Patents by Inventor Yuki Toji

Yuki Toji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150876
    Abstract: A clad steel plate having tensile strength (TS) of 780 MPa or more, excellent bendability, collision resistance, and LME resistance. The clad steel plate having a base metal and a cladding metal on front and back surfaces of the base metal, and the chemical composition and microstructure of the base metal and the cladding metal being appropriately controlled so that the average Vickers hardness (HVL) of the cladding metal is 260 or less, the average Vickers hardness (HVL) of the cladding metal divided by the average Vickers hardness (HVB) of the base metal is 0.80 or less, the boundary roughness between the base metal and the cladding metal is 50 ?m or less at the maximum height Ry, and the number of voids at the boundary between the base metal and the cladding metal is controlled to 20 or fewer per 10 mm length of the boundary.
    Type: Application
    Filed: February 28, 2022
    Publication date: May 9, 2024
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshiyasu KAWASAKI, Yuki TOJI, Tatsuya NAKAGAITO, Shinya YAMAGUCHI, Masayasu UENO, Katsutoshi TAKASHIMA, Tomohiro ONO
  • Publication number: 20240110264
    Abstract: A high-strength cold-rolled steel sheet has a chemical composition containing C: 0.150 to 0.350 mass %, Si: 0.80 to 3.00 mass %, Mn: 1.50 to 3.50 mass %, P: 0.100 mass % or less, S: 0.0200 mass % or less, Al: 0.100 mass % or less, N: 0.0100 mass % or less, and O: 0.0100 mass % or less, with a remaining part consisting of Fe and impurities. The amount of diffusible hydrogen is 0.50 mass ppm or less, the area ratio of tempered martensite and bainite is 55 to 95%, the area ratio of retained austenite is 5 to 30%, a prior austenite grain has an average circle equivalent diameter of 15.0 ?m or less, and the ratio b/a is 0.80 or less, where a circumferential length of the prior austenite grain is a, and a circumferential length of a portion of the prior austenite grain having a carbon concentration of 0.6 mass % or more is b.
    Type: Application
    Filed: March 2, 2022
    Publication date: April 4, 2024
    Applicant: JFE Steel Corporation
    Inventors: Lingling Yang, Yuki Toji, Ryohei Morimoto, Katsutoshi Takashima
  • Publication number: 20240052449
    Abstract: A high strength steel sheet has a yield-point elongation of 1% or greater and a tensile strength of 980 MPa or greater. The high strength steel sheet has a specific chemical composition and microstructure. A ratio of retained austenite grains adjoining a retained austenite grain having a different crystal orientation to total retained austenite grains is 0.60 or greater, the ferrite has an average grain size of 5.0 ?m or less, and the retained austenite has an average grain size of 2.0 ?m or less. A value obtained by dividing a volume fraction V?a by a volume fraction V?b is 0.40 or greater, where the volume fraction V?a is a volume fraction of retained austenite in a fractured portion of a tensile test specimen after a warm tensile test at 150° C., and the volume fraction V?b is a volume fraction of retained austenite before the warm tensile test at 150° C.
    Type: Application
    Filed: September 25, 2020
    Publication date: February 15, 2024
    Applicant: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Yuki Toji, Muneka Iwasawa, Takayuki Futatsuka, Kentaro Sato
  • Publication number: 20240052464
    Abstract: A high strength steel sheet has a yield-point elongation of 1.0% or greater and a tensile strength of 980 MPa or greater. The high strength steel sheet has a specific chemical composition and microstructure. The ferrite has an average grain size of 5.0 ?m or less, the retained austenite has an average grain size of 2.0 ?m or less, a value obtained by dividing a Mn content of the retained austenite by a Mn content of steel is 1.50 or greater, 15% or more of all retained austenite grains in the retained austenite have an aspect ratio of 3.0 or greater, and 15% or more of all the retained austenite grains in the retained austenite have an aspect ratio of less than 2.0.
    Type: Application
    Filed: September 25, 2020
    Publication date: February 15, 2024
    Applicant: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Muneka Iwasawa, Yuki Toji, Yoshimasa Funakawa
  • Publication number: 20240026477
    Abstract: A high-strength galvanized steel sheet is disclosed which has a specified chemical composition, has a steel microstructure including, in terms of area fraction, 35% or more and 80% or less of ferrite, 0.1% or more and less than 5.0% of as-quenched martensite, 3.0% or more and 35% or less of tempered martensite, and 8% or more of retained austenite, in which an average grain diameter of the ferrite is 6 ?m or less, in which an average grain diameter of the retained austenite is 3 ?m or less, in which a value calculated by dividing an average Mn content (mass %) in the retained austenite by an average Mn content (mass %) in the ferrite is 1.5 or more.
