Patents by Inventor Yuan Feng

Yuan Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11037853
    Abstract: A semiconductor heat dissipation structure includes a first semiconductor device including a first active surface and a first back surface opposite to the first active surface, a second semiconductor device including a second active surface and a second back surface opposite to the second active surface, a first heat conductive layer embedded in the first back surface of the first semiconductor device, a second heat conductive layer embedded in the second back surface of the second semiconductor device, and a third heat conductive layer disposed adjoining the first heat conductive layer and extending to the first active surface of the first semiconductor device. The first back surface of the first semiconductor device and the second back surface of the second semiconductor device are in contact with each other. At least a portion of the first heat conductive layer are in contact with the second heat conductive layer.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: June 15, 2021
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Ya Fang Chan, Yuan-Feng Chiang, Po-Wei Lu
  • Publication number: 20210146656
    Abstract: An aluminum matrix composite is provided. The aluminum matrix composite comprises at least one reinforcement layer and an aluminum layer. The at least one reinforcement layer comprises a plurality of reinforcement sheets.
    Type: Application
    Filed: January 27, 2021
    Publication date: May 20, 2021
    Inventors: YUAN-FENG LIU, Ze-Cheng Hou, LU CHEN, LIN ZHU, WEN-ZHEN LI
  • Publication number: 20210134781
    Abstract: A semiconductor device package includes a redistribution layer, a plurality of conductive pillars, a reinforcing layer and an encapsulant. The conductive pillars are in direct contact with the first redistribution layer. The reinforcing layer surrounds a lateral surface of the conductive pillars. The encapsulant encapsulates the first redistribution layer and the reinforcing layer. The conductive pillars are separated from each other by the reinforcing layer.
    Type: Application
    Filed: November 5, 2019
    Publication date: May 6, 2021
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Ya Fang CHAN, Yuan-Feng CHIANG
  • Patent number: 10940672
    Abstract: A method for forming an aluminum matrix composite is provided. At least one reinforcement layer and an aluminum layer are provided. The at least one reinforcement layer is disposed on at least one surface of the aluminum layer to form a first composite structure. The first composite structure is pressed to form a second composite structure. A process of alternatively folding and pressing the second composite structure is repeated to form the aluminum matrix composite.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: March 9, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yuan-Feng Liu, Ze-Cheng Hou, Lu Chen, Lin Zhu, Wen-Zhen Li
  • Publication number: 20210035937
    Abstract: A method for forming a package structure includes forming an under bump metallization (UBM) layer over a metal pad and forming a photoresist layer over the UBM layer. The method further includes patterning the photoresist layer to form an opening in the photoresist layer. The method also includes forming a first bump structure over the first portion of the UBM layer. The first bump structure includes a first barrier layer over a first pillar layer. The method includes placing a second bump structure over the first bump structure. The second bump structure includes a second barrier layer over a second pillar layer. The method further includes reflowing the first bump structure and the second bump structure to form a solder joint between a first inter intermetallic compound (IMC) and a second IMC.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hung CHEN, Yu-Nu HSU, Chun-Chen LIU, Heng-Chi HUANG, Chien-Chen LI, Shih-Yen CHEN, Cheng-Nan HSIEH, Kuo-Chio LIU, Chen-Shien CHEN, Chin-Yu KU, Te-Hsun PANG, Yuan-Feng WU, Sen-Chi CHIANG
  • Publication number: 20210008344
    Abstract: A bendable sheath and a delivery system using the bendable sheath. The bendable sheath comprises a tube body (3). The tube body (3) comprises a distal end and a proximal end. A tube wall of the tube body (3) is connected to a pull wire (8). One end of the pull wire (8) extends towards the proximal end of the tube body (3), and the other end is connected to the tube body (3) near the distal end of the tube body (3). The pull wire (8) comprises at least a section thereof disposed freely outside the tube body (3) and near the distal end of the tube body (3). The pull wire (8) in the bendable sheath comprises the section disposed freely outside the sheath tube body (3) and, when pulled, the section is disposed so as to facilitate the application of force. The section moves relative to the tube body (3), such that a force application point is adaptively changed.
