Patents by Inventor Yuanyuan Yang

Yuanyuan Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131086
    Abstract: The present disclosure provides use of Clostridium ghonii combined with a tumor angiogenesis inhibitor in preparing a pharmaceutical product for treating a tumor. The present disclosure further provides a drug for treating a tumor, where the drug includes active ingredients of Clostridium ghonii and a tumor angiogenesis inhibitor.
    Type: Application
    Filed: October 9, 2022
    Publication date: April 25, 2024
    Inventors: Yong Wang, Yuanyuan Liu, Wenhua Zhang, Yanqiu Xing, Shaopeng Wang, Dan Wang, Hong Zhu, Xinglu Xu, Shengbiao Jiang, Xiaonan Li, Jiahui Zheng, Rong Zhang, Dongxia Yang, Yuxia Gao, Shili Shao, Ting Han
  • Publication number: 20240129893
    Abstract: This application provides a positioning measurement method, a positioning configuration method, an apparatus, and a communication device. The positioning measurement method in embodiments of this application includes: receiving, by a terminal, pre-configured measurement gap information, where a pre-configured measurement gap indicated by the pre-configured measurement gap information is used for positioning measurement; and performing, by the terminal, positioning measurement based on the pre-configured measurement gap.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: VIVO MOBILE COMMUNICATION CO., LTD.
    Inventors: Ye SI, Yuanyuan WANG, Qian YANG, Xusheng WEI
  • Patent number: 11947393
    Abstract: Disclosed are a foldable screen and a display device. The foldable screen includes: a flexible display panel and a plurality of elastic portions, wherein each of the elastic portions includes each of elastic support members and two connecting rods fixedly connected to each of the elastic support members; wherein the two connecting rods are respectively connected to two flat portions of the flexible display panel, and the elastic support members are configured to supply a support force to the foldable portion in the case that a display surface of the foldable portion of the flexible display panel is coplanar with those of the flat portions.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: April 2, 2024
    Assignees: Chengdu BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Renzhe Xu, Bin Zhang, Haotian Yang, Yiming Wang, Wei Gong, Jingyu Piao, Xiaodong Hao, Danyang Bi, Kang Wang, Inho Park, Xiaoliang Fu, Yuanyuan Chai, Seungyong Oh
  • Publication number: 20240100598
    Abstract: The present invention relates to a Si-containing high-strength and low-modulus medical titanium alloy, and an additive manufacturing method and use thereof. The additive manufacturing method comprises alloy ingredient design, powder preparation, model construction and substrate preheating, and additive manufacturing molding; wherein the Si-containing high-strength and low-modulus medical titanium alloy is designed in the ingredient proportion of Ti 60-70 at. %, Nb 16-24 at. %, Zr 4-14 at. %, Ta 1-8 at. %, Si 0.1-5 at. %.
    Type: Application
    Filed: October 29, 2020
    Publication date: March 28, 2024
    Inventors: Yuanyuan Li, Chao Yang, Xuan Luo, Dongdong Li, Yanguo Qin, Ning Li
  • Patent number: 11932698
    Abstract: Described herein are T cells engineered to express a chimeric antigen receptor (CAR), such as an anti-mesothelin CAR alone or in combination with a follicle-stimulating hormone receptor (FSHR) binding domain and/or a dominant negative transforming growth factor-? receptor II (dnTGF?RII) for the treatment of diseases associated with mesothelin expression. Also described are T cells engineered to express a modified T cell receptor (TCR).
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: March 19, 2024
    Assignee: Nanjing Legend Biotech Co., Ltd.
    Inventors: Qing Dai, Jian Liu, Shuai Yang, Kun Jiang, Yuanyuan Peng, Chen Hu, Shu Wu
  • Publication number: 20240068069
    Abstract: Copper-tin-nickel brazing material prepared by alloys recycled from E-waste, preparation method therefor, and system thereof are provided. A preparation method for the copper-tin-nickel brazing material includes the following steps: (a) spreading nano-SiO2 on the bottom of crucible and then adding a crude copper-tin-iron-nickel alloy recycled from E-waste; (b) heating the crucible to melt the crude alloy into a metal liquid so that Zn and Pb in the metal liquid react with the SiO2 to form a slag that floats out; (c) introducing a refining gas to the bottom of metal liquid in step (b), thereby removing the scums or gases formed by Pb, Fe, S, and O in the metal liquid; (d) performing heat-preserving directional solidification on the metal liquid, to bias-aggregate the Fe and Sb at one end and remove the same to obtain a copper-based intermediate alloy; and smelting and powdering the copper-based intermediate alloy.
