Patents by Inventor Yun Chung

Yun Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12072448
    Abstract: An apparatus including a semiconductor substrate; an absorption layer coupled to the semiconductor substrate, the absorption layer including a photodiode region configured to absorb photons and to generate photo-carriers from the absorbed photons; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal, where the second control signal is different from the first control signal.
    Type: Grant
    Filed: August 22, 2023
    Date of Patent: August 27, 2024
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Che-Fu Liang
  • Publication number: 20240280407
    Abstract: Systems, apparatuses, and methods for multi-application optical sensing are provided. For example, an optical sensing apparatus can include a photodetector array, a first circuitry, and a second circuitry. The photodetector array includes a plurality of photodetectors, wherein a first subset of the plurality of photodetectors are configured as a first region for detecting a first optical signal, and a second subset of the plurality of photodetectors are configured as a second region for detecting a second optical signal. The first circuitry, coupled to the first region, is configured to perform a first function based on the first optical signal to output a first output result. The second circuitry, coupled to the second region, is configured to perform a second function based on the second optical signal to output a second output result.
    Type: Application
    Filed: May 1, 2024
    Publication date: August 22, 2024
    Inventors: Chih-Wei Yeh, Hung-Chih Chang, Yun-Chung Na, Tsung-Ting Wu, Shu-Lu Chen
  • Patent number: 12062585
    Abstract: A wafer includes a plurality of testing dies, a plurality of non-testing dies, and a dicing region. Each testing die includes: a first active area including one or more first active devices, and one or more first device pads electrically coupled to the one or more first active devices. Each non-testing die includes: a second active area including one or more second active devices, and one or more second device pads electrically coupled to the one or more second active devices. The dicing region includes one or more testing pads electrically coupled to the one or more first device pads. The one or more testing pads are arranged to receive one or more external probes for determining one or more characteristics of the one or more first active devices of the plurality of testing dies. The plurality of non-testing dies are electrically isolated from the dicing region.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: August 13, 2024
    Assignee: ARTILUX, INC.
    Inventors: Chien-Yu Chen, Yi-Chuan Teng, Yu-Hsuan Liu, Yun-Chung Na
  • Patent number: 12054612
    Abstract: A bioprintable material is provided. The bioprintable material includes a hydrogel and microfilaments mixed in the hydrogel. The hydrogel includes a first collagen. The microfilament includes a second collagen. The diameter of the microfilament is ranging from 5 microns to 200 microns. The weight ratio of the microfilaments to the first collagen is ranging from 0.01:1 to 10:1.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: August 6, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yun-Chung Teng, Jen-Huang Huang, Ying-Wen Shen, Yu-Bing Liou, Hsin-Yi Hsu, Li-Hsin Lin, Yuchi Wang, Hsin-Hsin Shen
  • Patent number: 12015384
    Abstract: A photo-current amplification apparatus is provided. The photo-current amplification apparatus includes a photo-detecting device including: a substrate; an absorption region comprising germanium, the absorption region supported by the substrate and configured to receive an optical signal and to generate a first electrical signal based on the optical signal; an emitter contact region of a conductivity type; and a collector contact region of the conductivity type, wherein at least one of the emitter contact region or the collector contact region is formed outside the absorption region, and wherein a second electrical signal collected by the collector contact region is greater than the first electrical signal generated by the absorption region.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: June 18, 2024
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Yen-Cheng Lu
  • Patent number: 12013463
    Abstract: A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1×1015 cm?3, wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.
    Type: Grant
    Filed: March 14, 2023
    Date of Patent: June 18, 2024
    Assignee: Artilux, Inc.
    Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang, Jung-Chin Chiang, Yen-Cheng Lu, Yen-Ju Lin
  • Publication number: 20240193473
    Abstract: A machine learning system and method for optical critical dimension measurement. From a training set of spectra and references, features are extracted and subjected to regression analysis to generate predictor variables. Using feature functions, inverse feature functions, a machine-learning predictor component and masks, a machine-learning optical critical dimension explainer is generated. A wafer is analyzed by metrology tools and the machine-learning predictor component calculates a critical dimension inference from measured spectra. Theoretical spectra are then generated by the predictor component based upon a modification of the critical dimension inference. The measured spectra are compared to the theoretical spectra and the fit of the measured spectra to the theoretical spectra is evaluated for acceptance. The results of the comparison and analysis is output in human readable form.
    Type: Application
    Filed: January 4, 2023
    Publication date: June 13, 2024
    Inventors: Yun-Chung Teng, Jan-Hau Chang, Hsien-Hung Chang, Ming-Hsiung Fu
  • Patent number: 12007280
    Abstract: Systems, apparatuses, and methods for multi-application optical sensing are provided. For example, an optical sensing apparatus can include a photodetector array, a first circuitry, and a second circuitry. The photodetector array includes a plurality of photodetectors, wherein a first subset of the plurality of photodetectors are configured as a first region for detecting a first optical signal, and a second subset of the plurality of photodetectors are configured as a second region for detecting a second optical signal. The first circuitry, coupled to the first region, is configured to perform a first function based on the first optical signal to output a first output result. The second circuitry, coupled to the second region, is configured to perform a second function based on the second optical signal to output a second output result.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: June 11, 2024
    Assignee: ARTILUX, INC.
    Inventors: Chih-Wei Yeh, Hung-Chih Chang, Yun-Chung Na, Tsung-Ting Wu, Shu-Lu Chen
  • Publication number: 20240178337
    Abstract: An optical sensing apparatus includes a first photo-detecting layer having a first absorption region configured to absorb light in at least a visible spectrum; a second photo-detecting layer formed over the first photo-detecting layer, the second photo-detecting layer having a second absorption region configured to absorb light in at least a mid-infrared spectrum; a first buffer layer formed over the second photo-detecting layer; and a second buffer layer formed over the first photo-detecting layer and under the second photo-detecting layer.
    Type: Application
    Filed: September 13, 2023
    Publication date: May 30, 2024
    Inventors: Yen-Ju Lin, Yun-Chung Na
  • Patent number: 11975741
    Abstract: An automated guided vehicle control system includes a commodity database, a historical shopping information acquisition module, a purchase-item prediction module, an automated guided vehicle database, an automated guided vehicle dispatch demand assessment module and an automated guided vehicle dispatch module. The historical shopping information acquisition module is utilized to retrieve the historical shopping information related to the customer, further to locate the instant predicted commodity to be purchased, and thereby to dispatch the suitable automated guided vehicle to the waiting area of the customer. Further, the historical shopping information is evaluated to provide the commodity type options for the customer to select, to locate the commodity type to be purchased, and thereby to organize the automated navigation path for the automated guided vehicle to travel along to reach the assigned commodity display area.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: May 7, 2024
    Assignee: TECO ELECTRIC & MACHINERY CO., LTD.
    Inventors: Yi-Ting Li, Cheng-Yun Chung
  • Publication number: 20240134387
    Abstract: Flight control systems, flight control laws, and aircraft are provided. An flight control system includes an input configured to receive a pitch rate command, a processor operative to receive the pitch angle command, to calculate a pitch angle saturation limit, to compare the sum of the pitch rate command, the scaled pitch rate, and the scaled pitch angle to the pitch angle saturation limit, to convert the pitch rate command system to the pitch angle command system in response to the sum exceeding the pitch angle saturation limit value to limit the pilot pitch-up pitch rate command, and to couple the pitch rate command to an aircraft control surface for the failure case of one of control surface, and the aircraft control surface configured to adjust an aircraft control surface setting in response to the pitch rate command and/or pitch angle command to protect an aircraft from being in stall condition.