    Type: Application
    Filed: September 2, 2020
    Publication date: January 14, 2021
    Applicant: VENUS MEDTECH (HANGZHOU), INC.
    Inventors: Mao Chen, Yuan Feng, Zhifei Zhang, Feng Guo, Quangang Gong, Shiguang Wu
  • Patent number: 10859660
    Abstract: A soft tissue simulator for magnetic resonance imaging and a method for simulated testing are disclosed. The simulator includes a base for supporting a soft tissue or organ sample, an indenter, a pneumatic cylinder and an air source. The pneumatic cylinder is separated into a first chamber and a second chamber. The air source includes a pneumatic generation source and a reversing valve having a first air outlet and a second air outlet which are respectively connected to the first and second chambers. The reversing valve is used to control compressed air to enter the first or second chamber to control the movement of the indenter. The indenter is controlled to have a periodic or unidirectional movement, to simulate the movement of a human organ or soft tissue. The simulator can used for the measurement of physical characteristics of soft tissue based on magnetic resonance imaging.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 8, 2020
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Chunhong Hu, Mo Zhu, Xuefeng Zhao, Long Huang, Yuan Feng
  • Publication number: 20200374589
    Abstract: A user feature generation method is performed at a server, the method including: acquiring n groups of timing correspondences between target videos and corresponding user accounts, each group of timing correspondences comprising user accounts that have viewed a respective target video, the user accounts being sorted according to their corresponding viewing timestamps, n being a positive integer; obtaining a word-embedding matrix by mapping the n groups of timing correspondences into the word-embedding matrix, the word-embedding matrix comprising a word vector corresponding to each user account; training the word-embedding matrix by using a loss function, the loss function being used for defining a similarity relationship between the user accounts according to a degree of similarity between their respective watch histories; and determining a word vector corresponding to each user account in the trained word-embedding matrix as a user feature of the user account.
    Type: Application
    Filed: August 12, 2020
    Publication date: November 26, 2020
    Inventors: Xuesong LI, Liangni LU, Yuan FENG
  • Patent number: 10844508
    Abstract: A method of making a nanoporous copper is provided. A copper alloy layer and at least one active metal layer are provided. The copper alloy layer comprises a first surface and a second surface. The at least one active metal layer is located on the first surface and the second surface to form a structure. The structure is processed to form a composite structure. A process of folding and pressing the composite structure is repeated to form a precursor. The precursor is corroded to form the nanoporous copper.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 24, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yue-Feng Meng, Lun-Qiao Xiong, Yuan-Feng Liu, Ze-Cheng Hou, Hong-Ying Fu, Lin Zhu, Wen-Zhen Li
  • Patent number: 10827390
    Abstract: A method and device for resource reservation are provided. The resource reservation method includes: receiving scheduling assignment information transmitted by first UE, where the scheduling assignment information includes information about time-frequency resource that the first UE needs to reserve; determining the quantity of reservations for the time-frequency resource by the first UE according to the scheduling assignment information; if new scheduling assignment information about the time-frequency resource transmitted by the first UE has been received before the quantity of reservations becomes invalid, re-determining reservation information for the time-frequency resource according to the new scheduling assignment information; and if no new scheduling assignment information about the time-frequency resource transmitted by the first UE has been received before the quantity of reservations becomes invalid, taking the time-frequency resource as an idle resource.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 3, 2020
    Assignee: CHINA ACADEMY OF TELECOMMUNICATIONS TECHNOLOGY
    Inventors: Rui Zhao, Yuan Feng, Jiayi Fang, Yi Zhao, Haijun Zhou
  • Patent number: 10811377