    Type: Application
    Filed: January 10, 2020
    Publication date: January 25, 2024
    Applicant: JFE Steel Corporation
    Inventors: Kazuki Endoh, Yoshiyasu Kawasaki, Yuki Toji, Yoshimasa Funakawa, Mai Aoyama
  • Publication number: 20230374622
    Abstract: A high-strength cold-rolled steel sheet comprises: a chemical composition that contains C, Si, Mn, P, S, N, Al, Ti, Nb, and B with a balance consisting of Fe and inevitable impurities, and satisfies [mol % N]/[mol % Ti]<1; and a steel microstructure in which: an area fraction of ferrite is 12% or more and less than 30%; a total area fraction of tempered martensite and bainite is 55% or more and 85% or less; an area fraction of quenched martensite is 15% or less; an area fraction of retained austenite is 1% or more and 10% or less; an area fraction of low-Mn ferrite having a Mn concentration of 0.8×[% Mn] or less is 5% or more and 20% or less; a result of subtracting the area fraction of the low-Mn ferrite from the area fraction of the ferrite is 10% or more; an area fraction of a residual microstructure is less than 3%; and an average grain size of the low-Mn ferrite is 10 ?m or less.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 23, 2023
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuji TANAKA, Masaki TADA, Yuki TOJI, Shinsuke KOMINE, Yoshie OBATA, Yusuke KIMATA
  • Publication number: 20230357883
    Abstract: Provided are a steel sheet dehydrogenation apparatus, a steel sheet production system, and a steel sheet production method capable of producing a steel sheet excellent in hydrogen embrittlement resistance without changing the mechanical properties of the steel sheet. A dehydrogenation apparatus comprises: a housing configured to house a steel sheet coil obtained by coiling a steel strip; and a sound wave irradiator configured to irradiate the steel sheet coil housed in the housing with sound waves to obtain a product coil.
    Type: Application
    Filed: May 7, 2021
    Publication date: November 9, 2023
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuki TOJI, Kazuki ENDOH, Hidekazu MINAMI
  • Patent number: 11788163
    Abstract: A high-strength steel sheet includes a steel structure with: ferrite being 35% to 80% and tempered martensite being greater than 5% and 20% or less in terms of area fraction; retained austenite being 8% or more in terms of volume fraction; an average grain size of: the ferrite being 6 ?m or less; and the retained austenite being 3 ?m or less; a value obtained by dividing an area fraction of blocky austenite by a sum of area fractions of lath-like austenite and the blocky austenite being 0.6 or more; a value obtained by dividing, by mass %, an average Mn content in the retained austenite by an average Mn content in the ferrite being 1.5 or more; and a value obtained by dividing, by mass %, an average C content in the retained austenite by an average C content in the ferrite being 3.0 or more.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 17, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Kazuki Endo, Yoshiyasu Kawasaki, Yuki Toji, Yoshimasa Funakawa, Mai Aoyama
  • Publication number: 20230265539
    Abstract: Provided is a continuous annealing line capable of producing a steel sheet excellent in hydrogen embrittlement resistance. A continuous annealing line 100 comprises: a payoff reel 10 configured to uncoil a cold-rolled coil C to feed a cold-rolled steel sheet S; an annealing furnace 20 configured to continuously anneal the cold-rolled steel sheet S and including a heating zone 22, a soaking zone 24, and a cooling zone 26 that are arranged from an upstream side in a sheet passing direction; a downstream line 30 configured to continuously pass the cold-rolled steel sheet S discharged from the annealing furnace 20 therethrough; a tension reel 50 configured to coil the cold-rolled steel sheet S; and a sound wave irradiator 60 configured to irradiate the cold-rolled steel sheet S being passed from the cooling zone 26 to the tension reel 50 with sound waves.
    Type: Application
    Filed: May 11, 2021
    Publication date: August 24, 2023
    Applicant: JFE STEEL CORPORATION
    Inventors: Hidekazu MINAMI, Kazuki ENDOH, Yuki TOJI
  • Publication number: 20230256534
    Abstract: Provided is a resistance spot welding method suitable for manufacturing a weld joint exhibiting excellent delayed fracture resistance. The resistance spot welding method includes sandwiching two or more overlapped steel sheets between a pair of welding electrodes, applying current to the steel sheets while pressing the steel sheets, forming a nugget on overlapping surfaces of the steel sheets to join the steel sheets, and after the joining, directly or indirectly irradiating the nugget with sound waves having a frequency of 10 Hz or more and 100000 Hz or less so that a sound pressure level on a surface of the steel sheet is 30 dB or more.