    Type: Application
    Filed: December 11, 2023
    Publication date: April 25, 2024
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Jong-Yeob Shin, Gi-Yun Chung, Lakmal Kaviratna
  • Patent number: 11966077
    Abstract: A light emission apparatus includes a laser diode configured to emit a light; a laser driver electrically coupled to the laser diode, the laser driver being configured to drive the laser diode to generate the light; and an optical module arranged to receive the light emitted by the laser diode, the optical module comprising at least one optical element and being configured to adjust the light and emits a transmitting light; wherein the transmitting light emits from the optical module with an illumination angle and the optical module adjusts the light to vary the illumination angle.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: April 23, 2024
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Chien-Lung Chen, Chieh-Ting Lin, Yu-Yi Hsu, Hui-Wen Chen, Bo-Jiun Chen, Shih-Tai Chuang
  • Publication number: 20240124298
    Abstract: Microelectromechanical devices and methods of manufacture are presented. Embodiments include bonding a mask substrate to a first microelectromechanical system (MEMS) device. After the bonding has been performed, the mask substrate is patterned. A first conductive pillar is formed within the mask substrate, and a second conductive pillar is formed within the mask substrate, the second conductive pillar having a different height from the first conductive pillar. The mask substrate is then removed.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 18, 2024
    Inventors: Yun-Chung Wu, Jhao-Yi Wang, Hao Chun Yang, Pei-Wei Lee, Wen-Hsiung Lu
  • Publication number: 20240128231
    Abstract: Semiconductor devices and methods of manufacturing the semiconductor devices are presented. In embodiments the methods of manufacturing include depositing a first bonding layer on a first substrate, wherein the first substrate comprises a semiconductor substrate and a metallization layer. The first bonding layer and the semiconductor substrate are patterned to form first openings. A second substrate is bonded to the first substrate. After the bonding the second substrate, the second substrate is patterned to form second openings, at least one of the second openings exposing at least one of the first openings. After the patterning the second substrate, a third substrate is bonded to the second substrate, and after the bonding the third substrate, the third substrate is patterned to form third openings, at least one of the third openings exposing at least one of the second openings.
    Type: Application
    Filed: January 4, 2023
    Publication date: April 18, 2024
    Inventors: Fu Wei Liu, Pei-Wei Lee, Yun-Chung Wu, Bo-Yu Chiu, Szu-Hsien Lee, Mirng-Ji Lii
  • Publication number: 20240120295
    Abstract: A semiconductor chip and a manufacturing method thereof are provided. The semiconductor chip includes: an array of pillar structures, disposed on a front surface of the semiconductor chip, and respectively including a ground pillar and multiple working pillars laterally spaced apart from and substantially parallel with a line portion of the ground pillar; and dummy pillar structures, disposed on the front surface of the semiconductor chip and laterally surrounding the pillar structures. Active devices formed inside the semiconductor chip are electrically connected to the working pillar. The ground pillars of the pillar structures and the dummy pillar structures are electrically connected to form a current pathway on the front surface of the semiconductor chip.
    Type: Application
    Filed: January 30, 2023
    Publication date: April 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Hsien Lee, Yun-Chung Wu, Pei-Wei Lee, Fu Wei Liu, Jhao-Yi Wang
  • Patent number: 11946051
    Abstract: The present invention relates to a pharmaceutical composition for preventing or treating hypertrophic scars. The present inventors have found that the inhibition of expression of TXNDC5, PRRC1, S100A11, Galectin 1, Filamin A, eIF-5A, Annexin A2, and FABP5 can be a new target for improving and treating hypertrophic scars. In the present invention, TXNDC5-, PRRC1-, S100A11-, Galectin 1-, Filamin A-, eIF-5A-, Annexin A2-, and FABP5-specific siRNAs were constructed to determine the probability of treating the hypertrophic scars. As a result, the knockdown of the protein or a gene encoding the protein induces apoptosis in the hypertrophic scars and reduces collagen expression, which can be very useful in treating wounds.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: April 2, 2024
    Assignee: Tego Science Inc.