    Abstract: A package structure is provided. The package structure includes a first bump structure formed over a substrate, a solder joint formed over the first bump structure and a second bump structure formed over the solder joint. The first bump structure includes a first pillar layer formed over the substrate and a first barrier layer formed over the first pillar layer. The first barrier layer has a first protruding portion which extends away from a sidewall surface of the first pillar layer, and a distance between the sidewall surface of the first pillar layer and a sidewall surface of the first barrier layer is in a range from about 0.5 ?m to about 3 ?m. The second bump structure includes a second barrier layer formed over the solder joint and a second pillar layer formed over the second barrier layer, wherein the second barrier layer has a second protruding portion which extends away from a sidewall surface of the second pillar layer.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: October 20, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hung Chen, Yu-Nu Hsu, Chun-Chen Liu, Heng-Chi Huang, Chien-Chen Li, Shih-Yen Chen, Cheng-Nan Hsieh, Kuo-Chio Liu, Chen-Shien Chen, Chin-Yu Ku, Te-Hsun Pang, Yuan-Feng Wu, Sen-Chi Chiang
  • Patent number: 10809128
    Abstract: A heterodyne optical spectroscopy system comprises a light source that acts as a local oscillator (LO); a beam splitting component that generates a reference beam from the LO; a signal component that generates a sample signal from a sample; a beam blocker that can turn off the sample signal to generate blank shots; a composite signal detection subsystem that detects a heterodyned signal that is a mix of the sample signal and a portion of the LO; a composite reference detection subsystem synchronized to the signal detection subsystem to detect a portion of the reference beam; and a processor that processes digital signals from the signal detection subsystem and the reference detection subsystem. A very versatile reference scheme is developed to treat different heterodyne spectroscopies in a unified way, which achieves optimal noise suppression.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 20, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nien-Hui Ge, Yuan Feng, Ilya Vinogradov
  • Publication number: 20200321602
    Abstract: A method for making nanoporous nickel composite material comprises: providing a cathode plate and a copper-containing anode plate, electroplating a copper material layer a surface of the cathode plate; laying a carbon nanotube layer on the copper material layer, and forming an overlapped structure of the copper material layer and the carbon nanotube laye; the cathode plate and the overlapped structure are used as a cathode, and a nickel-containing anode plate is used as an anode, plating a nickel material layer on the overlapped structure to form sandwich structure; repeating steps S1 to S3 to obtain a carbon nanotube-reinforced copper-nickel alloy; rolling and annealing the carbon nanotube-reinforced copper-nickel alloy; and etching the carbon nanotube-reinforced copper-nickel alloy to form the nanoporous nickel composite material.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 8, 2020
    Inventors: Ze-Cheng Hou, YUAN-FENG LIU, LIN ZHU, WEN-ZHEN LI
  • Patent number: 10793460
    Abstract: A glass forming furnace includes a forming zone, a cleaning zone, a plurality of sealing doors, and a conveying channel. The forming zone includes a pressure device. The pressure device includes a servo motor, a push rod, and a mold pressurizing mechanism. The push rod is connected with the servo motor. The push rod includes an end notch and an embedded structure. The mold pressurizing mechanism includes an inlet notch. The inlet notch is connected with the embedded structure. Wherein, the end notch is in contact with the inlet notch. The cleaning zone includes an active brush mechanism. The sealing doors are disposed at an inlet and an outlet of the forming zone, respectively. The sealing doors each include a valve. The valve has a cross-sectional thickness that is gradually decreased from top to bottom. The conveying channel passes through the forming zone and the cleaning zone. The conveying channel is configured to convey a plurality of glass forming molds.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 6, 2020
    Inventors: Kun-Yuan Hu, Yuan-Feng Lin
  • Publication number: 20200288473
    Abstract: Disclosed are a resource selection method and apparatus under multiple carriers, a computer device and a storage medium. The resource selection method comprises: determining at least one candidate carrier according to a resource occupancy exclusion result on each carrier; setting a resource on the candidate carrier to be available, performing exclusion according to a sensing result and obtaining a set of available resources; selecting a transmission resource from the set of available resources, and setting a semi-persistent scheduling counter for resource scheduling. The present application provides a resource selection solution reducing half-duplex influence as far as possible, and reducing the impact due to loss of receiving opportunities and the number of skip subframes, and also avoids the problem of too severe power allocation caused by simultaneous transmission with multiple service packets.
