Patents by Inventor Yuan-Yao CHANG

Yuan-Yao CHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955392
    Abstract: One aspect of this description relates to a testing apparatus including an advance process control monitor (APCM) in a first wafer, a plurality of pads disposed over and coupled to the APCM. The plurality of pads are in a second wafer. The testing apparatus includes a testing unit disposed between the first wafer and the second wafer. The testing unit is coupled to the APCM. The testing unit includes a metal structure within a dielectric. The testing apparatus includes a plurality of through silicon vias (TSVs) extending in a first direction from the first wafer, through the dielectric of the testing unit, to the second wafer.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Wen Chang, Yu-Hsien Li, Min-Tar Liu, Yuan-Yao Chang
  • Publication number: 20240107325
    Abstract: A computer system (such as a controller) that selects channels and/or channel widths for use during communication in a shared band of frequencies is described. During operation, the computer system may receive, associated with access points in a region (such as a zone), information specifying unavailable channels associated with the shared band of frequencies, where the unavailable channels are currently used by the access points. For example, the information may be included in access-point status reports from the access points. Then, based at least in part on the unavailable channels, the computer system may determine the channels and/or the channel widths for use by the access points during communication in the shared band of frequencies in the region. Next, the computer system may provide, addressed to the access points, second information specifying the determined channels and/or the channel width.
    Type: Application
    Filed: September 26, 2023
    Publication date: March 28, 2024
    Applicant: ARRIS Enterprises LLC
    Inventors: Yuan-Yao Chang, Shao-Chun Wen
  • Patent number: 11927628
    Abstract: The present disclosure provides a semiconductor wafer. The semiconductor wafer includes: a scribe line between a first row of dies and a second row of dies; and a benchmark circuit disposed adjacent to the scribe line and electrically coupled to a first conductive contact and a second conductive contact. The benchmark circuit includes a first device-under-test (DUT); a second DUT; a first switching circuit configured to selectively couple the first DUT and the second DUT to the first conductive contact; and a second switching circuit configured to selectively couple the first DUT and the second DUT to the second conductive contact.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chu-Feng Liao, Hung-Ping Cheng, Yuan-Yao Chang, Shuo-Wen Chang
  • Publication number: 20230369144
    Abstract: One aspect of this description relates to a testing apparatus including an advance process control monitor (APCM) in a first wafer, a plurality of pads disposed over and coupled to the APCM. The plurality of pads are in a second wafer. The testing apparatus includes a testing unit disposed between the first wafer and the second wafer. The testing unit is coupled to the APCM. The testing unit includes a metal structure within a dielectric. The testing apparatus includes a plurality of through silicon vias (TSVs) extending in a first direction from the first wafer, through the dielectric of the testing unit, to the second wafer.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Wen Chang, Yu-Hsien Li, Min-Tar Liu, Yuan-Yao Chang
  • Patent number: 11754614
    Abstract: The present disclosure provides a method of analyzing a semiconductor device. The method includes providing a first transistor, a second transistor disposed adjacent to the first transistor, and a gate electrode common to the first transistor and the second transistor; connecting a power-supply voltage (Vdd) to the gate electrode to turn on the first transistor, determining a first threshold voltage (Vth) based on the power-supply voltage; switching the power-supply voltage to a ground voltage (Vss); connecting the ground voltage to the gate electrode to turn on the second transistor; and determining a second threshold voltage based on the ground voltage.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wei-Jhih Wang, Chia Wei Huang, Chia-Chia Kan, Yuan-Yao Chang
  • Publication number: 20230253356
    Abstract: A chip structure is provided. The chip structure includes a substrate. The chip structure includes a first conductive line over the substrate. The chip structure includes an insulating layer over the substrate and the first conductive line. The chip structure includes a conductive pillar over and passing through the insulating layer. The conductive pillar is formed in one piece, the conductive pillar is in direct contact with the first conductive line, and a first sidewall of the first conductive line extends across a second sidewall of the conductive pillar in a top view of the first conductive line and the conductive pillar. The chip structure includes a solder bump on the conductive pillar. The solder bump is in direct contact with the conductive pillar.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Shan-Yu HUANG, Ming-Da CHENG, Hsiao-Wen CHUNG, Ching-Wen HSIAO, Li-Chun HUNG, Yuan-Yao CHANG, Meng-Hsiu HSIEH
  • Patent number: 11688708
