Patents by Inventor Yun-Hsiang Wang
Yun-Hsiang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12278272Abstract: In some embodiments, the present disclosure relates to a method of forming a transistor device. The method includes forming a source contact over a substrate, forming a drain contact over the substrate, and forming a gate contact material over the substrate. The gate contact material is patterned to define a gate structure that wraps around the source contact along a continuous and unbroken path.Type: GrantFiled: July 20, 2022Date of Patent: April 15, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Aurelien Gauthier Brun, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Yun-Hsiang Wang
-
Publication number: 20240387719Abstract: Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.Type: ApplicationFiled: July 25, 2024Publication date: November 21, 2024Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Chia-Ling Yeh, Ching Yu Chen
-
Publication number: 20240355761Abstract: In some embodiments, the present disclosure relates to a semiconductor structure. The semiconductor substrate includes a semiconductor material over a base substrate. The semiconductor substrate has one or more sidewalls forming a crack stop trench that is laterally between a central region of the semiconductor substrate and a peripheral region of the semiconductor substrate that surrounds the central region. The peripheral region of the semiconductor substrate includes a plurality of cracks.Type: ApplicationFiled: July 1, 2024Publication date: October 24, 2024Inventors: Jiun-Yu Chen, Chun-Lin Tsai, Yun-Hsiang Wang, Chia-Hsun Wu, Jiun-Lei Yu, Po-Chih Chen
-
Publication number: 20240355711Abstract: Various embodiments of the present application are directed towards an integrated circuit (IC) chip comprising a front-end-of-line (FEOL) through semiconductor-on-substrate via (TSV), as well as a method for forming the IC chip. In some embodiments, a semiconductor layer overlies a substrate. The semiconductor layer may, for example, be or comprise a group III-V semiconductor and/or some other suitable semiconductor(s). A semiconductor device is on the semiconductor layer, and a FEOL layer overlies the semiconductor device. The FEOL TSV extends through the FEOL layer and the semiconductor layer to the substrate at a periphery of the IC chip. An intermetal dielectric (IMD) layer overlies the FEOL TSV and the FEOL layer, and an alternating stack of wires and vias is in the IMD layer.Type: ApplicationFiled: July 2, 2024Publication date: October 24, 2024Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen
-
Publication number: 20240332411Abstract: In some embodiments, the present disclosure relates to a semiconductor device. The semiconductor device includes a channel layer over a base substrate and an active layer over the channel layer. A source and a drain are over the active layer. A gate is over the active layer and laterally between the source and the drain. A dielectric is over the active layer and laterally surrounds the source, the drain, and the gate. A cap structure laterally contacts the source and is disposed laterally between the gate and the source. The source vertically extends to a top of the cap structure.Type: ApplicationFiled: June 11, 2024Publication date: October 3, 2024Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
-
Patent number: 12100757Abstract: In some embodiments, the present disclosure relates to a method of forming a high electron mobility transistor (HEMT) device. The method includes forming a passivation layer over a substrate. A source contact and a drain contact are formed within the passivation layer. A part of the passivation layer is removed to form a cavity. The cavity has a lower portion formed by a first sidewall and a second sidewall of the passivation layer and an upper portion formed by the first sidewall of the passivation layer and a sidewall of the source contact. A gate structure is formed within the passivation layer between the drain contact and the cavity. A cap structure is formed within the cavity.Type: GrantFiled: July 7, 2023Date of Patent: September 24, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
-
Patent number: 12094838Abstract: In some embodiments, the present disclosure relates to a semiconductor structure. The semiconductor structure includes a stacked semiconductor substrate having a semiconductor material disposed over a base semiconductor substrate. The base semiconductor substrate has a first coefficient of thermal expansion and the semiconductor material has a second coefficient of thermal expansion that is different than the first coefficient of thermal expansion. The stacked semiconductor substrate includes one or more sidewalls defining a crack stop ring trench that continuously extends in a closed path between a central region of the stacked semiconductor substrate and a peripheral region of the stacked semiconductor substrate surrounding the central region. The peripheral region of the stacked semiconductor substrate includes a plurality of cracks and the central region is substantially devoid of cracks.Type: GrantFiled: July 20, 2023Date of Patent: September 17, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jiun-Yu Chen, Chun-Lin Tsai, Yun-Hsiang Wang, Chia-Hsun Wu, Jiun-Lei Yu, Po-Chih Chen
-
