Patents by Inventor Yung-Ho Chuang

Yung-Ho Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050259318
    Abstract: A relatively high spectral bandwidth objective employed for use in imaging a specimen and method for imaging a specimen is provided. The objective comprises a lens group having at least one focusing lens configured to receive light energy and form an intermediate image, at least one field lens oriented to receive the intermediate image and provide intermediate light energy, and a Mangin mirror arrangement positioned to receive the intermediate light energy and apply light energy to the specimen. The objective may provide, in certain instances, a spectral bandwidth up to approximately 193 to 266 nanometers and can provide numerical apertures in excess of 0.9. Elements are less than 100 millimeters in diameter and may fit within a standard microscope. The field lens may comprise more than one lens and may be formed of a material different from at least one other lens in the objective.
    Type: Application
    Filed: July 29, 2004
    Publication date: November 24, 2005
    Inventors: J. Armstrong, Yung-Ho Chuang, David Shafer
  • Patent number: 6956694
    Abstract: An ultraviolet (UV) catadioptric imaging system, with broad spectrum correction of primary and residual, longitudinal and lateral, chromatic aberrations for wavelengths extending into the deep UV (as short as about 0.16 ?m), comprises a focusing lens group with multiple lens elements that provide high levels of correction of both image aberrations and chromatic variation of aberrations over a selected wavelength band, a field lens group formed from lens elements with at least two different refractive materials, such as silica and a fluoride glass, and a catadioptric group including a concave reflective surface providing most of the focusing power of the system and a thick lens providing primary color correction in combination with the focusing lens group. The field lens group is located near the intermediate image provided by the focusing lens group and functions to correct the residual chromatic aberrations. The system is characterized by a high numerical aperture (typ. greater than 0.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: October 18, 2005
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Publication number: 20050152027
    Abstract: A reduced size catadioptric inspection system employing a catadioptric objective and immersion substance is disclosed. The objective may be employed with light energy having a wavelength in the range of approximately 190 nanometers through the infrared light range, and can provide numerical apertures in excess of 0.9. Elements are less than 100 millimeters in diameter and may fit within a standard microscope. The objective comprises a focusing lens group, a field lens, a Mangin mirror arrangement, and an immersion substance or liquid between the Mangin mirror arrangement and the specimen. A variable focal length optical system for use with the objective in the catadioptric inspection system is also disclosed.
    Type: Application
    Filed: March 29, 2004
    Publication date: July 14, 2005
    Inventors: J. Armstrong, Yung-Ho Chuang, David Shafer
  • Publication number: 20050153559
    Abstract: A high performance objective having very small central obscuration, an external pupil for apertureing and Fourier filtering, loose manufacturing tolerances, large numerical aperture, long working distance, and a large field of view is presented. The objective is preferably telecentric. The design is ideally suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths in the UV to VUV spectral range.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 14, 2005
    Inventors: David Shafer, Yung-Ho Chuang
  • Publication number: 20050111081
    Abstract: A design for inspecting specimens, such as photomasks, for unwanted particles and features such as pattern defects is provided. The system provides no central obscuration, an external pupil for aperturing and Fourier filtering, and relatively relaxed manufacturing tolerances, and is suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths below 365 nm. In many instances, the lenses used may be fashioned or fabricated using a single material. Multiple embodiments of the objective lensing arrangement are disclosed, all including at least one small fold mirror and a Mangin mirror. The system is implemented off axis such that the returning second image is displaced laterally from the first image so that the lateral separation permits optical receipt and manipulation of each image separately.
