Patents by Inventor Yukio Morozumi

Yukio Morozumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010051422
    Abstract: Certain embodiments of the present invention relate to a semiconductor device that has a pad section having an excellent coherency with an interlayer dielectric layer, and a method for manufacturing the same. A semiconductor device 1000 has a pad layer 30A formed over an interlayer dielectric layer 20. The pad section 30A includes a wetting layer 32 and a metal wiring layer 37. The metal wiring layer 37 includes an alloy layer 34 that contacts the wetting layer 32. The alloy layer 34 is formed from a material composing the wetting layer 32 and a material composing the metal wiring layer 37.
    Type: Application
    Filed: March 27, 2001
    Publication date: December 13, 2001
    Inventors: Kazuki Matsumoto, Yukio Morozumi, Michio Asahina
  • Publication number: 20010039111
    Abstract: In a method for manufacturing a semiconductor device in which wiring layers are formed by a damascene method, certain embodiments relate to a manufacturing method and a semiconductor device, in which a bonding pad section having a multiple-layered structure can be formed by a simple method without increasing the number of process steps. One embodiment includes a method for manufacturing a semiconductor device in which at least an uppermost wiring layer is formed by a damascene method.
    Type: Application
    Filed: February 3, 2001
    Publication date: November 8, 2001
    Inventor: Yukio Morozumi
  • Publication number: 20010033028
    Abstract: Certain embodiments of the present invention relate to a semiconductor device that has a pad section having an excellent coherency with an interlayer dielectric layer, and a method for manufacturing the same. A semiconductor device 1000 has a pad layer 30A formed over an interlayer dielectric layer 20. The interlayer dielectric layer 20 includes at least a first silicon oxide layer 20b that is formed by a polycondensation reaction of a silicon compound and hydrogen peroxide, and a second silicon oxide layer 20c formed over the first silicon oxide layer and containing an impurity. The pad section 30A includes a wetting layer 32, an alloy layer 34 and a metal wiring layer 37.
    Type: Application
    Filed: March 27, 2001
    Publication date: October 25, 2001
    Inventors: Kazumi Matsumoto, Yukio Morozumi, Michio Asahina
  • Publication number: 20010034119
    Abstract: In a method for manufacturing a semiconductor device in which wiring layers are formed by a damascene method, certain embodiment relate to a manufacturing methods and semiconductor devices, in which a bonding pad section having a multiple-layered structure can be formed by a simple method without increasing the number of process steps.
    Type: Application
    Filed: February 3, 2001
    Publication date: October 25, 2001
    Inventor: Yukio Morozumi
  • Patent number: 6246105
    Abstract: A semiconductor device having an insulation protection film with increased reliability and improved device characteristics, and a manufacturing method thereof which improves the planarization and reduces the interlayer capacitance of the device. The semiconductor device has a semiconductor substrate including a MOS device, a plurality of wiring regions formed on the semiconductor substrate, and a protective insulation film formed on the top layer of the wiring regions. The protective insulation film includes a first silicon oxide film, a second silicon oxide film formed on the first silicon oxide film, and a silicon nitride film composing the top layer.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: June 12, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Yukio Morozumi, Takenori Asahi
  • Patent number: 6194304
    Abstract: A process of forming an interlayer dielectric on a semiconductor substrate including an electronic element comprises at least the following steps (a) to (c): (a) a step of forming a first silicon oxide layer by reacting a silicon compound including hydrogen with hydrogen peroxide using a chemical vapor deposition method; (b) a step of forming a porous second silicon oxide layer by reacting between a compound including an impurity, silicon compounds, and at least one substance selected from oxygen and compounds including oxygen using a chemical vapor deposition method; and (c) a step of annealing at a temperature of 300° C. to 850° C. to make the first and second silicon oxide layers more fine-grained. The first silicon oxide layer is formed at a temperature that is lower than that required for a BPSG film, and it has superior self-flattening characteristics in itself.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: February 27, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Yukio Morozumi, Michio Asahina, Naohiro Moriya, Kazuki Matsumoto, Eiji Suzuki
  • Patent number: 6137176
    Abstract: A process of forming an interlayer dielectric on a semiconductor substrate including an electronic element includes:forming first silicon oxide layer by reacting a silicon compound including hydrogen with hydrogen peroxide using a chemical vapor deposition method;forming a porous second silicon oxide layer by reacting between a compound including an impurity, silicon compounds, and at least one substance selected from oxygen and compounds including oxygen using a chemical vapor deposition method; andannealing at a temperature of 300.degree. C. to 850.degree. C. to make the first and second silicon oxide layers more fine-grained. The first silicon oxide layer is formed at a temperature that is lower than that required of a BPSG film, and it has superior self-flattening characteristics in itself.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: October 24, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Yukio Morozumi, Michio Asahina, Naohiro Moriya, Kazuki Matsumoto, Eiji Suzuki
  • Patent number: 5514624
    Abstract: A method of manufacturing an interlayer dielectric for microelectronic devices having multiple conducting layers provides a planarized surface for deposition of subsequent layers and further prevents cracking of spin-on-glass by limiting spin-on-glass thickness to about 0.4 .mu.m or less. A first dielectric layer is formed over a first conducting layer by means of reacting Si(OC.sub.2 H.sub.5).sub.4 and O.sub.2 at approximately 9 torr between 370.degree. C. to 400.degree. C., and a second dielectric layer is formed over the first dielectric layer by a method different than that used to form the first dielectric layer. After etching back the second dielectric layer, a spin-on-glass layer is formed. Spin-on-glass layer is etched back to provide a planar surface and a third dielectric layer is formed over the spin-on-glass layer. The resulting surface is ready for contact hole formation, deposition and patterning of subsequent conductive and insulating layers.