    Type: Application
    Filed: August 29, 2023
    Publication date: February 29, 2024
    Inventors: Weimin LONG, Tianran DING, Sujuan ZHONG, Li BAO, Junlan HUANG, Jiao YANG, Yuanyuan DONG, Hangyan XUE, Yanhong GUO
  • Patent number: 11897815
    Abstract: A Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By providing a glass additive with high matching with a Mg—Ta ceramic, a modifier A+12CO3—B2+O—C3+2O3—SiO2 (A=Li, K; B=MnO, CuO, BaO; C=B, Al) is intruded in to a main material MgO—Ta2O5, which can significantly reduce the sintering temperature and provide a negative temperature coefficient of dielectric constant of ?100±30 ppm/° C., and reduce the deterioration factors of loss caused by an additive for sintering, and prepare a dielectric material applied to RF MLCC with low loss, low cost and good process stability.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: February 13, 2024
    Assignee: Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan
  • Patent number: 11858855
    Abstract: A low-temperature sintered microwave dielectric ceramic material and a preparation method thereof are provided. The ceramic material includes a base material and a low-melting-point glass material; a general chemical formula of the base material is (Zn0.9Cu0.1)0.15Nb0.3(Ti0.9Zr0.1)0.55O2; a percent by weight of the low-melting-point glass material is in a range of 1 wt. % to 2 wt. %; chemical compositions of the low-melting-point glass material include A2CO3-M2O3—SiO2, A of which includes at least two of a lithium ion, a sodium ion, and a potassium ion, M of which includes at least one of a boron ion and a bismuth ion; and a sintering temperature of the ceramic material is in a range of 850° C. to 900° C. The microwave dielectric ceramic material has the advantages of low dielectric loss, simple and controllable process, etc., has good process stability, and can meet requirements for radio communication industry.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: January 2, 2024
    Assignee: Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China
    Inventors: MengJiang Xing, XiaoZhen Li, YuanYuan Yang, YanLing Luo, HongYu Yang, QingYang Fan, YunSheng Zhao, Hao Li
  • Patent number: 11854745
    Abstract: A modified Ni—Ti—Ta dielectric material for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By using characteristics that radii of the Cu2+ ion and (Al1/2Nb1/2)4+ ion are close to those of Ni and Ti elements, respectively, Cu2+, Al3+ and Nb5+ ions are introduced into a Ni0.5Ti0.5TaO4 matrix for partial substitution, a negative temperature coefficient of dielectric constant of ?220±30 ppm/° C. is provided while a sintering temperature is significantly reduced, and deterioration factors of loss caused by sintering aids is reduced, so that the dielectric material applied to radio frequency MLCC with low loss, low cost and good process stability is prepared.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: December 26, 2023
    Assignee: Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan, Hao Li, YunSheng Zhao
  • Publication number: 20230352239
    Abstract: A modified Ni—Ti—Ta dielectric material for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By using characteristics that radii of the Cu2+ ion and (Al½Nb½)4+ ion are close to those of Ni and Ti elements, respectively, Cu2+, Al3+ and Nb5+ ions are introduced into a Ni0.5Ti0.5TaO4 matrix for partial substitution, a negative temperature coefficient of dielectric constant of -220±30 ppm/°C is provided while a sintering temperature is significantly reduced, and deterioration factors of loss caused by sintering aids is reduced, so that the dielectric material applied to radio frequency MLCC with low loss, low cost and good process stability is prepared.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan, Hao Li, YunSheng Zhao
  • Publication number: 20230348332
    Abstract: A Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By providing a glass additive with high matching with a Mg—Ta ceramic, a modifier A+12CO3—B2+O—C3+2O3—SiO2 (A=Li, K; B=MnO, CuO, BaO; C=B, Al) is intruded in to a main material MgO—Ta2O5, which can significantly reduce the sintering temperature and provide a negative temperature coefficient of dielectric constant of ?100±30 ppm/° C., and reduce the deterioration factors of loss caused by an additive for sintering, and prepare a dielectric material applied to RF MLCC with low loss, low cost and good process stability.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan
  • Publication number: 20230092810
    Abstract: The present invention relates to a fetal cell capture module, a microfluidic chip for fetal cell capture, and methods for using the same. The fetal cell capture module comprises a cell capture carrier and recognition molecule(s) for specific capture the cell(s). The recognition molecule is attached to the surface of the carrier via an organic conjugate L comprising disulfide bonds. The surface of the chip is modified with recognition molecules that specifically capture fetal cells via organic conjugates comprising disulfide bonds. The recognition molecule, after capturing the cell, achieves the release of the cell by chemically cleaving the disulfide bonds in the organic coupling conjugate. The present invention enables the capture of fetal cell(s) from whole blood without pre-treatment with a high capture rate, low cell loss, simple and accurate cell release operation, and the efficient and noninvasive release of fetal cells and whole genome analysis.
