Patents by Inventor Yun-Wei Cheng

Yun-Wei Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956553
    Abstract: An image sensor device has a first number of first pixels disposed in a substrate and a second number of second pixels disposed in the substrate. The first number is substantially equal to the second number. A light-blocking structure disposed over the first pixels and the second pixels. The light-blocking structure defines a plurality of first openings and second openings through which light can pass. The first openings are disposed over the first pixels. The second openings are disposed over the second pixels. The second openings are smaller than the first openings. A microcontroller is configured to turn on different ones of the second pixels at different points in time.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20240113237
    Abstract: The present disclosure provides a semiconductor structure and a method of manufacturing the same. The semiconductor structure includes a sensing device, a solar cell, and an interconnecting structure. The solar cell is disposed above the sensing device and is electrically connected to the sensing device. The interconnecting structure is disposed between the sensing device and the solar cell and has a first surface facing the solar cell and a second surface facing the sensing devices. The interconnecting structure comprises a first energy storage component and a second energy storage component. The first energy storage component is disposed closer to the first surface of the interconnecting structure than the second energy storage component.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 4, 2024
    Inventors: FENG-CHIEN HSIEH, YUN-WEI CHENG, KUO-CHENG LEE, CHENG-MING WU, PING KUAN CHANG
  • Publication number: 20240096923
    Abstract: The image sensing structure includes a first semiconductor device and a second semiconductor device. The first semiconductor device includes at least one first unit. The at least one first unit includes a plurality of first interconnects adjacent to the top side of the first semiconductor device, a row selector, and an analog-to-digital converter (ADC) connected to the row selectors. The second semiconductor device includes at least one second unit. The at least one second unit includes a photodiode facing the top side of the second semiconductor device. The photodiode is configured to receive the light incident on the top side of the second semiconductor device. The top side of the first semiconductor device is bonded to the bottom side of the second semiconductor device.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 21, 2024
    Inventors: FENG-CHIEN HSIEH, YUN-WEI CHENG, WEI-LI HU, KUO-CHENG LEE, CHENG-MING WU
  • Patent number: 11930663
    Abstract: A display panel includes a first substrate, pixel structures, a first common pad, a second substrate, a second common electrode, a display medium and a conductive particle. The pixel structures are disposed on an active area of the first substrate. The first common pad is disposed on a peripheral area of the first substrate, and is electrically connected to first common electrodes of the pixel structures. The second common electrode is disposed on the second substrate. The conductive particle is disposed on the first common pad, and is electrically connected to the first common pad and the second common electrode. The conductive particle includes a core and a conductive film disposed on a surface of the core, where the conductive film has a main portion and raised portions, and a film thickness of each of the raised portions is greater than a film thickness of the main portion.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: March 12, 2024
    Assignee: Au Optronics Corporation
    Inventors: Bo-Chen Chen, Yun-Ru Cheng, Ya-Ling Hsu, Chia-Hsuan Pai, Cheng-Wei Huang, Wei-Shan Chao
  • Publication number: 20240079422
    Abstract: A pixel array includes octagon-shaped pixel sensors and a combination of visible light pixel sensors (e.g., red, green, and blue pixel sensors) and near infrared (NIR) pixel sensors. The color information obtained by the visible light pixel sensors and the luminance obtained by the NIR pixel sensors may be combined to increase the low-light performance of the pixel array, and to allow for low-light color images in low-light applications. The octagon-shaped pixel sensors may be interspersed in the pixel array with square-shaped pixel sensors to increase the utilization of space in the pixel array, and to allow for pixel sensors in the pixel array to be sized differently. The capability to accommodate different sizes of visible light pixel sensors and NIR pixel sensors permits the pixel array to be formed and/or configured to satisfy various performance parameters.
    Type: Application
    Filed: April 27, 2023
    Publication date: March 7, 2024
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Kuo-Cheng LEE, Cheng-Ming WU
  • Publication number: 20240047487
    Abstract: An image sensor device includes a semiconductor substrate having a first side, and a trench isolation structure dividing the substrate into sensing units. Each sensing unit includes a first gate electrode and a second gate electrode disposed on the first side, and a first pixel and a second pixel extending into the substrate and disposed between the first and second gate electrodes from a top view perspective. The first pixel is disposed under the second pixel and electrically connected to the first gate electrode, and the second pixel is electrically connected to the second gate electrode. A method of manufacturing a semiconductor structure includes forming a trench isolation in a semiconductor substrate; forming a first pixel in the substrate; forming a second pixel in the substrate over the first pixel; forming a first gate structure over the substrate; and forming a second gate structure over the second pixel.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 8, 2024
    Inventors: FENG-CHIEN HSIEH, YUN-WEI CHENG, WEI-LI HU, KUO-CHENG LEE, CHENG-MING WU
  • Publication number: 20240038804
    Abstract: An image sensor device is provided. The image sensor device includes a substrate having a front surface, a back surface, and a light-sensing region. The image sensor device includes a first isolation structure extending from the front surface into the substrate. The first isolation structure surrounds a first portion of the light-sensing region, the first isolation structure has an etch stop layer, the etch stop layer has an end portion, and the end portion has an H-like shape. The image sensor device includes a second isolation structure extending into the substrate from the back surface to the end portion. The second isolation structure surrounds a second portion of the light-sensing region.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 1, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Wei CHENG, Chun-Hao CHOU, Kuo-Cheng LEE, Hsun-Ying HUANG
  • Publication number: 20240021009
    Abstract: An image sensing apparatus is disclosed. The image sensing apparatus includes a pixel array and micro lenses disposed above the pixel array. The pixel array includes sensing pixels configured to capture minutia points of a fingerprint and positioning pixels configured to provide positioning codes.
