6 or less. The adhesion layer and the insulating material layer comprise an IMD structure.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Kuang-Yuan Hsu
  • Publication number: 20150041964
    Abstract: Methods and apparatus for a low k dielectric layer of porous SiCOH. A method includes placing a semiconductor substrate into a vapor deposition chamber; introducing reactive gases into the vapor deposition chamber to form a dielectric film comprising SiCOH and a decomposable porogen; depositing the dielectric film to have a ratio of Si—CH3 to SiOnetwork bonds of less than or equal to 0.25; and performing a cure for a cure time to remove substantially all of the porogen from the dielectric film. In one embodiment the porogen comprises a cyclic hydrocarbon. The porogen may be UV curable. In embodiments, different lowered Si—CH3 to SiOnetwork ratios for the deposition of the dielectric film are disclosed. An apparatus of a semiconductor device including the low k dielectric layers is disclosed.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Hui-Chun Yang
  • Publication number: 20150011084
    Abstract: A method of making a semiconductor device including forming a first adhesion layer over a substrate. The method further includes forming a second adhesion layer over the first adhesion layer, where the second adhesion layer is formed using an inert gas with a first flow rate under a first RF power. Additionally, the method includes forming a low-k dielectric layer over the second adhesion layer, where the low-k dielectric layer is formed using the inert gas with a second flow rate under a second RF power under at least one of the following two conditions: 1) the second flow rate is different from the first flow rate; or 2) the second RF power is different from the first RF power. Furthermore, the method includes forming an opening in the dielectric layer, the second adhesion layer, and the first adhesion layer. Additionally, the method includes forming a conductor in the opening.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventors: Po-Cheng SHIH, Yu-Yun PENG, Chia Cheng CHOU, Joung-Wei LIOU
  • Patent number: 8889567
    Abstract: Methods and apparatus for a low k dielectric layer of porous SiCOH. A method includes placing a semiconductor substrate into a vapor deposition chamber; introducing reactive gases into the vapor deposition chamber to form a dielectric film comprising SiCOH and a decomposable porogen; depositing the dielectric film to have a ratio of Si—CH3 to SiOnetwork bonds of less than or equal to 0.25; and performing a cure for a cure time to remove substantially all of the porogen from the dielectric film. In one embodiment the porogen comprises a cyclic hydrocarbon. The porogen may be UV curable. In embodiments, different lowered Si—CH3 to SiOnetwork ratios for the deposition of the dielectric film are disclosed. An apparatus of a semiconductor device including the low k dielectric layers is disclosed.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Hui-Chun Yang
  • Patent number: 8853831
    Abstract: A interconnect structure includes a conductive layer formed in a dielectric layer. An adhesion layer is formed between the dielectric layer and a substrate. The adhesion layer has a carbon content ratio greater than a carbon content ratio of the dielectric layer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Cheng Shih, Yu-Yun Peng, Chia Cheng Chou, Joung-Wei Liou
  • Publication number: 20140261176
    Abstract: One or more pumping liners are provided for use in chemical vapor deposition (CVD). A pumping liner encircles a deposition chamber within which a wafer is placed and into which a precursor is introduced to form a thin film on a surface of the wafer. The pumping liner regulates a rate and uniformity at which a gas is removed from the deposition chamber, which in turn affects a duration or degree to which different portions of the wafer are exposed to the precursor. Controlling exposure of the wafer to the precursor promotes uniformity of the film formed on the wafer as well an ability to regulate the thickness of the film formed on the wafer. In an embodiment, a pumping liner has at least one of relatively small liner apertures, an increased number of liner apertures or a non-uniform distribution of liner apertures within a body of the pumping liner.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Cheng-Hsiung Liu, Chun-Hao Hsu, Yu-Yun Peng, Chih-Yuan Yao, Chia-I Shen, Keng-Chu Lin
  • Publication number: 20130256903
    Abstract: A interconnect structure includes a conductive layer formed in a dielectric layer. An adhesion layer is formed between the dielectric layer and a substrate. The adhesion layer has a carbon content ratio greater than a carbon content ratio of the dielectric layer.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Cheng SHIH, Yu-Yun PENG, Chia Cheng CHOU, Joung-Wei LIOU
  • Publication number: 20130072031
    Abstract: Methods and apparatus for a low k dielectric layer of porous SiCOH. A method includes placing a semiconductor substrate into a vapor deposition chamber; introducing reactive gases into the vapor deposition chamber to form a dielectric film comprising SiCOH and a decomposable porogen; depositing the dielectric film to have a ratio of Si—CH3 to SiOnetwork bonds of less than or equal to 0.25; and performing a cure for a cure time to remove substantially all of the porogen from the dielectric film. In one embodiment the porogen comprises a cyclic hydrocarbon. The porogen may be UV curable. In embodiments, different lowered Si—CH3 to SiOnetwork ratios for the deposition of the dielectric film are disclosed. An apparatus of a semiconductor device including the low k dielectric layers is disclosed.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Hui-Chun Yang
  • Publication number: 20130032955
    Abstract: A system and method for a low-k dielectric layer are provided. A preferred embodiment comprises forming a matrix and forming a porogen within the matrix. The porogen comprises an organic ring structure with fewer than fifteen carbons and a large percentage of single bonds. Additionally, the porogen may have a viscosity greater than 1.3 and a Reynolds numbers less than 0.5.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Joung-Wei Liou, Hui-Chun Yang, Yu-Yun Peng, Keng-Chu Lin
  • Publication number: 20080128931
    Abstract: A method for preparing nanocomposite ZnO—SiO2 fluorescent thin film by magnetron sputtering is proposed. ZnO is formed as nano-sized crystalline particles uniformly dispersed in the amorphous SiO2 matrix after the sputtering. The photoluminescence (PL) revealed that the spectra consisted of three emission bands, violet, blue and green-yellow and the mixed light turns out to be white. By adjusting the ZnO doping concentration, the relative emission intensities of the three bands can be modulated so that white light with different color temperatures can be obtained. By the invention, the whole process comprised of only one single-layer deposition that can be applied on any substrate.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Applicant: National Chiao Tung University
    Inventors: Tsung-Eong Hsieh, Yu-Yun Peng