Patents by Inventor Yukinori SHIMA

Yukinori SHIMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10217776
    Abstract: A semiconductor device including a capacitor having an increased charge capacity without decreasing an aperture ratio is provided. The semiconductor device includes a transistor including a light-transmitting semiconductor film, a capacitor in which a dielectric film is provided between a pair of electrodes, and a pixel electrode electrically connected to the transistor. In the capacitor, a conductive film formed on the same surface as the light-transmitting semiconductor film in the transistor serves as one electrode, the pixel electrode serves as the other electrode, and a nitride insulating film and a second oxide insulating film which are provided between the light-transmitting semiconductor film and the pixel electrode serve as the a dielectric film.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 26, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiro Katayama, Ami Sato, Yukinori Shima
  • Publication number: 20190051727
    Abstract: A metal oxide film includes indium, , ( is Al, Ga, Y, or Sn), and zinc and includes a region where a peak having a diffraction intensity derived from a crystal structure is observed by X-ray diffraction in the direction perpendicular to the film surface. Moreover, a plurality of crystal parts is observed in a transmission electron microscope image in the direction perpendicular to the film surface. The proportion of a region other than the crystal parts is higher than or equal to 20% and lower than or equal to 60%.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuharu Hosaka, Toshimitsu Obonai, Yukinori Shima, Masami Jintyou, Daisuke Kurosaki, Takashi Hamochi, Junichi Koezuka, Kenichi Okazaki, Shunpei Yamazaki
  • Patent number: 10205008
    Abstract: Provided is a semiconductor device with favorable electrical characteristics. Provided is a semiconductor device with stable electrical characteristics. Provided is a manufacturing method of a semiconductor device with a high yield. The manufacturing method includes a first step of forming an insulating film over a substrate, a second step of transferring the substrate in an atmospheric atmosphere, a third step of heating the insulating film, and a fourth step of forming a metal oxide film. The third step and the fourth step are successively performed in an atmosphere where water vapor partial pressure is lower than water vapor partial pressure in the atmospheric air.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: February 12, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Obonai, Hironobu Takahashi, Yasuharu Hosaka, Masahiro Watanabe, Takuya Handa, Yukinori Shima, Takashi Hamochi
  • Patent number: 10164075
    Abstract: The transistor includes a gate electrode, a gate insulating film over the gate electrode, an oxide semiconductor film over the gate insulating film, a source electrode and a drain electrode electrically connected to the oxide semiconductor film. The oxide semiconductor film includes a first oxide semiconductor film on the gate electrode side and a second oxide semiconductor film over the first oxide semiconductor film. The first oxide semiconductor film includes a first region in which an atomic proportion of In is larger than that of M (M is Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf). The second oxide semiconductor film includes a second region in which an atomic proportion of In is smaller than that of the first oxide semiconductor film. The second region includes a portion thinner than the first region.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: December 25, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Kenichi Okazaki, Daisuke Kurosaki, Yukinori Shima, Yasuharu Hosaka
  • Patent number: 10158008
    Abstract: A change in electrical characteristics of a semiconductor device including an oxide semiconductor is prevented, and the reliability of the semiconductor device is improved. An oxide semiconductor is formed over a substrate; an insulator is formed over the oxide semiconductor; a metal oxide is formed over the insulator; a conductor is formed over the metal oxide; a portion of the oxide semiconductor is exposed by removing the conductor, the metal oxide, and the insulator over the oxide semiconductor; plasma treatment is performed on a surface of the exposed portion of the oxide semiconductor; and a nitride insulator is formed over the exposed portion of the oxide semiconductor and over the conductor. The plasma treatment is performed in a mixed atmosphere of an argon gas and a nitrogen gas.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: December 18, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Masami Jintyou, Yukinori Shima, Yasuharu Hosaka, Yasutaka Nakazawa, Takashi Hamochi, Takahiro Sato, Shunpei Yamazaki
  • Publication number: 20180350996
    Abstract: To reduce defects in an oxide semiconductor film in a semiconductor device. To improve electrical characteristics of and reliability in the semiconductor device including an oxide semiconductor film. A method for manufacturing a semiconductor device includes the steps of forming a gate electrode and a gate insulating film over a substrate, forming an oxide semiconductor film over the gate insulating film, forming a pair of electrodes over the oxide semiconductor film, forming a first oxide insulating film over the oxide semiconductor film and the pair of electrodes by a plasma CVD method in which a film formation temperature is 280° C. or higher and 400° C. or lower, forming a second oxide insulating film over the first oxide insulating film, and performing heat treatment at a temperature of 150° C. to 400° C. inclusive, preferably 300° C. to 400° C. inclusive, further preferably 320° C. to 370° C. inclusive.