    Type: Grant
    Filed: July 19, 1993
    Date of Patent: May 7, 1996
    Assignee: Seiko Epson Corporation
    Inventor: Yukio Morozumi
  • Patent number: 5376435
    Abstract: An interlayer dielectric structure for microelectronic devices having multiple conducting layers provides a planarized surface for deposition of subsequent layers and further prevents cracking of spin-on-glass by limiting spin-on-glass thickness to about 0.4 .mu.m or less. A first dielectric layer is formed over a first conducting layer by means of reacting Si(OC.sub.2 H.sub.5).sub.4 and O.sub.2 at approximately 9 torr between 370.degree. C. to 400.degree. C., and a second dielectric layer is formed over the first dielectric layer by a method different than that used to form the first dielectric layer. After etching back the second dielectric layer, a spin-on-glass layer is formed. Spin-on-glass layer is etched back to provide a planar surface and a third dielectric-layer is formed over the spin-on-glass layer. The resulting surface is ready for contact hole formation, deposition and patterning of subsequent conductive and insulating layers.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: December 27, 1994
    Assignee: Seiko Epson Corporation
    Inventor: Yukio Morozumi
  • Patent number: 5266525
    Abstract: A method of manufacturing an interlayer dielectric for microelectronic devices having multiple conducting layers provides a planarized surface for deposition of subsequent layers and further prevents cracking of spin-on-glass by limiting spin-on-glass thickness to about 0.4 .mu.m or less. A first dielectric layer is formed over a first conducting layer by means of reacting Si(OC.sub.2 H.sub.5).sub.4 and O.sub.2 at approximately 9 torr between 370.degree. C. to 400.degree. C., and a second dielectric layer is formed over the first dielectric layer by a method different than that used to form the first dielectric layer. After etching back the second dielectric layer, a spin-on-glass layer is formed. Spin-on-glass layer is etched back to provide a planar surface and a third dielectric layer is formed over the spin-on-glass layer. The resulting surface is ready for contact hole formation, deposition and patterning of subsequent conductive and insulating layers.
    Type: Grant
    Filed: August 7, 1991
    Date of Patent: November 30, 1993
    Assignee: Seiko Epson Corporation
    Inventor: Yukio Morozumi
  • Patent number: 5051807
    Abstract: A semiconductor integrated circuit structure formed on a substrate and composed of a plurality of groups of integrated circuit chips each in the form of an elongated strip having a short dimension and a long dimension which is markedly longer than the short dimension, with adjacent chips in each group being spaced from one another by linear regions including a plurality of first linear regions extending parallel to the long dimension of the chips and at least one second linear region extending parallel to the short dimension of the chips, wherein, in each group, the at least one second linear region has a width greater than at least one of the first linear regions.
    Type: Grant
    Filed: January 14, 1991
    Date of Patent: September 24, 1991
    Assignee: Seiko Epson Corporation
    Inventor: Yukio Morozumi
  • Patent number: 4068285
    Abstract: A variable capacitor is provided wherein a reinforcing plate is utilized in the rotor assembly in order to increase the range of the capacitor. The capacitor includes the stator plate and first electrode, the stator plate supporting a lead pin and a rotor positioning member, the rotor positioning member being rotatably mounted thereon. The rotor positioning member rotatably supports a uniformly thick rotor assembly in rotatable friction contact with the stator plate and first electrode. The rotor assembly includes a dielectric, a second capacitor electrode and a reinforcing plate, the thickenss of the dielectric determining the minimum value of capacitance of the variable capacitor. The rotor assembly also includes a fixed spring secured to the positioning member, the lead pin and fixed spring being adapted to facilitate use of variable capacitor in small-size electronic instrumentation.
    Type: Grant
    Filed: May 5, 1976
    Date of Patent: January 10, 1978
    Assignee: Kabushiki Kaisha Suwa Seikosha
    Inventors: Kuniharu Yamada, Yukio Morozumi, Keiichi Iuchi
  • Patent number: 3988181
    Abstract: An improved wafer type semiconductor may be fabricated by depositing an insulating film layer of predetermined thickness on a semiconductor substrate, preferably of silicon, depositing a substantially pure polycrystalline silicon layer of predetermined thickness on the insulating film layer, and thereafter depositing a doped oxide film layer of predetermined thickness on the substantially pure polycrystalline silicon layer, and effecting diffusion of the dopant into the pure polycrystalline silicon layer whereby a semiconductor wafer with a resistance of several meg-ohms.cm is provided.
    Type: Grant
    Filed: May 30, 1973
    Date of Patent: October 26, 1976
    Inventors: Fukashi Imai, Yukio Morozumi