    Type: Application
    Filed: February 24, 2021
    Publication date: March 23, 2023
    Inventors: Chaoyong YANG, Huimin ZHANG, Yuanyuan YANG, Yilong LIU, Zhi ZHU
  • Publication number: 20230050798
    Abstract: The present disclosure provides an electronic circuit having one reference current terminal arranged to connect to a reference current generator, an MOS current mirror stage, an MOS push-pull amplifier stage operatively coupled to the current mirror stage and the current mode amplifier stage.
    Type: Application
    Filed: August 9, 2022
    Publication date: February 16, 2023
    Applicant: Morse Micro Pty. LTD.
    Inventors: Hiroyuki Kimura, Yuanyuan Yang
  • Publication number: 20220112258
    Abstract: Provided are polypeptides having an antigen-binding unit targeting a tumor antigen and an IL-7 protein or fragment thereof, fused to a Fc fragment. The disclosed polypeptides can be used for treating cancer.
    Type: Application
    Filed: July 27, 2020
    Publication date: April 14, 2022
    Inventors: Feifei Cui, Lei Fang, Yuanyuan Yang, Zhengyi Wang, Bingshi Guo
  • Patent number: 11208486
    Abstract: Provided are full human anti-PD-L1 antibodies or fragments thereof. In various examples, the antibodies or fragments thereof include a VH CDR1, a VH CDR2, a VH CDR3, a VL CDR1, a VL CDR2, and a VL CDR3 which are selected from sequence groups of SEQ ID NO: 35-42, SEQ ID NO: 43-51, SEQ ID NO: 52-66, SEQ ID NO: 67-79, SEQ ID NO:80-88 and SEQ ID NO: 89-102, respectively, or variants of each thereof. Methods of using the antibodies or fragments thereof for treating and diagnosing diseases such as cancer and infectious diseases are also provided.
    Type: Grant
    Filed: April 26, 2020
    Date of Patent: December 28, 2021
    Assignee: I-Mab Biopharma US Limited
    Inventors: Lei Fang, Yuanyuan Yang, Zhengyi Wang, Bingshi Guo, Feifei Cui
  • Publication number: 20210309747
    Abstract: Provided are full human anti-PD-L1 antibodies or fragments thereof. In various examples, the antibodies or fragments thereof include a VH CDR1, a VH CDR2, a VH CDR3, a VL CDR1, a VL CDR2, and a VL CDR3 which are selected from sequence groups of SEQ ID NO: 35-42, SEQ ID NO: 43-51, SEQ ID NO: 52-66, SEQ ID NO: 67-79, SEQ ID NO:80-88 and SEQ ID NO: 89-102, respectively, or variants of each thereof. Methods of using the antibodies or fragments thereof for treating and diagnosing diseases such as cancer and infectious diseases are also provided.
    Type: Application
    Filed: April 26, 2020
    Publication date: October 7, 2021
    Inventors: Lei Fang, Yuanyuan Yang, Zhengyi Wang, Bingshi Guo, Feifei Cui
  • Patent number: 9782833
    Abstract: A pneumatic-type precision annular workpiece inner positioning surface clamping device, wherein a rod portion of a piston assembly (5) is inserted into a central hole of the wedge-shaped block (12), and the piston portion of the piston assembly (5) is located in a closed chamber of a cylinder body (15); a disc spring (3) is sleeved on the piston assembly (5); an air intake hole (1-1) is provided in the lower plate (1), an air vent hole (15-1) is provided at the upper portion of the cylinder body (15); and an elastic hinge block (6) is sleeved outside the wedge-shaped block (12). The pneumatic-type precision annular workpiece inner positioning surface clamping device has a simple structure, high reliability and strong adaptability.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: October 10, 2017
    Assignee: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiubin Tan, Yuanyuan Yang, Lei Wang, Bo Zhao
  • Publication number: 20160339528
    Abstract: A pneumatic-type precision annular workpiece inner positioning surface clamping device, wherein a rod portion of a piston assembly (5) is inserted into a central hole of the wedge-shaped block (12), and the piston portion of the piston assembly (5) is located in a closed chamber of a cylinder body (15); a disc spring (3) is sleeved on the piston assembly (5); an air intake hole (1-1) is provided in the lower plate (1), an air vent hole (15-1) is provided at the upper portion of the cylinder body (15); and an elastic hinge block (6) is sleeved outside the wedge-shaped block (12). The pneumatic-type precision annular workpiece inner positioning surface clamping device has a simple structure, high reliability and strong adaptability.
    Type: Application
    Filed: December 26, 2014
    Publication date: November 24, 2016
    Inventors: Jiubin TAN, Yuanyuan YANG, Lei WANG, Bo ZHAO
  • Patent number: D886080
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: June 2, 2020
    Inventor: Yuanyuan Yang
  • Patent number: D983770
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: April 18, 2023
    Assignee: SHENZHEN WOMEI TECH CO., LTD.
    Inventors: Shaojun Li, Yuanyuan Yang, Bing Yang