    Type: Application
    Filed: May 26, 2021
    Publication date: August 17, 2023
    Applicant: JFE STEEL CORPORATION
    Inventors: Satoshi MAEDA, Kazuki ENDOH, Yuki TOJI, Nao KAWABE
  • Publication number: 20230243006
    Abstract: Provided is a dehydrogenation method capable of efficiently reducing hydrogen content in steel for thick or complexly-shaped steel materials and steel products in general. In a dehydrogenation method for a steel material, in a series of steel material production process including: a process of supplying a steel raw material; a process of subjecting the steel raw material to hot working; a process of inspecting a steel material obtained from the steel raw material; and a process of shipping the steel material, at least one of the steel raw material and the steel material at any stage from the supply process to the shipment process is subjected to, at least once, a sound wave irradiation treatment so that a sound pressure level at a surface of the at least one of the steel raw material and the steel material will be 30 dB or more.
    Type: Application
    Filed: May 26, 2021
    Publication date: August 3, 2023
    Applicant: JFE STEEL CORPORATION
    Inventors: Junya TOBATA, Kazuki ENDOH, Yuki TOJI
  • Publication number: 20230235421
    Abstract: A high-strength cold-rolled steel sheet comprises: a chemical composition that contains C, Si, Mn, P, S, N, Al, Ti, Nb, and B with a balance consisting of Fe and inevitable impurities, and satisfies [mol % N]/[mol % Ti]<1; and a steel microstructure in which: an area fraction of ferrite is 30% or more and 60% or less; a total area fraction of tempered martensite and bainite is 35% or more and 65% or less; an area fraction of quenched martensite is 15% or less; an area fraction of retained austenite is 1% or more and 10% or less; an area fraction of low-Mn ferrite having a Mn concentration of 0.8×[% Mn] or less is 5% or more and 40% or less; a result of subtracting the area fraction of the low-Mn ferrite from the area fraction of the ferrite is 10% or more; an area fraction of a residual microstructure is less than 3%; and an average grain size of the low-Mn ferrite is 10 ?m or less.
    Type: Application
    Filed: August 5, 2021
    Publication date: July 27, 2023
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuji TANAKA, Masaki TADA, Yuki TOJI, Shinsuke KOMINE, Yoshie OBATA, Yusuke KIMATA
  • Patent number: 11661642
    Abstract: A high-strength steel sheet includes a steel structure with: ferrite being 35% to 80%, martensite being 5% to 35%, and tempered martensite being 0% to 5% in terms of area fraction; retained austenite being 8% or more in terms of volume fraction; an average grain size of: the ferrite being 6 ?m or less; and the retained austenite being 3 ?m or less; a value obtained by dividing an area fraction of blocky austenite by a sum of area fractions of lath-like austenite and the blocky austenite being 0.6 or more; a value obtained by dividing, by mass %, an average Mn content in the retained austenite by an average Mn content in the ferrite being 1.5 or more; and a value obtained by dividing, by mass %, an average C content in the retained austenite by an average C content in the ferrite being 3.0 or more.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 30, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Kazuki Endo, Yoshiyasu Kawasaki, Yuki Toji, Yoshimasa Funakawa, Mai Aoyama
  • Patent number: 11643700
    Abstract: A high-strength steel includes a steel structure with: in area fraction, 60.0% to less than 90.0% of ferrite, 0% to less than 5.0% of unrecrystallized ferrite, 2.0% to 25.0% of martensite, 0% to 5.0% of carbide, and 0% to 3.0% of bainite; in volume fraction, more than 7.0% of retained austenite; in a cross-sectional view of 100 ?m×100 ?m, a value obtained by dividing number of retained austenite that are not adjacent to retained austenite whose crystal orientations are different by a total number of retained austenite being less than 0.80, an average crystal grain size of the ferrite being 6.0 ?m or less, an average crystal grain size of the retained austenite being 3.0 ?m or less, and a value obtained by dividing, by mass %, an average content of Mn in the retained austenite by an average content of Mn in steel being 1.50 or more.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 9, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Kazuki Endo, Yuki Toji, Yoshimasa Funakawa, Satoshi Maeda, Mai Aoyama
  • Publication number: 20220396855
    Abstract: Provided is a high strength steel sheet that has a predetermined chemical composition and is manufactured under optimum conditions, the high strength steel sheet having a steel microstructure including, by area, ferrite: 30% or more and 80% or less, martensite: 5% or more and 35% or less, and retained austenite: 8% or more, wherein the quotient of the area fraction of grains of the retained austenite, the grains having an aspect ratio of 2.0 or more and a minor axis length of 1 ?m or less, divided by the total area fraction of the retained austenite is 0.3 or more, wherein the quotient of the average Mn content (mass %) in the retained austenite divided by the average Mn content (mass %) in the ferrite is 1.5 or more.