    Inventors: Saewha Jeon, Ho Yun Chung, Na Ra Oh, Yun Hee Kim, Jikhyon Han, Hyun Ah Moon
  • Patent number: 11904581
    Abstract: A method for preparing a bifunctional film, including: (a) drying a first polymer solution to form a film to form an anti-adhesion layer, and (b) drying a second polymer solution over the anti-adhesion layer to form a film to form an attachment layer. The first polymer solution includes a first hydrophobic solution and a first hydrophilic solution, and in the first polymer solution, the weight ratio of the solute of the first hydrophobic solution to the solute of the first hydrophilic solution is 1:0.01-1. Moreover, the second polymer solution is composed of a second hydrophilic solution.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: February 20, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsin-Hsin Shen, Yu-Chi Wang, Ming-Chia Yang, Yu-Bing Liou, Wei-Hong Chang, Yun-Han Lin, Hsin-Yi Hsu, Yun-Chung Teng, Chia-Jung Lu, Yi-Hsuan Lee, Jian-Wei Lin, Kun-Mao Kuo, Ching-Mei Chen
  • Patent number: 11898180
    Abstract: Compositions and methods for the preparation of high purity arginase and high efficiency preparation of monosubstituted polyethylene glycol conjugation of arginase are provided, as are methods for using arginase in combination with asparaginase to inhibit cancer cells. High purity arginase is provided by applying an initial high temperature precipitation step, followed by ion exchange to provide arginase at a purity of 90% or greater. Conjugation with either linear or branched polyethylene glycol is performed using a maleimide-derivatized polyethylene glycol at low molar excess relative to arginase and at reduced temperature. Such polyethylene glycol-derivatized arginase is useful in combination with asparaginase in inhibiting the growth of cancer cells, particularly cells that have low endogenous asparaginase expression.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: February 13, 2024
    Assignee: Avalon Polytom (HK) Limited
    Inventors: Johnson Yiu-Nam Lau, Yun Chung Leung, Kuo-Ming Yu, Yuk-Keung Yeung, Pui Shi Pang, Qui-Lim Choo
  • Publication number: 20240047397
    Abstract: A semiconductor device includes a substrate, one or more wiring layers disposed over the substrate, a passivation layer disposed over the one or more wiring layers, a first conductive layer disposed over the passivation layer, a second conductive layer disposed over the first conductive layer, an isolation structure formed in the first and second conductive layers to isolate a part of the first and second conductive layers, and a first metal pad disposed over the isolation structure and the part of the first and second conductive layers. In one or more of the foregoing or following embodiments, the semiconductor device further includes a second metal pad disposed over the second conductive layer and electrically isolated from the first metal pad.
    Type: Application
    Filed: March 20, 2023
    Publication date: February 8, 2024
    Inventors: Bo-Yu CHIU, Pei-Wei LEE, Fu Wei LIU, Yun-Chung WU, Hao Chun YANG, Chin-Yu KU, Ming-Da CHENG, Ming-Ji LII
  • Publication number: 20240034619
    Abstract: A method includes forming an interconnect structure over a semiconductor substrate. The interconnect structure includes a plurality of dielectric layers, and the interconnect structure and the semiconductor substrate are in a wafer. A plurality of metal pads are formed over the interconnect structure. A plurality of through-holes are formed to penetrate through the wafer. The plurality of through-holes include top portions penetrating through the interconnect structure, and middle portions underlying and joining to the top portions. The middle portions are wider than respective ones of the top portions. A metal layer is formed to electrically connect to the plurality of metal pads. The metal layer extends into the top portions of the plurality of through-holes.
    Type: Application
    Filed: January 9, 2023
    Publication date: February 1, 2024
    Inventors: Pei-Wei Lee, Fu Wei Liu, Szu-Hsien Lee, Yun-Chung Wu, Chin-Yu Ku, Ming-Da Cheng, Ming -Ji Lii