    Type: Application
    Filed: March 22, 2023
    Publication date: January 18, 2024
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Kuo-Cheng Lee, Cheng-Ming Wu, Wei-Li Hu
  • Publication number: 20240006458
    Abstract: An image sensor device is disclosed which includes a semiconductor layer having a first surface and a second surface, where the second surface is opposite to the first surface. The device includes a conductive structure disposed over the first surface, with a dielectric layer disposed between the conductive structure and the first surface. The device includes a first dielectric layer disposed over the second surface of the semiconductor substrate. The device includes a second dielectric layer disposed over the first dielectric layer. The device includes a color filter layer disposed over the second dielectric layer. In some embodiments, the thickness, refractive index, or both of the first dielectric layer and the thickness, refractive index, or both of the second dielectric layer may be collectively determined to cause incident radiation passing through the first dielectric layer and the second dielectric layer and to the plurality of pixels to have destructive interference.
    Type: Application
    Filed: August 4, 2023
    Publication date: January 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Feng-Chien Hsieh, Chia-Yen Hsu, Yun-Wei Cheng, Wei-Li Hu, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20230402478
    Abstract: Apparatus and methods for sensing long wavelength light are described herein. A semiconductor device includes: a carrier; a device layer on the carrier; a semiconductor layer on the device layer, and an insulation layer on the semiconductor layer. The semiconductor layer includes isolation regions and pixel regions. The isolation regions are or include a first semiconductor material. The pixel regions are or include a second semiconductor material that is different from the first semiconductor material.
    Type: Application
    Filed: August 9, 2023
    Publication date: December 14, 2023
    Inventors: Yun-Wei CHENG, Chun-Hao Chou, Kuo-Cheng Lee, Ying-Hao Chen
  • Publication number: 20230402330
    Abstract: A method of manufacturing a semiconductor wafer is disclosed. The method includes exposing the semiconductor wafer to one or more dopant species to form one or more first implant layers on the semiconductor wafer, testing one or more geometric parameter values of the formed one or more first implant layers, after testing the one or more geometric parameter values, conditionally exposing the semiconductor wafer to one or more dopant species to form one or more additional implant layers on the semiconductor wafer, after forming the one or more additional implant layers, conditionally forming one or more additional circuit layers on the semiconductor wafer to form a plurality of functional electronic circuits on the semiconductor wafer, and conditionally testing the semiconductor wafer with a wafer acceptance test (WAT) operation.
    Type: Application
    Filed: August 7, 2023
    Publication date: December 14, 2023
    Inventors: Feng-Chien Hsieh, Kuo-Cheng Lee, Yun-Wei Cheng, Chun-Hao Lin, Ting-Hao Chang
  • Publication number: 20230403474
    Abstract: An image sensor device has a first number of first pixels disposed in a substrate and a second number of second pixels disposed in the substrate. The first number is substantially equal to the second number. A light-blocking structure disposed over the first pixels and the second pixels. The light-blocking structure defines a plurality of first openings and second openings through which light can pass. The first openings are disposed over the first pixels. The second openings are disposed over the second pixels. The second openings are smaller than the first openings. A microcontroller is configured to turn on different ones of the second pixels at different points in time.