    Type: Application
    Filed: October 4, 2004
    Publication date: May 26, 2005
    Inventors: David Shafer, Yung-Ho Chuang, J. Armstrong
  • Publication number: 20050057796
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Application
    Filed: October 4, 2004
    Publication date: March 17, 2005
    Inventors: David Shafer, Yung-Ho Chuang, Bin-Ming Tsai
  • Patent number: 6842298
    Abstract: A high performance objective having very small central obscuration, an external pupil for apertureing and Fourier filtering, loose manufacturing tolerances, large numerical aperture, long working distance, and a large field of view is presented. The objective is preferably telecentric. The design is ideally suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths in the UV to VUV spectral range.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: January 11, 2005
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang
  • Publication number: 20040240047
    Abstract: A system and method for inspection is disclosed. The design includes an objective employed for use with light energy having a wavelength in various ranges, including approximately 266 to 1000 nm, 157 nm through infrared, and other ranges. The objective comprises a focusing lens group comprising at least one focusing lens configured to receive light, a field lens oriented to receive focused light energy from said focusing lens group and provide intermediate light energy, and a Mangin mirror arrangement positioned to receive the intermediate light energy from the field lens and form controlled light energy. Each focusing lens has a reduced diameter, such as a diameter of less than approximately 100 mm, and a maximum corrected field size of approximately 0.15 mm. An immersion substance, such as oil, water, or silicone gel, may be employed prior to passing controlled light energy to the specimen inspected.
    Type: Application
    Filed: August 22, 2003
    Publication date: December 2, 2004
    Inventors: David R. Shafer, Yung-Ho Chuang, J. Joseph Armstrong
  • Publication number: 20040218262
    Abstract: A system for use with a reduced size catadioptric objective is disclosed. The system including the reduced size objective includes various subsystems to allow enhanced imaging, the subsystems including illumination, imaging, autofocus, positioning, sensor, data acquisition, and data analysis. The objective may be employed with light energy having a wavelength in the range of approximately 190 nanometers through the infrared light range, and elements of the objective are less than 100 mm in diameter. The objective comprises a focusing lens group and at least one field lens oriented to receive focused light energy from the focusing lens group and provide intermediate light energy. The objective also includes a Mangin mirror arrangement. The design imparts controlled light energy with a numerical aperture in excess of 0.65 and up to approximately 0.90 to a specimen for imaging purposes, and the design may be employed in various environments.
    Type: Application
    Filed: July 7, 2003
    Publication date: November 4, 2004
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, David R. Shafer
  • Patent number: 6801358
    Abstract: A design for inspecting specimens, such as photomasks, for unwanted particles and features such as pattern defects is provided. The system provides no central obscuration, an external pupil for aperturing and Fourier filtering, and relatively relaxed manufacturing tolerances, and is suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths below 365 nm. In many instances, the lenses used may be fashioned or fabricated using a single material. Multiple embodiments of the objective lensing arrangement are disclosed, all including at least one small fold mirror and a Mangin mirror. The system is implemented off axis such that the returning second image is displaced laterally from the first image so that the lateral separation permits optical receipt and manipulation of each image separately.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: October 5, 2004
    Assignee: KLA-Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, J. Joseph Armstrong
  • Patent number: 6801357
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: October 5, 2004
    Assignee: KLA - Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Publication number: 20040165621
    Abstract: A system and method for reducing peak power of a laser pulse and reducing speckle contrast of a single pulse comprises a plurality of beamsplitters, mirrors and delay elements oriented to split and delay a pulse or pulses transmitted from a light emitting device. The design provides the ability to readily divide the pulse into multiple pulses by delaying the components relative to one another. Reduction of speckle contrast entails using the same or similar components to the power reduction design, reoriented to orient received energy such that the angles between the optical paths are altered such that the split or divided light energy components strike the target at different angles or different positions. An alternate embodiment for reducing speckle contrast is disclosed wherein a single pulse is passed in an angular orientation through a grating to create a delayed portion of the pulse relative to the leading edge of the pulse.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 26, 2004
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong
  • Publication number: 20040165257
    Abstract: A reduced size catadioptric objective and system is disclosed. The objective may be employed with light energy having a wavelength in the range of approximately 190 nanometers through the infrared light range. Elements are less than 100 mm in diameter. The objective comprises a focusing lens group configured to receive the light energy and comprising at least one focusing lens. The objective further comprises at least one field lens oriented to receive focused light energy from the focusing lens group and provide intermediate light energy. The objective also includes a Mangin mirror arrangement positioned to receive the intermediate light energy from the field lens and form controlled light energy for transmission to a specimen. The Mangin mirror arrangement imparts controlled light energy with a numerical aperture in excess of 0.65 and up to approximately 0.90, and the design may be employed in various environments.