    Type: Application
    Filed: October 8, 2020
    Publication date: December 15, 2022
    Applicant: JFE Steel Corporation
    Inventors: Kazuki Endoh, Yoshiyasu Kawasaki, Yuki Toji
  • Publication number: 20220396847
    Abstract: Provided is a high strength steel sheet that has a predetermined chemical composition and is manufactured under optimum conditions, the high strength steel sheet having a steel microstructure including, by area, ferrite: 30% or more and 80% or less, tempered martensite: 3.0% or more and 35% or less, and retained austenite: 8% or more, wherein the quotient of the area fraction of grains of the retained austenite, the grains having an aspect ratio of 2.0 or more and a minor axis length of 1 ?m or less, divided by the total area fraction of the retained austenite is 0.3 or more, wherein the quotient of the average Mn content (mass %) in the retained austenite divided by the average Mn content (mass %) in the ferrite is 1.5 or more.
    Type: Application
    Filed: October 8, 2020
    Publication date: December 15, 2022
    Applicant: JFE Steel Corporation
    Inventors: Kazuki Endoh, Yoshiyasu Kawasaki, Yuki Toji
  • Publication number: 20220364196
    Abstract: Provided is a high strength steel sheet that has a predetermined chemical composition and is manufactured under optimum conditions, the high strength steel sheet having a steel microstructure including, by area, ferrite: 30% or more and 80% or less, tempered martensite: 3.0% or more and 35% or less, and retained austenite: 8% or more, wherein the quotient of the area fraction of grains of the retained austenite, the grains having an aspect ratio of 2.0 or more and a minor axis length of 1 ?m or less, divided by the total area fraction of the retained austenite is 0.3 or more, wherein the quotient of the average Mn content (mass %) in the retained austenite divided by the average Mn content (mass %) in the ferrite is 1.5 or more.
    Type: Application
    Filed: October 8, 2020
    Publication date: November 17, 2022
    Applicant: JFE Steel Corporation
    Inventors: Kazuki Endoh, Yoshiyasu Kawasaki, Yuki Toji
  • Patent number: 11459647
    Abstract: Provided are a high-strength cold rolled steel sheet that has a tensile strength of 980 MPa or more, excellent ductility, and a low failure rate in a hole expanding test, and a method for manufacturing the same. A high-strength cold rolled steel sheet comprises a predetermined composition, wherein a total area ratio of ferrite and bainitic ferrite is 20% to 80%, an area ratio of retained austenite (RA) is more than 10% and 40% or less, an area ratio of tempered martensite is more than 0% and 50% or less, a ratio of RA with an aspect ratio of 0.5 or less is 75% or more, a ratio of RA with an aspect ratio of 0.5 or less in ferrite grain boundaries is 50% or more, and an average KAM value of bcc phase is 1° or less.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 4, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Takaaki Tanaka, Yuki Toji
  • Patent number: 11447840
    Abstract: To provide a high-strength steel sheet with excellent ductility and hole expansion formability, a yield ratio of less than 68%, and a tensile strength of 980 MPa or more, by having a predetermined chemical composition and a microstructure where ferrite is 15% or more and 55% or less and martensite is 15% or more and 30% or less in area ratio, retained austenite is 12% or more in volume fraction, the average grain size of ferrite, martensite and retained austenite is 4.0 ?m or less, 2.0 ?m or less and 2.0 ?m or less respectively, the average aspect ratio of crystal grain of ferrite, martensite and retained austenite is each more than 2.0 and 15.0 or less, and the value obtained by dividing the Mn content (mass %) in retained austenite by the Mn content (mass %) in ferrite is 2.0 or more.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: September 20, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Takako Yamashita, Masayasu Ueno, Yuki Toji, Takashi Kobayashi, Yoshimasa Funakawa
  • Patent number: 11447841
    Abstract: To provide a high-strength steel sheet with excellent ductility and hole expansion formability, a yield ratio of less than 68%, and a tensile strength of 590 MPa or more, by having a predetermined chemical composition and a microstructure where ferrite is 35% or more and 80% or less and martensite is 5% or more and 25% or less in area ratio, retained austenite is 8% or more in volume fraction, the average grain size of ferrite, martensite and retained austenite is 6.0 ?m or less, 3.0 ?m or less and 3.0 ?m or less respectively, the average aspect ratio of crystal grain of ferrite, martensite and retained austenite is each more than 2.0 and 15.0 or less, and the value obtained by dividing the Mn content (mass %) in retained austenite by the Mn content (mass %) in ferrite is 2.0 or more.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: September 20, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Takako Yamashita, Masayasu Ueno, Yuki Toji, Takashi Kobayashi, Yoshimasa Funakawa