Patents by Inventor Yuan-Tai Tseng
Yuan-Tai Tseng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11289651Abstract: A memory cell with a hard mask and a sidewall spacer of different material is provided. The memory cell comprises a bottom electrode disposed over a substrate. A switching dielectric is disposed over the bottom electrode and having a variable resistance. A top electrode is disposed over the switching dielectric. A hard mask disposed over the top electrode. A sidewall spacer extends upwardly along sidewalls of the switching dielectric, the top electrode, and the hard mask. The hard mask and the sidewall spacer have different etch selectivity. A method for manufacturing the memory cell is also provided.Type: GrantFiled: September 1, 2017Date of Patent: March 29, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tsung-Hsueh Yang, Shih-Chang Liu, Yuan-Tai Tseng
-
Patent number: 11289648Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls to mitigate the effect of sidewall plasma damage. In some embodiments, the RRAM cell includes a lower electrode, a data storage element, and an upper electrode. The lower electrode includes a pair of recessed bottom electrode sidewalls respectively on opposite sides of the lower electrode. The data storage element overlies the lower electrode and includes a pair of storage sidewalls. The storage sidewalls are respectively on the opposite sides of the lower electrode, and the recessed bottom electrode sidewalls are laterally spaced from and laterally between the storage sidewalls. The upper electrode overlies the data storage element.Type: GrantFiled: November 5, 2019Date of Patent: March 29, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yuan-Tai Tseng, Shih-Chang Liu
-
Publication number: 20210384413Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. The method includes forming a memory cell stack over a substrate. The memory cell stack includes a top electrode. A sidewall spacer structure is formed around the memory cell stack. The sidewall spacer structure includes a first sidewall spacer layer, a second sidewall spacer layer, and a protective sidewall spacer layer sandwiched between the first and second sidewall spacer layers. A dielectric structure is formed over the sidewall spacer structure. A first etch process is performed on the dielectric structure and the second sidewall spacer layer to define an opening above the top electrode. The second sidewall spacer layer and the dielectric structure are etched at a higher rate than the protective sidewall spacer layer during the first etch process. A top electrode via is formed within the opening.Type: ApplicationFiled: August 19, 2021Publication date: December 9, 2021Inventors: Yao-Wen Chang, Chung-Chiang Min, Harry-Hak-Lay Chuang, Hung Cho Wang, Tsung-Hsueh Yang, Yuan-Tai Tseng, Sheng-Huang Huang, Chia-Hua Lin
-
Publication number: 20210375993Abstract: A memory device including a first array of rail structures that extend along a first horizontal direction, in which each of the rail structures are formed to serve as a bottom electrode, and a second array of rail structures that laterally extend along a second horizontal direction and are laterally spaced apart along the first horizontal direction. Each of the rail structures in the second array are formed to server as a top electrode. The memory device also includes a continuous dielectric memory layer located between the first array of rail structures and the second array of rail structures. The continuous dielectric memory layer providing protection from current leakage between the rail structures of the first array and the rail structures of the second array.Type: ApplicationFiled: May 28, 2020Publication date: December 2, 2021Inventors: Te-Hsien Hsieh, Yuan-Tai Tseng
-
Patent number: 11189789Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls to mitigate the effect of sidewall plasma damage. In some embodiments, the RRAM cell includes a lower electrode, a data storage element, and an upper electrode. The lower electrode includes a pair of recessed bottom electrode sidewalls respectively on opposite sides of the lower electrode. The data storage element overlies the lower electrode and includes a pair of storage sidewalls. The storage sidewalls are respectively on the opposite sides of the lower electrode, and the recessed bottom electrode sidewalls are laterally spaced from and laterally between the storage sidewalls. The upper electrode overlies the data storage element.Type: GrantFiled: September 4, 2019Date of Patent: November 30, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yuan-Tai Tseng, Shih-Chang Liu
-
Publication number: 20210366987Abstract: An RRAM cell stack is formed over an opening in a dielectric layer. The dielectric layer is sufficiently thick and the opening is sufficiently deep that an RRAM cell can be formed by a planarization process. The resulting RRAM cells may have a U-shaped profile. The RRAM cell area includes contributions from a bottom portion in which the RRAM cell layers are stacked parallel to the substrate and a side portion in which RRAM cell layers are stacked roughly perpendicular to the substrate. The combined side and bottom portions of the curved RRAM cell provide an increased area in comparison to a planar cell stack. The increased area lowers forming and set voltages for the RRAM cell.Type: ApplicationFiled: August 3, 2021Publication date: November 25, 2021Inventors: Te-Hsien Hsieh, Tzu-Yu Chen, Kuo-Chi Tu, Yuan-Tai Tseng
-