    Type: Application
    Filed: July 24, 2018
    Publication date: December 6, 2018
    Inventors: Junichi KOEZUKA, Yukinori SHIMA, Suzunosuke HIRAISHI, Kenichi OKAZAKI
  • Publication number: 20180350994
    Abstract: In a transistor that includes an oxide semiconductor, a change in electrical characteristics is suppressed and the reliability is improved. A semiconductor device that includes a transistor is provided. The transistor includes a first conductive film that functions as a first gate electrode, a first gate insulating film, a first oxide semiconductor film that includes a channel region, a second gate insulating film, and a second oxide semiconductor film and a second conductive film that function as a second gate electrode. The second oxide semiconductor film includes a region higher in carrier density than the first oxide semiconductor film. The second conductive film includes a region in contact with the first conductive film.
    Type: Application
    Filed: November 9, 2016
    Publication date: December 6, 2018
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yasuharu HOSAKA, Yukinori SHIMA, Masataka NAKADA, Masami JINTYOU
  • Patent number: 10134914
    Abstract: To improve field-effect mobility and reliability of a transistor including an oxide semiconductor film. Provided is a semiconductor device including an oxide semiconductor film. The semiconductor device includes a first insulating film, the oxide semiconductor film over the first insulating film, a second insulating film and a third insulating film over the oxide semiconductor film, and a gate electrode over the second insulating film. The oxide semiconductor film includes a first oxide semiconductor film, a second oxide semiconductor film over the first oxide semiconductor film, and a third oxide semiconductor film over the second oxide semiconductor film. The first to third oxide semiconductor films contain the same element. The second oxide semiconductor film includes a region where the crystallinity is lower than the crystallinity of one or both of the first oxide semiconductor film and the third oxide semiconductor film.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: November 20, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Kenichi Okazaki, Masami Jintyou, Yukinori Shima
  • Patent number: 10128378
    Abstract: A semiconductor device comprising a first transistor, a second insulating film, a conductive film, and a capacitor is provided. The first transistor comprises a first oxide semiconductor film, a gate insulating film over the first oxide semiconductor film, and a gate electrode over the gate insulating film. The second insulating film is provided over the gate electrode. The conductive film is electrically connected to the first oxide semiconductor film. The capacitor comprises a second oxide semiconductor film, the second insulating film over the second oxide semiconductor film, and the conductive film over the second insulating film. The first oxide semiconductor film comprises a first region and a second region. Each of a carrier density of the second region and a carrier density of the second oxide semiconductor film is higher than a carrier density of the first region.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: November 13, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Masami Jintyou, Yukinori Shima, Takashi Hamochi, Yasutaka Nakazawa
  • Patent number: 10101625
    Abstract: The display device includes a first substrate provided with a driver circuit region that is located outside and adjacent to a pixel region and includes at least one second transistor which supplies a signal to the first transistor in each of the pixels in the pixel region, a second substrate facing the first substrate, a liquid crystal layer between the first substrate and the second substrate, a first interlayer insulating film including an inorganic insulating material over the first transistor and the second transistor, a second interlayer insulating film including an organic insulating material over the first interlayer insulating film, and a third interlayer insulating film including an inorganic insulating material over the second interlayer insulating film. The third interlayer insulating film is provided in part of an upper region of the pixel region, and has an edge portion on an inner side than the driver circuit region.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: October 16, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuharu Hosaka, Yukinori Shima, Kenichi Okazaki, Shunpei Yamazaki
  • Publication number: 20180294363
    Abstract: In a semiconductor device including a transistor including a gate electrode formed over a substrate, a gate insulating film covering the gate electrode, a multilayer film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the multilayer film, a first oxide insulating film covering the transistor, and a second oxide insulating film formed over the first oxide insulating film, the multilayer film includes an oxide semiconductor film and an oxide film containing In or Ga, the oxide semiconductor film has an amorphous structure or a microcrystalline structure, the first oxide insulating film is an oxide insulating film through which oxygen is permeated, and the second oxide insulating film is an oxide insulating film containing more oxygen than that in the stoichiometric composition.