    Type: Application
    Filed: August 3, 2023
    Publication date: December 14, 2023
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20230402488
    Abstract: A pixel sensor may include a vertically arranged (or vertically stacked) photodiode region and floating diffusion region. The vertical arrangement permits the photodiode region to occupy a larger area of a pixel sensor of a given size relative to a horizontal arrangement, which increases the area in which the photodiode region can collect photons. This increases performance of the pixel sensor and permits the overall size of the pixel sensor to be reduced. Moreover, the transfer gate may surround at least a portion of the floating diffusion region and the photodiode region, which provides a larger gate switching area relative to a horizontal arrangement. The increased gate switching area may provide greater control over the transfer of the photocurrent and/or may reduce switching delay for the pixel sensor.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 14, 2023
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Kuo-Cheng LEE, Cheng-Ming WU
  • Publication number: 20230402484
    Abstract: The present disclosure describes an image sensor device and a method for forming the same. The image sensor device can include a semiconductor layer. The semiconductor layer can include a first surface and a second surface. The image sensor device can further include an interconnect structure formed over the first surface of the semiconductor layer, first and second radiation sensing regions formed in the second surface of the semiconductor layer, a metal stack formed over the second radiation sensing region, and a passivation layer formed through the metal stack and over a top surface of the first radiation sensing region. The metal stack can be between the passivation layer and an other top surface of the second radiation sensing region.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 14, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Chien HSIEH, Hsin-Chi Chen, Kuo-Cheng Lee, Yun-Wei Cheng
  • Publication number: 20230402482
    Abstract: The present disclosure provides an integrated circuit (IC) structure with a solar cell and an image sensor array. An integrated structure according to the present disclosure includes a first substrate including a plurality of photodiodes, an interconnect structure disposed on the first substrate, a first bonding layer disposed on the interconnect structure, a second bonding layer disposed on the first bonding layer, a second substrate disposed on the second bonding layer, and a transparent conductive oxide layer disposed on the second substrate.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 14, 2023
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Ping Kuan Chang, Kuo-Cheng Lee, Cheng-Ming Wu
  • Patent number: 11843013
    Abstract: The present disclosure is directed to a method of forming a polarization grating structure (e.g., polarizer) as part of a grid structure of a back side illuminated image sensor device. For example, the method includes forming a layer stack over a semiconductor layer with radiation-sensing regions. Further, the method includes forming grating elements of one or more polarization grating structures within a grid structure, where forming the grating elements includes (i) etching the layer stack to form the grid structure and (ii) etching the layer stack to form grating elements oriented to a polarization angle.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: December 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee
  • Patent number: 11837614
    Abstract: A subpixel including at least one second-conductivity-type pinned photodiode layer that forms a p-n junction with a substrate semiconductor layer, at least one floating diffusion region, and at least one transfer gate stack structure. The at least one transfer gate stack structure may at least partially laterally surround the at least one second-conductivity-type pinned photodiode layer with a total azimuthal extension angle in a range from 240 degrees to 360 degrees around a geometrical center of the second-conductivity-type pinned photodiode layer. The at least one transfer gate stack structure may include multiple edges that overlie different segments of a periphery of the at least one second-conductivity-type pinned photodiode layer, and the floating diffusion region includes a portion located between the first edge and the second edge. In addition, multiple transfer gate stack structures and multiple floating diffusion regions may be present in the subpixel.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: December 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Wei-Li Hu, Kuo-Cheng Lee, Hsin-Chi Chen
  • Patent number: 11837619
    Abstract: A semiconductor arrangement includes a photodiode extending to a first depth from a first side in a substrate. An isolation structure laterally surrounds the photodiode and includes a first well that extends into a first side of the substrate. A deep trench isolation extends into a second side of the substrate and at least a portion of the deep trench isolation underlies the first well.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Kuo-Cheng Lee, Cheng-Ming Wu
  • Publication number: 20230387171
    Abstract: A pixel sensor may include a deep trench isolation (DTI) structure that extends the full height of a substrate in which a photodiode of the pixel sensor is included. Incident light entering the pixel sensor at a non-orthogonal angle is absorbed or reflected by the DTI structure along the full height of the substrate. In this way, the DTI structure may reduce, minimize, and/or prevent the incident light from traveling through the pixel sensor and into an adjacent pixel sensor along the full height of the substrate. This may increase the spatial resolution of an image sensor in which the DTI structure is included, may increase the overall sensitivity of the image sensor, may reduce and/or prevent color mixing between pixel sensors of the image sensor, and/or may decrease image noise after color correction.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Kuo-Cheng LEE, Cheng-Ming WU
  • Publication number: 20230387152
    Abstract: A pixel sensor includes a transfer fin field effect transistor (finFET) to transfer a photocurrent from a photodiode to a drain region. The transfer finFET includes at least a portion of the photodiode, an extension region associated with the drain region, a plurality of channel fins, and a transfer gate at least partially surrounding the channel fins to control the operation of the transfer finFET. In the transfer finFET, the transfer gate is wrapped around (e.g., at least three sides) of each of the channel fins, which provides a greater surface area over which the transfer gate is enabled to control the transfer of electrons. The greater surface area results in greater control over operation of the finFET, which may reduce switching times of the pixel sensor (which enables faster pixel sensor performance) and may reduce leakage current of the pixel sensor relative to a planar transfer transistor.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Wei-Li HU, Kuo-Cheng LEE, Cheng-Ming WU