    Type: Application
    Filed: June 21, 2018
    Publication date: September 10, 2020
    Inventors: Chenxin LI, Rui ZHAO, Li ZHAO, Lin LIN, Yuan FENG
  • Publication number: 20200280049
    Abstract: A method for forming a current collector is provided. At least two carbon nanostructure reinforced copper composite substrates are provided. The at least two carbon nanostructure reinforced copper composite substrates are stacked to form a composite substrate. An active metal layer is disposed on a surface of the composite substrate to form a first a composite structure. The first composite structure is pressed to form a second composite structure. The second composite structure is annealed to form a third composite structure. The third composite structure is de-alloyed to form a porous copper composite.
    Type: Application
    Filed: April 23, 2019
    Publication date: September 3, 2020
    Inventors: YUAN-FENG LIU, Ze-Cheng Hou, LU CHEN, LIN ZHU, WEN-ZHEN LI
  • Publication number: 20200276784
    Abstract: A method for forming a porous copper composite is provided. At least two carbon nanostructure reinforced copper composite substrates are provided. The at least two carbon nanostructure reinforced copper composite substrates are stacked to form a composite substrate. An active metal layer is disposed on a surface of the composite substrate to form a first a composite structure. The first composite structure is pressed to form a second composite structure. The second composite structure is annealed to form a third composite structure. The third composite structure is de-alloyed to form a porous copper composite.
    Type: Application
    Filed: April 23, 2019
    Publication date: September 3, 2020
    Applicants: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: YUAN-FENG LIU, Ze-Cheng Hou, LU CHEN, LIN ZHU, WEN-ZHEN LI
  • Publication number: 20200271942
    Abstract: According to various embodiments, a collimator includes a substrate defining a plurality of channels through the substrate. The substrate includes a first surface and a second surface opposite the first surface. Each of the channels includes a first aperture exposed from the first surface, a second aperture between the first surface and the second surface, and a third aperture exposed from the second surface. The first aperture and the third aperture are larger than the second aperture.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Yuan-Feng CHIANG, Tsung-Tang TSAI, Min Lung HUANG
  • Patent number: 10742027
    Abstract: A method for online limit early-warning to a shunt capacitor bank, and the method comprises: performing harmonic monitoring to the shunt capacitor bank; obtaining a measured voltage and a measured current, based on raw data obtained by the harmonic monitoring; obtaining a first parameter representing a ratio of the measured voltage to a rated voltage and a second parameter representing a ratio of the measured current to a rated current, based on the measured voltage and the measured current; obtaining a relation between an impedance correlation quantity of the shunt capacitor bank and a background harmonic voltage ratio, based on the first parameter, the second parameter, and an obtained series reactance ratio of a detected capacitor circuit; and performing online limit early-warning to the shunt capacitor bank, based on the relation. The present invention also discloses a device for online limit early-warning to a shunt capacitor bank.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: August 11, 2020
    Assignee: Wuxi Electric Power Company of State Grid Jiangsu Electric Power Corporation
    Inventors: Jun Wu, Juncheng Liu, Jun Zhu, Haiping Shen, Yuan Feng
  • Patent number: 10743324
    Abstract: Disclosed are a method and device for allocating cell resources of a device to device (D2D) system, which are used for improving the communication reliability of nodes located in different cell edge areas in an edge area ad hoc network manner. Provided is a method for allocating cell resources of a device to device (D2D) system, comprising: determining an edge area for D2D resource coordination of a cell; and allocating a resource pool to a node in the edge area, wherein the node in the edge area selects a resource from the resource pool in an ad hoc manner for communication, the resource being a time slot or time frequency block.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 11, 2020
    Assignee: China Academy of Telecommunications Technology
    Inventors: Yuan Feng, Jiye Tang, Haijun Zhou, Jiayi Fang