Patents by Inventor Yunbing Wang

Yunbing Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140228930
    Abstract: Stent scaffolds that include a polymeric structure or structures bonded to the scaffold and extending along their length are disclosed. The polymeric structure extends across some or all of the gaps in struts along the length of the scaffold. Segmented scaffolds are also disclosed that include two or more axial segments arranged end to end not connected by link sruts.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 14, 2014
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: John E. Papp, Mikael Trollsas, Dariush Davalian, Yunbing Wang, Syed Faiyaz Ahmed Hossainy
  • Patent number: 8802126
    Abstract: This invention relates to blends of high, optionally medium, and low molecular weight polyesters where at least the low molecular weight polyester is substituted with an acidic moiety, the biodegradation of the blends being controllable by selection of the mean molecular weigh of each fraction, the quantity of each fraction in the blend and the amount and pKa of the acidic moiety(ies).
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: August 12, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Yunbing Wang
  • Patent number: 8752265
    Abstract: A medical device-includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold is crimped to the balloon by a process that includes inflating the delivery balloon during a diameter reduction to improve scaffold retention. A crimping temperature is maintained at about the onset of glass transition of the polymer material to facilitate more rapid stabilization of mechanical properties in the scaffold following crimping.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: June 17, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Yunbing Wang
  • Patent number: 8752266
    Abstract: A medical device-includes a polymer stent crimped to a catheter having an expansion balloon. The stent is crimped to the balloon by a process that includes heating the stent to a temperature below the polymer's glass transition temperature to improve stent retention without adversely affecting the mechanical characteristics of the stent when later deployed to support a body lumen.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: June 17, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Kevin F. Jow, Arlene Sucy Yang, Yunbing Wang, Kathleen W. Yan
  • Publication number: 20140157567
    Abstract: A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. A single piece sheath is placed over the scaffold immediately following crimping of the scaffold to the balloon. The single piece sheath is replaced by a two-piece sheath, which is removed prior to performing a medical procedure using the medical device.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, Jhoan Bayogo
  • Patent number: 8747728
    Abstract: A polymer endoprosthesis is fabricated by a combination of injection molding and blow molding which form a tubular substrate of polymer material, followed by laser cutting, crimping and sterilization. After the injection and blow molding processes, a subtractive process is performed on the tubular substrate to transform it into a stent having a network of stent struts. The tubular substrate can be made in an injection mold and blow mold which are attached to each other. The transition from injection molding and blow molding can be performed while the injection molded substrate remains at a temperature at or above Tg of the polymer material.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: June 10, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, James Oberhauser
  • Patent number: 8739384
    Abstract: A balloon is inflated from a collapsed configuration, then deflated. A polymeric stent is then disposed over the deflated balloon and the stent crimped to the balloon.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: June 3, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, Gregory Kilinski, Luis Vazquez
  • Publication number: 20140128959
    Abstract: Stents and methods of manufacturing a stents with enhanced fracture toughness are disclosed.
    Type: Application
    Filed: October 9, 2013
    Publication date: May 8, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Bin Huang, Timothy A. Limon, Vincent J. Gueriguian, Anthony J. Abbate, Klaus Kleine, Stephen Schaible, Jonathan P. Durcan, Thierry Glauser, Bethany Steichen, James Oberhauser, Manish Gada, Lothar Kleiner, Mary Beth Kossuth, Yunbing Wang, Daniel Castro, David Wrolstad
  • Patent number: 8709070
    Abstract: Methods of controlling the degradation profile of a biodegradable stent scaffolding are disclosed. A bioabsorbable scaffold having a plurality of particles incorporated into the scaffolding that accelerate the absorption of the scaffolding after an induction time during degradation is disclosed.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: April 29, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, James Oberhauser
  • Publication number: 20140110885