    Type: Application
    Filed: June 8, 2018
    Publication date: October 11, 2018
    Inventors: Junichi KOEZUKA, Yukinori SHIMA, Hajime TOKUNAGA, Toshinari SASAKI, Keisuke MURAYAMA, Daisuke MATSUBAYASHI
  • Patent number: 10096684
    Abstract: A metal oxide film includes indium, M, (M is Al, Ga, Y, or Sn), and zinc and includes a region where a peak having a diffraction intensity derived from a crystal structure is observed by X-ray diffraction in the direction perpendicular to the film surface. Moreover, a plurality of crystal parts is observed in a transmission electron microscope image in the direction perpendicular to the film surface. The proportion of a region other than the crystal parts is higher than or equal to 20% and lower than or equal to 60%.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: October 9, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuharu Hosaka, Toshimitsu Obonai, Yukinori Shima, Masami Jintyou, Daisuke Kurosaki, Takashi Hamochi, Junichi Koezuka, Kenichi Okazaki, Shunpei Yamazaki
  • Publication number: 20180254352
    Abstract: A semiconductor device with favorable electrical characteristics is to be provided. A highly reliable semiconductor device is to be provided. A semiconductor device with lower power consumption is to be provided. The semiconductor device includes a gate electrode, a first insulating layer over the gate electrode, a metal oxide layer over the first insulating layer, a pair of electrodes over the metal oxide layer, and a second insulating layer over the pair of electrodes. The first insulating layer includes a first region and a second region. The first region has a region being in contact with the metal oxide layer and containing more oxygen than the second region. The second region has a region containing more nitrogen than the first region. The metal oxide layer has at least a concentration gradient of oxygen in a thickness direction, and the concentration gradient becomes high on a first region side and on a second region side.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 6, 2018
    Inventors: Junichi KOEZUKA, Kenichi OKAZAKI, Yukinori SHIMA, Yasutaka NAKAZAWA, Yasuharu HOSAKA, Shunpei YAMAZAKI
  • Publication number: 20180247958
    Abstract: To improve field-effect mobility and reliability in a transistor including an oxide semiconductor film. A semiconductor device includes a transistor including an oxide semiconductor film. The transistor includes a region where the maximum value of field-effect mobility of the transistor at a gate voltage of higher than 0 V and lower than or equal to 10 V is larger than or equal to 40 and smaller than 150; a region where the threshold voltage is higher than or equal to minus 1 V and lower than or equal to 1 V; and a region where the S value is smaller than 0.3 V/decade.