Publication number: 20210359003Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a lower interconnect disposed within a dielectric structure over a substrate. A memory device includes a data storage structure disposed between a bottom electrode and a top electrode. The bottom electrode is electrically coupled to the lower interconnect. A sidewall spacer includes an interior sidewall that continuously extends from along an outermost sidewall of the top electrode to below an outermost sidewall of the bottom electrode. The sidewall spacer further includes an outermost sidewall that extends from a bottom surface of the sidewall spacer to above a top of the bottom electrode.Type: ApplicationFiled: July 30, 2021Publication date: November 18, 2021Inventors: Yuan-Tai Tseng, Chung-Chiang Min, Shih-Chang Liu
-
Publication number: 20210343932Abstract: The present disclosure provides a semiconductor structure, including an Nth metal layer, a bottom electrode over the Nth metal layer, a magnetic tunneling junction (MTJ) over the bottom electrode, a top electrode over the MTJ, and an (N+M)th metal layer over the Nth metal layer. N and M are positive integers. The (N+M)th metal layer surrounds a portion of a sidewall of the top electrode. A manufacturing method of forming the semiconductor structure is also provided.Type: ApplicationFiled: July 15, 2021Publication date: November 4, 2021Inventors: Fu-Ting SUNG, Chung-Chiang MIN, Yuan-Tai TSENG, Chern-Yow HSU, Shih-Chang LIU
-
Patent number: 11158789Abstract: In some methods, a contact is formed over a substrate, and a bottom electrode layer is formed over the contact. A first dielectric layer is formed to cover a peripheral portion of the bottom electrode layer but not a central portion of the bottom electrode layer. A second dielectric layer is formed over the first dielectric layer. The second dielectric layer includes a central dielectric region that contacts the central portion of the bottom electrode layer, and a peripheral dielectric region over the peripheral portion of the bottom electrode. A step dielectric region connects the central and peripheral dielectric regions. A top electrode layer is formed over the second dielectric layer. The top electrode layer includes a central top electrode region, a peripheral top electrode region, and a step top electrode region directly above the central dielectric region, the peripheral dielectric region, and the step dielectric region, respectively.Type: GrantFiled: September 19, 2019Date of Patent: October 26, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Shih-Chang Liu, Chia-Shiung Tsai
-
Patent number: 11158797Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.Type: GrantFiled: June 15, 2018Date of Patent: October 26, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
-
Publication number: 20210296395Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a transistor layer, a memory region over the transistor layer, and a logic region adjacent to the memory region. The memory region includes a first Nth metal line, a magnetic tunneling junction (MTJ) over the first Nth metal line, a cap over the MTJ, a first stop layer on the cap, and a first (N+1)th metal via over the MTJ. The first (N+1)th metal via is laterally surrounded by the cap and the first stop layer. The logic region includes a second Nth metal line, a second stop layer over an (N+1)th metal line, and a second (N+1)th metal via over the (N+1)th metal line. N is an integer greater than or equal to 1.Type: ApplicationFiled: June 1, 2021Publication date: September 23, 2021Inventors: CHERN-YOW HSU, YUAN-TAI TSENG, SHIH-CHANG LIU
-
Patent number: 11121308Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a magnetoresistive random access memory (MRAM) cell over a substrate. A dielectric structure overlies the substrate. The MRAM cell is disposed within the dielectric structure. The MRAM cell includes a magnetic tunnel junction (MTJ) sandwiched between a bottom electrode and a top electrode. A conductive wire overlies the top electrode. A sidewall spacer structure continuously extends along a sidewall of the MTJ and the top electrode. The sidewall spacer structure includes a first sidewall spacer layer, a second sidewall spacer layer, and a protective sidewall spacer layer sandwiched between the first and second sidewall spacer layers. The first and second sidewall spacer layers comprise a first material and the protective sidewall spacer layer comprises a second material different than the first material.Type: GrantFiled: October 15, 2019Date of Patent: September 14, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yao-Wen Chang, Chung-Chiang Min, Harry-Hak-Lay Chuang, Hung Cho Wang, Tsung-Hsueh Yang, Yuan-Tai Tseng, Sheng-Huang Huang, Chia-Hua Lin
-
Patent number: 11088202Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a plurality of lower interconnect layers disposed within a dielectric structure over a substrate. The integrated chip further includes a memory device having a data storage structure disposed between a bottom electrode and a top electrode. The bottom electrode is electrically coupled to the plurality of lower interconnect layers. A sidewall spacer continuously extends from an outermost sidewall of the data storage structure to below an outermost sidewall of the bottom electrode.Type: GrantFiled: September 23, 2019Date of Patent: August 10, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yuan-Tai Tseng, Chung-Chiang Min, Shih-Chang Liu
-
Patent number: 11088203Abstract: An RRAM cell stack is formed over an opening in a dielectric layer. The dielectric layer is sufficiently thick and the opening is sufficiently deep that an RRAM cell can be formed by a planarization process. The resulting RRAM cells may have a U-shaped profile. The RRAM cell area includes contributions from a bottom portion in which the RRAM cell layers are stacked parallel to the substrate and a side portion in which RRAM cell layers are stacked roughly perpendicular to the substrate. The combined side and bottom portions of the curved RRAM cell provide an increased area in comparison to a planar cell stack. The increased area lowers forming and set voltages for the RRAM cell.Type: GrantFiled: September 19, 2019Date of Patent: August 10, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Te-Hsien Hsieh, Tzu-Yu Chen, Kuo-Chi Tu, Yuan-Tai Tseng