    Abstract: Methods are disclosed for conditioning a polymeric stent after sterilization, and/or after crimping and before packaging, such that the properties of the polymeric stent fall within a narrower range of values. The stent is exposed to a controlled temperature at or above ambient for a period of time after radiation sterilization and/or after crimping and before sterilization. As a result, the polymeric stent properties, particularly radial strength and number-average molecular weight of the polymer of the polymeric stent, fall within a narrower range.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, Xiao Ma, Fuh-Wei Tang, Ni Ding
  • Publication number: 20140114394
    Abstract: Stents and methods of manufacturing a stents with enhanced fracture toughness are disclosed.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 24, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Bin Huang, Timothy A. Limon, Vincent J. Gueriguian, Anthony J. Abbate, Klaus Kleine, Stephen Schaible, Jonathan P. Durcan, Thierry Glauser, Bethany Steichen, James Oberhauser, Manish Gada, Lothar Kleiner, Mary Beth Kossuth, Yunbing Wang, Daniel Castro, David Wrolstad
  • Patent number: 8703038
    Abstract: Methods of fabricating an implantable medical devices such as stents made from biodegradable polymers are disclosed that reduce or minimize chain scission and monomer generation during processing steps. The method includes processing a poly(L-lactide) resin having an number average molecular weight between 150 to 200 kD in an extruder in a molten state. A poly(L-lactide) tube is formed from the processed resin and a stent is fabricated from the tube. The number average molecular weight of the poly(L-lactide) of the stent after sterilization is 70 to 100 kD.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: April 22, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, James Oberhauser
  • Publication number: 20140107762
    Abstract: Stents and methods of manufacturing a stents with enhanced fracture toughness are disclosed.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Bin Huang, Timothy A. Limon, Vincent J. Gueriguian, Anthony J. Abbate, Klaus Kleine, Stephen Schaible, Jonathan P. Durcan, Thierry Glauser, Bethany Steichen, James Oberhauser, Manish Gada, Lothar Kleiner, Mary Beth Kossuth, Yunbing Wang, Daniel Castro, David Wrolstad
  • Publication number: 20140107761
    Abstract: Stents and methods of manufacturing a stents with enhanced fracture toughness are disclosed.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Bin Huang, Timothy A. Limon, Vincent J. Gueriguian, Anthony J. Abbate, Klaus Kleine, Stephen Schaible, Jonathan P. Durcan, Thierry Glauser, Bethany Steichen, James Oberhauser, Manish Gada, Lothar Kleiner, Mary Beth Kossuth, Yunbing Wang, Daniel Castro, David Wrolstad
  • Publication number: 20140096357
    Abstract: A medical device-includes a scaffold crimped to a catheter having an expansion balloon. The scaffold is crimped to the balloon by a process that includes one or more balloon pressurization steps. The balloon pressurization steps are selected to enhance scaffold retention to the balloon, maintain a relatively uniform arrangement of balloon folds about the inner surface of the crimped scaffold so that the scaffold expands in a uniform manner when the balloon is inflated, and to avoid any possible over-stretching of balloon material.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventor: Yunbing Wang
  • Publication number: 20140084515
    Abstract: Methods of fabricating a polymeric implantable device with improved fracture toughness through annealing, nucleating agents, or both are disclosed herein. A polymeric construct that is completely amorphous or that has a very low crystallinity is annealed with no or substantially no crystal growth to increase nucleation density. Alternatively, the polymer construct includes nucleating agent. The crystallinity of the polymer construct is increased with a high nucleation density through an increase in temperature, deformation, or both. An implantable medical device, such as a stent, can be fabricated from the polymer construct after the increase in crystallinity.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 27, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, Lothar W. Kleiner
  • Publication number: 20140081417
    Abstract: Stent scaffolds comprising branched biocompatible polymers are disclosed.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, David C. Gale, Bin Huang, Mikael O. Trollsas, Thierry Glauser, Florian Ludwig
  • Publication number: 20140052235
    Abstract: A balloon is inflated from a collapsed configuration, then deflated. A polymeric stem is then disposed over the deflated balloon and the stent crimped to the balloon.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 20, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, Gregory Kilinski, Luis Vazquez
  • Publication number: 20140044860
    Abstract: Methods for increasing the fracture resistance of a polymer stent's drug-polymer coating and scaffolding including applying a coating and crimping using techniques that increase the resistance to fracture in the coating layer and scaffolding and scaffolding.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Dan Castro, Yunbing Wang
  • Publication number: 20140046006
    Abstract: Implantable medical devices fabricated from branched polymers are disclosed.
    Type: Application
    Filed: July 12, 2013
    Publication date: February 13, 2014
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Yunbing Wang, David C. Gale, Bin Huang, Mikael O. Trollsas, Thierry Glauser, Florian Ludwig