Patent number: 12046537Abstract: Various embodiments of the present application are directed towards an integrated circuit (IC) chip comprising a front-end-of-line (FEOL) through semiconductor-on-substrate via (TSV), as well as a method for forming the IC chip. In some embodiments, a semiconductor layer overlies a substrate. The semiconductor layer may, for example, be or comprise a group III-V semiconductor and/or some other suitable semiconductor(s). A semiconductor device is on the semiconductor layer, and a FEOL layer overlies the semiconductor device. The FEOL TSV extends through the FEOL layer and the semiconductor layer to the substrate at a periphery of the IC chip. An intermetal dielectric (IMD) layer overlies the FEOL TSV and the FEOL layer, and an alternating stack of wires and vias is in the IMD layer.Type: GrantFiled: July 21, 2022Date of Patent: July 23, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen
-
Publication number: 20230369245Abstract: In some embodiments, the present disclosure relates to a semiconductor structure. The semiconductor structure includes a stacked semiconductor substrate having a semiconductor material disposed over a base semiconductor substrate. The base semiconductor substrate has a first coefficient of thermal expansion and the semiconductor material has a second coefficient of thermal expansion that is different than the first coefficient of thermal expansion. The stacked semiconductor substrate includes one or more sidewalls defining a crack stop ring trench that continuously extends in a closed path between a central region of the stacked semiconductor substrate and a peripheral region of the stacked semiconductor substrate surrounding the central region. The peripheral region of the stacked semiconductor substrate includes a plurality of cracks and the central region is substantially devoid of cracks.Type: ApplicationFiled: July 20, 2023Publication date: November 16, 2023Inventors: Jiun-Yu Chen, Chun-Lin Tsai, Yun-Hsiang Wang, Chia-Hsun Wu, Jiun-Lei Yu, Po-Chih Chen
-
Publication number: 20230361208Abstract: In some embodiments, the present disclosure relates to a method of forming a high electron mobility transistor (HEMT) device. The method includes forming a passivation layer over a substrate. A source contact and a drain contact are formed within the passivation layer. A part of the passivation layer is removed to form a cavity. The cavity has a lower portion formed by a first sidewall and a second sidewall of the passivation layer and an upper portion formed by the first sidewall of the passivation layer and a sidewall of the source contact. A gate structure is formed within the passivation layer between the drain contact and the cavity. A cap structure is formed within the cavity.Type: ApplicationFiled: July 7, 2023Publication date: November 9, 2023Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
-
Patent number: 11798899Abstract: In some embodiments, the present disclosure relates to a semiconductor structure. The semiconductor structure includes a stacked semiconductor substrate having a semiconductor material disposed over a base semiconductor substrate. The base semiconductor substrate has a first coefficient of thermal expansion and the semiconductor material has a second coefficient of thermal expansion that is different than the first coefficient of thermal expansion. The stacked semiconductor substrate includes one or more sidewalls defining a crack stop ring trench that continuously extends in a closed path between a central region of the stacked semiconductor substrate and a peripheral region of the stacked semiconductor substrate surrounding the central region. The peripheral region of the stacked semiconductor substrate includes a plurality of cracks and the central region is substantially devoid of cracks.Type: GrantFiled: August 2, 2021Date of Patent: October 24, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jiun-Yu Chen, Chun-Lin Tsai, Yun-Hsiang Wang, Chia-Hsun Wu, Jiun-Lei Yu, Po-Chih Chen
-
Patent number: 11791388Abstract: In some embodiments, the present disclosure relates to a transistor device. The transistor device that includes a source contact disposed over a substrate. The source contact has a first side and an opposing second side disposed between a first end and an opposing second end. A drain contact is disposed over the substrate and is separated from the source contact along a first direction. A gate structure is disposed over the substrate between the source contact and the drain contact. The gate structure extends along the first side of the source contact facing the drain contact and also wraps around the first end and the opposing second end of the source contact.Type: GrantFiled: April 30, 2020Date of Patent: October 17, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Aurelien Gauthier Brun, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Yun-Hsiang Wang
-
Patent number: 11742419Abstract: In some embodiments, the present disclosure relates to a semiconductor device. The semiconductor device includes a channel layer disposed over a base substrate, and an active layer disposed on the channel layer. A source contact and a drain contact are over the active layer and are laterally spaced apart from one another along a first direction. A gate electrode is arranged on the active layer between the source contact and the drain contact. A passivation layer is arranged on the active layer and laterally surrounds the source contact, the drain contact, and the gate electrode. A conductive structure is electrically coupled to the source contact and is disposed laterally between the gate electrode and the source contact. The conductive structure extends along an upper surface and a sidewall of the passivation layer.Type: GrantFiled: December 1, 2021Date of Patent: August 29, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