    Abstract: A chip structure is provided. The chip structure includes a substrate. The chip structure includes a first conductive line over the substrate. The chip structure includes an insulating layer over the substrate and the first conductive line. The chip structure includes a conductive pillar over the insulating layer. The conductive pillar is formed in one piece, the conductive pillar has a lower surface and a bottom protruding portion protruding from the lower surface, the bottom protruding portion passes through the insulating layer over the first conductive line, the bottom protruding portion is in direct contact with the first conductive line, and a first linewidth of a first portion of the first conductive line under the conductive pillar is less than a width of the conductive pillar. The chip structure includes a solder bump on the conductive pillar. The solder bump is in direct contact with the conductive pillar.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shan-Yu Huang, Ming-Da Cheng, Hsiao-Wen Chung, Ching-Wen Hsiao, Li-Chun Hung, Yuan-Yao Chang, Meng-Hsiu Hsieh
  • Publication number: 20230198805
    Abstract: During operation, a computer system may receive, from an electronic device, a VNI assignment message, where the VNI assignment message specifies a range of VNIs for VXLANs and one or more associated data planes. In response, the computer system may compute whether one or more VNIs in the range of VNIs are available. For example, the computer system may communicate with the VXLANs and/or may perform a look-up operation in a data structure in memory with information about VNIs (such as available VNIs and/or unavailable VNIs). When the one or more VNIs are unavailable, the computer system may provide, to the electronic device, an error message. Alternatively, when the one or more VNIs in the range of VNIs are available, the computer system may: modify the one or more data planes that implement the VXLANs with the range of VNIs; and provide, to the electronic device, an acknowledgment message.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Inventors: Chien-Hung Lee, ShengYuan Huang, Yuan-Yao Chang
  • Publication number: 20230066905
    Abstract: The present disclosure provides a wafer. The wafer includes a die, a scribe line adjacent to the die, and a test circuit adjacent to the scribe line. The test circuit includes a first switch, a second switch, and a third switch. The first switch has a first node coupled to a first device-under-test and a second node coupled to a first signal supply node. The second switch has a first node coupled to the second DUT and a second node coupled to the first signal supply node. The third switch has a first node directly coupled to the first DUT and the second DUT. The third switch has a second node coupled to a second signal supply node. The third switch selectively couples both of the first DUT and the second DUT to the second signal supply node.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: CHIA-WEI HUANG, WEI-JHIH WANG, CHENG-CHENG KUO, YUAN-YAO CHANG
  • Publication number: 20230068503
    Abstract: A chip structure is provided. The chip structure includes a substrate. The chip structure includes a first conductive line over the substrate. The chip structure includes an insulating layer over the substrate and the first conductive line. The chip structure includes a conductive pillar over the insulating layer. The conductive pillar is formed in one piece, the conductive pillar has a lower surface and a bottom protruding portion protruding from the lower surface, the bottom protruding portion passes through the insulating layer over the first conductive line, the bottom protruding portion is in direct contact with the first conductive line, and a first linewidth of a first portion of the first conductive line under the conductive pillar is less than a width of the conductive pillar. The chip structure includes a solder bump on the conductive pillar. The solder bump is in direct contact with the conductive pillar.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Shan-Yu HUANG, Ming-Da CHENG, Hsiao-Wen CHUNG, Ching-Wen HSIAO, Li-Chun HUNG, Yuan-Yao CHANG, Meng-Hsiu HSIEH
  • Publication number: 20230014148
    Abstract: The present disclosure provides a semiconductor wafer. The semiconductor wafer includes: a scribe line between a first row of dies and a second row of dies; and a benchmark circuit disposed adjacent to the scribe line and electrically coupled to a first conductive contact and a second conductive contact. The benchmark circuit includes a first device-under-test (DUT); a second DUT; a first switching circuit configured to selectively couple the first DUT and the second DUT to the first conductive contact; and a second switching circuit configured to selectively couple the first DUT and the second DUT to the second conductive contact.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Inventors: CHU-FENG LIAO, HUNG-PING CHENG, YUAN-YAO CHANG, SHUO-WEN CHANG
  • Publication number: 20220367299
    Abstract: One aspect of this description relates to a testing apparatus including an advance process control monitor (APCM) in a first wafer, a plurality of pads disposed over and coupled to the APCM. The plurality of pads are in a second wafer. The testing apparatus includes a testing unit disposed between the first wafer and the second wafer. The testing unit is coupled to the APCM. The testing unit includes a metal structure within a dielectric. The testing apparatus includes a plurality of through silicon vias (TSVs) extending in a first direction from the first wafer, through the dielectric of the testing unit, to the second wafer.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Wen Chang, Yu-Hsien Li, Min-Tar Liu, Yuan-Yao Chang