-
Publication number: 20210242109Abstract: A novel integrated circuit and method thereof are provided. The integrated circuit includes a plurality of first interconnect pads, a plurality of second interconnect pads, a first inter-level dielectric layer, a thin film resistor, and at least two end-caps. The end-caps, which are connectors for the thin film resistor, are positioned at the same level with the plurality of second interconnect pads. Therefore, an electrical connection between the end-caps and the plurality of second interconnect pads can be formed by directly connection of them. An integrated circuit with a thin film resistor can be made in a cost benefit way accordingly, so as to overcome disadvantages mentioned above.Type: ApplicationFiled: April 19, 2021Publication date: August 5, 2021Inventors: Yuan-Tai Tseng, Chia-Shiung Tsai, Chung-Yen Chou, Ming-Chyi Liu
-
Patent number: 11037983Abstract: The present disclosure provides a semiconductor structure, including a transistor layer, a memory region over the transistor layer, and a logic region adjacent to the memory region. The memory region includes a first Nth metal line, a magnetic tunneling junction (MTJ) over the first Nth metal line, a cap over the MTJ, a first stop layer on the cap; and a first (N+1)th metal via over the MTJ. The first (N+1)th metal via is laterally surrounded by the cap and the first stop layer. The logic region includes a second Nth metal line, a second stop layer being disposed over an (N+1)th metal line, and a second (N+1)th metal via over the (N+1)th metal line. N is an integer greater than or equal to 1. A method of manufacturing the semiconductor structure is also disclosed.Type: GrantFiled: August 20, 2020Date of Patent: June 15, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Chern-Yow Hsu, Yuan-Tai Tseng, Shih-Chang Liu
-
Patent number: 11005037Abstract: A method of manufacturing an integrated circuit device. In the method, a plurality of contacts are formed over a substrate, and one or more bottom electrode layers are formed over the plurality of contacts. A first dielectric layer is formed such that a first base region of the first dielectric layer is in contact with the one or more bottom electrode layers and a second base region of the first dielectric layer is not in contact with the one or more bottom electrode layers. One or more top electrode layers are formed over the first dielectric layer. Patterning is then performed by etching through the one or more top electrode layers and by etching through the first dielectric layer to form a metal-insulator-metal structure. The patterning removes a portion of the second base region, but does not remove the first base region.Type: GrantFiled: July 12, 2017Date of Patent: May 11, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Shih-Chang Liu, Chia-Shiung Tsai
-
Publication number: 20210118981Abstract: A semiconductor structure includes a substrate, a first electrode over the substrate, a second electrode over the first electrode, and a first insulating layer between the first electrode and the second electrode. The first insulating layer has a first portion and a second portion coupled to the first portion, the second portion of the first insulating layer is in contact with the second electrode, the first portion is separated from the second electrode by the second portion. A thickness of the second portion is greater than a thickness of the first portion.Type: ApplicationFiled: October 16, 2019Publication date: April 22, 2021Inventors: YI JEN TSAI, YUAN-TAI TSENG, CHERN-YOW HSU
-
Patent number: 10985090Abstract: A novel integrated circuit and method thereof are provided. The integrated circuit includes a plurality of first interconnect pads, a plurality of second interconnect pads, a first inter-level dielectric layer, a thin film resistor, and at least two end-caps. The end-caps, which are connectors for the thin film resistor, are positioned at the same level with the plurality of second interconnect pads. Therefore, an electrical connection between the end-caps and the plurality of second interconnect pads can be formed by directly connection of them. An integrated circuit with a thin film resistor can be made in a cost benefit way accordingly, so as to overcome disadvantages mentioned above.Type: GrantFiled: December 17, 2018Date of Patent: April 20, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yuan-Tai Tseng, Chia-Shiung Tsai, Chung-Yen Chou, Ming-Chyi Liu
-
Publication number: 20210111333Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a magnetoresistive random access memory (MRAM) cell over a substrate. A dielectric structure overlies the substrate. The MRAM cell is disposed within the dielectric structure. The MRAM cell includes a magnetic tunnel junction (MTJ) sandwiched between a bottom electrode and a top electrode. A conductive wire overlies the top electrode. A sidewall spacer structure continuously extends along a sidewall of the MTJ and the top electrode. The sidewall spacer structure includes a first sidewall spacer layer, a second sidewall spacer layer, and a protective sidewall spacer layer sandwiched between the first and second sidewall spacer layers. The first and second sidewall spacer layers comprise a first material and the protective sidewall spacer layer comprises a second material different than the first material.Type: ApplicationFiled: October 15, 2019Publication date: April 15, 2021Inventors: Yao-Wen Chang, Chung-Chiang Min, Harry-Hak-Lay Chuang, Hung Cho Wang, Tsung-Hsueh Yang, Yuan-Tai Tseng, Sheng-Huang Huang, Chia-Hua Lin