-
Publication number: 20230261066Abstract: The present disclosure relates to a transistor device. The transistor device includes a plurality of source contacts disposed over a substrate. A plurality of gate structures are disposed over the substrate. The plurality of gate structures wrap around one or more of the plurality of source contacts in one or more closed loops. A drain contact is disposed over the substrate. The drain contact continuously wraps around one or more of the plurality of gate structures as a continuous structure. The plurality of gate structures are separated from the drain contact by a first distance and are separated from a source contact of the plurality of source contacts by a second distance. The second distance is different than the first distance.Type: ApplicationFiled: April 18, 2023Publication date: August 17, 2023Inventors: Aurelien Gauthier Brun, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Yun-Hsiang Wang
-
Patent number: 11715792Abstract: Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.Type: GrantFiled: May 12, 2020Date of Patent: August 1, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Chia-Ling Yeh, Ching Yu Chen
-
Patent number: 11664431Abstract: The present disclosure relates to a transistor device. The transistor device includes a plurality of first source/drain contacts disposed over a substrate. A plurality of gate structures are disposed over the substrate between the plurality of first source/drain contacts. The plurality of gate structures wrap around the plurality of first source/drain contacts in a plurality of closed loops. A second source/drain contact is disposed over the substrate between the plurality of gate structures. The second source/drain contact continuously wraps around the plurality of gate structures as a continuous structure.Type: GrantFiled: January 8, 2021Date of Patent: May 30, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Aurelien Gauthier Brun, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Yun-Hsiang Wang
-
Patent number: 11521915Abstract: Various embodiments of the present application are directed towards an integrated circuit (IC) chip comprising a front-end-of-line (FEOL) through semiconductor-on-substrate via (TSV), as well as a method for forming the IC chip. In some embodiments, a semiconductor layer overlies a substrate. The semiconductor layer may, for example, be or comprise a group III-V semiconductor and/or some other suitable semiconductor(s). A semiconductor device is on the semiconductor layer, and a FEOL layer overlies the semiconductor device. The FEOL TSV extends through the FEOL layer and the semiconductor layer to the substrate at a periphery of the IC chip. An intermetal dielectric (IMD) layer overlies the FEOL TSV and the FEOL layer, and an alternating stack of wires and vias is in the IMD layer.Type: GrantFiled: July 23, 2020Date of Patent: December 6, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen
-
Publication number: 20220376086Abstract: Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.Type: ApplicationFiled: August 5, 2022Publication date: November 24, 2022Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Chia-Ling Yeh, Ching Yu Chen
-
Publication number: 20220375875Abstract: In some embodiments, the present disclosure relates to a semiconductor structure. The semiconductor structure includes a stacked semiconductor substrate having a semiconductor material disposed over a base semiconductor substrate. The base semiconductor substrate has a first coefficient of thermal expansion and the semiconductor material has a second coefficient of thermal expansion that is different than the first coefficient of thermal expansion. The stacked semiconductor substrate includes one or more sidewalls defining a crack stop ring trench that continuously extends in a closed path between a central region of the stacked semiconductor substrate and a peripheral region of the stacked semiconductor substrate surrounding the central region. The peripheral region of the stacked semiconductor substrate includes a plurality of cracks and the central region is substantially devoid of cracks.Type: ApplicationFiled: August 2, 2021Publication date: November 24, 2022Inventors: Jiun-Yu Chen, Chun-Lin Tsai, Yun-Hsiang Wang, Chia-Hsun Wu, Jiun-Lei Yu, Po-Chih Chen
-
Publication number: 20220359681Abstract: In some embodiments, the present disclosure relates to a method of forming a transistor device. The method includes forming a source contact over a substrate, forming a drain contact over the substrate, and forming a gate contact material over the substrate. The gate contact material is patterned to define a gate structure that wraps around the source contact along a continuous and unbroken path.Type: ApplicationFiled: July 20, 2022Publication date: November 10, 2022Inventors: Aurelien Gauthier Brun, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Yun-Hsiang Wang