    Type: Application
    Filed: April 26, 2018
    Publication date: August 30, 2018
    Inventors: Shunpei YAMAZAKI, Junichi KOEZUKA, Kenichi OKAZAKI, Yukinori SHIMA, Shinpei MATSUDA, Haruyuki BABA, Ryunosuke HONDA
  • Patent number: 10050153
    Abstract: To reduce defects in an oxide semiconductor film in a semiconductor device. To improve electrical characteristics of and reliability in the semiconductor device including an oxide semiconductor film. A method for manufacturing a semiconductor device includes the steps of forming a gate electrode and a gate insulating film over a substrate, forming an oxide semiconductor film over the gate insulating film, forming a pair of electrodes over the oxide semiconductor film, forming a first oxide insulating film over the oxide semiconductor film and the pair of electrodes by a plasma CVD method in which a film formation temperature is 280° C. or higher and 400° C. or lower, forming a second oxide insulating film over the first oxide insulating film, and performing heat treatment at a temperature of 150° C. to 400° C. inclusive, preferably 300° C. to 400° C. inclusive, further preferably 320° C. to 370° C. inclusive.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: August 14, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Yukinori Shima, Suzunosuke Hiraishi, Kenichi Okazaki
  • Patent number: 10043858
    Abstract: A novel display device that is highly convenient or reliable is provided. The display device includes a first display element, a second display element, a first transistor, a second transistor, and a third transistor. The first display element includes a liquid crystal layer. The second display element includes a light-emitting layer. The first transistor has a function of selecting the first display element. The second transistor has a function of selecting the second display element. The third transistor has a function of controlling the driving of the second display element. The first transistor and the second transistor are formed over the same surface. The third transistor is formed above the first transistor and the second transistor and includes one of a source electrode and a drain electrode of the second transistor as a gate electrode.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 7, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroyuki Miyake, Yasuharu Hosaka, Yukinori Shima, Masataka Nakada
  • Publication number: 20180219102
    Abstract: The semiconductor device includes a first transistor provided in a driver circuit portion and a second transistor provided in a pixel portion; the first transistor and the second transistor have different structures. In an oxide semiconductor film of each of the transistors, an impurity element is contained in regions which do not overlap with a gate electrode. The regions of the oxide semiconductor film which contain the impurity element function as low-resistance regions. Furthermore, the regions of the oxide semiconductor film which contain the impurity element are in contact with a film containing hydrogen. Furthermore, the first transistor provided in the driver circuit portion may include the oxide semiconductor film in which a first film and a second film are stacked, and the second transistor provided in the pixel portion may include the oxide semiconductor film which differs from the first film in the atomic ratio of metal elements.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Junichi KOEZUKA, Masami JINTYOU, Yukinori SHIMA, Daisuke KUROSAKI, Masataka NAKADA, Shunpei YAMAZAKI
  • Patent number: 10032929
    Abstract: The reliability of a transistor including an oxide semiconductor is improved. The transistor in a semiconductor device includes a first oxide semiconductor film over a first insulating film, a gate insulating film over the first oxide semiconductor film, a second oxide semiconductor film over the gate insulating film, and a second insulating film over the first oxide semiconductor film and the second oxide semiconductor film. The first oxide semiconductor film includes a channel region overlapping with the second oxide semiconductor film, a source region and a drain region each in contact with the second insulating film. The channel region includes a first layer and a second layer in contact with a top surface of the first layer and covering a side surface of the first layer in the channel width direction. The second oxide semiconductor film has a higher carrier density than the first oxide semiconductor film.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: July 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Masami Jintyou, Yukinori Shima
  • Publication number: 20180197888
    Abstract: Provided is a novel semiconductor device. The semiconductor device comprises a first transistor and a second transistor. The first transistor comprises a first gate electrode; a first insulating film over the first gate electrode; a first oxide semiconductor film over the first insulating film; a first source electrode and a first drain electrode over the first oxide semiconductor film; a second insulating film over the first oxide semiconductor film, the first source electrode, and the first drain electrode; and a second gate electrode over the second insulating film.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 12, 2018
    Inventors: Hiroyuki MIYAKE, Kenichi OKAZAKI, Yasuharu HOSAKA, Yukinori SHIMA
  • Publication number: 20180190825
    Abstract: The semiconductor device includes a first insulating layer, a second insulating layer, an oxide semiconductor layer, and first to third conductive layers. The first conductive layer and the second conductive layer are connected to the oxide semiconductor layer. The second insulating layer includes a region in contact with the oxide semiconductor layer, and the third conductive layer includes a region in contact with the second insulating layer. The oxide semiconductor layer includes first to third regions. The first region and the second region are separated from each other, and the third region is located between the first region and the second region. The third region and the third conductive layer overlap with each other with the second insulating layer located therebetween. The first region and the second region include a region having a higher carbon concentration than the third region.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Masami Jintyou, Yukinori Shima