  • Publication number: 20220349932
    Abstract: The present disclosure provides a method of analyzing a semiconductor device. The method includes providing a first transistor, a second transistor disposed adjacent to the first transistor, and a gate electrode common to the first transistor and the second transistor; connecting a power-supply voltage (Vdd) to the gate electrode to turn on the first transistor, determining a first threshold voltage (Vth) based on the power-supply voltage; switching the power-supply voltage to a ground voltage (Vss); connecting the ground voltage to the gate electrode to turn on the second transistor; and determining a second threshold voltage based on the ground voltage.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 3, 2022
    Inventors: WEI-JHIH WANG, CHIA WEI HUANG, CHIA-CHIA KAN, YUAN-YAO CHANG
  • Patent number: 10879135
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Shang-Wei Fang, Jing-Sen Wang, Yuan-Yao Chang, Wei-Ray Lin, Ting-Hua Hsieh, Pei-Hsuan Lee, Yu-Hsuan Huang
  • Publication number: 20200118893
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Shang-Wei FANG, Jing-Sen WANG, Yuan-Yao CHANG, Wei-Ray LIN, Ting-Hua HSIEH, Pei-Hsuan LEE, Yu-Hsuan HUANG
  • Patent number: 10605855
    Abstract: A method, a test line and a system for detecting defects on a semiconductor wafer are presented. The method includes measuring a current-voltage (IV) curve of a plurality of metal oxide semiconductor (MOS) transistors which are connected in series in a test key; comparing the measured IV curve with a reference curve to obtain a first drain current drop in a linear region and a second drain current drop in a saturation region; and determining whether at least one of the MOS transistor among the MOS transistors of the test key is defected according to at least one of the first drain current drop and the second drain current drop.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: March 31, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jing-Sen Wang, Yuan-Yao Chang, Hung-Chi Chiu, Chia-Wei Huang
  • Patent number: 10510623
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Wei Fang, Jing-Sen Wang, Yuan-Yao Chang, Wei-Ray Lin, Ting-Hua Hsieh, Pei-Hsuan Lee, Yu-Hsuan Huang
  • Publication number: 20190198403
    Abstract: A method for inline inspection during semiconductor wafer fabrication is provided. The method includes forming a plurality of test structures on a semiconductor wafer along two opposite directions. An offset distance between a sample feature and a target feature of each of the test structures increases gradually along the two opposite directions. The method further includes producing an image of the test structures. The method also includes performing image analysis of the image to recognize a position with an extreme of a gray level. In addition, the method includes calculating an overlay error according to the recognized position.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 27, 2019
    Inventors: Shang-Wei FANG, Jing-Sen WANG, Yuan-Yao CHANG, Wei-Ray LIN, Ting-Hua HSIEH, Pei-Hsuan LEE, Yu-Hsuan HUANG
  • Publication number: 20190064250
    Abstract: A method, a test line and a system for detecting defects on a semiconductor wafer are presented. The method includes measuring a current-voltage (IV) curve of a plurality of metal oxide semiconductor (MOS) transistors which are connected in series in a test key; comparing the measured IV curve with a reference curve to obtain a first drain current drop in a linear region and a second drain current drop in a saturation region; and determining whether at least one of the MOS transistor among the MOS transistors of the test key is defected according to at least one of the first drain current drop and the second drain current drop.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jing-Sen Wang, Yuan-Yao Chang, Hung-Chi Chiu, Chia-Wei Huang
  • Patent number: 9995770
    Abstract: One or more probe cards, wafer testers, and techniques for testing a semiconductor arrangement are provided. Testline arrangements are formed within scribe lines of a semiconductor wafer, in multiple directions, such as an x-direction and a y-direction. A wafer tester is configured to concurrently test the semiconductor arrangement in multiple directions using a multidirectional probe arrangement of a probe card. In some embodiments, a first pin arrangement of the multidirectional probe arrangement is mated with a first testline arrangement in a first direction, and a second pin arrangement of the multidirectional probe arrangement is mated with a second testline arrangement in a second direction. The wafer tester concurrently tests the semiconductor arrangement in multiple directions, such as in the first direction and the second direction, through the pin arrangements mated with the testline arrangements.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: June 12, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tseng-Chin Lo, Huan Chi Tseng, Kuo-Chuan Chang, Yuan-Yao Chang, Chien-Chang Lee