    Type: Application
    Filed: May 7, 2003
    Publication date: August 26, 2004
    Inventors: David R. Shafer, Yung-Ho Chuang, J. Joseph Armstrong
  • Publication number: 20040095573
    Abstract: A system and method for inspecting a specimen, such as a semiconductor wafer, including illuminating at least a portion of the specimen using an excimer source using at least one relatively intense wavelength from the source, detecting radiation received from the illuminated portion of the specimen, analyzing the detected radiation for potential defects present in the specimen portion.
    Type: Application
    Filed: March 12, 2002
    Publication date: May 20, 2004
    Inventors: Bin-Ming Benjamin Tsai, Yung-Ho Chuang, J. Joseph Armstrong, David Lee Brown
  • Patent number: 6693930
    Abstract: A system and method for reducing peak power of a laser pulse and reducing speckle contrast of a single pulse comprises a plurality of beamsplitters, mirrors and delay elements oriented to split and delay a pulse or pulses transmitted from a light emitting device. The design provides the ability to readily divide the pulse into multiple pulses by delaying the components relative to one another. Reduction of speckle contrast entails using the same or similar components to the power reduction design, reoriented to orient received energy such that the angles between the optical paths are altered such that the split or divided light energy components strike the target at different angles or different positions. An alternate embodiment for reducing speckle contrast is disclosed wherein a single pulse is passed in an angular orientation through a grating to create a delayed portion of the pulse relative to the leading edge of the pulse.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: February 17, 2004
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong
  • Publication number: 20030197923
    Abstract: A system for multiple mode imaging is disclosed herein. The system is a catadioptric system preferably having an NA greater than 0.9, highly corrected for low and high order monochromatic aberrations. This system uses unique illumination entrances and can collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. The catadioptric group includes a focusing mirror and a refractive lens/mirror element. The focusing optics group is proximate to an intermediate image, and corrects for aberrations from the catadioptric group, especially high order spherical aberration and coma. The tube lens group forms the magnified image. Different tube lens groups can be used to obtain different magnifications, such as a varifocal tube lens group to continuously change magnifications from 20 to 200×. Multiple imaging modes are possible by varying the illumination geometry and apertures at the pupil plane.
    Type: Application
    Filed: May 5, 2003
    Publication date: October 23, 2003
    Inventors: Yung-Ho Chuang, David Shafer, Bin-Ming B. Tsai, J. Joseph Armstrong
  • Patent number: 6560011
    Abstract: A system for multiple mode imaging is disclosed. The catadioptric system has an NA greater than 0.65, and preferably greater than 0.9, highly corrected for low and high order monochromatic aberrations. The system employs unique illumination entrances and optics to collect reflected, diffracted, and scattered light over a range of angles. Multiple imaging modes are possible by varying the illumination geometry and apertures at the pupil plane. Illumination can enter the catadioptric optical system using an auxiliary beamsplitter or mirror, or through the catadioptric elements at any angle from 0 to 85 degrees from vertical. The system may employ a relayed pupil plane, used to select different imaging modes, provide simultaneous operation of different imaging modes, Fourier filtering, and other pupil shaping operations.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: May 6, 2003
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, David Shafer, Bin-Ming B. Tsai, J. Joseph Armstrong
  • Publication number: 20030076583
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 24, 2003
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 6512631
    Abstract: A design for inspecting specimens, such as photomasks, for unwanted particles and features such as pattern defects is provided. The system provides no central obscuration, an external pupil for aperturing and Fourier filtering, and relatively relaxed manufacturing tolerances, and is suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths below 365 nm. In many instances, the lenses used may be fashioned or fabricated using a single material. Multiple embodiments of the objective lensing arrangement are disclosed, all including at least one small fold mirror and a Mangin mirror. The system is implemented off axis such that the returning second image is displaced laterally from the first image so that the lateral separation permits optical receipt and manipulation of each image separately.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: January 28, 2003
    Assignee: KLA-Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, J. Joseph Armstrong
  • Publication number: 20030002147
    Abstract: A system for multiple mode imaging is disclosed herein. The system is a catadioptric system preferably having an NA greater than 0.9, highly corrected for low and high order monochromatic aberrations. This system uses unique illumination entrances and can collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. The catadioptric group includes a focusing mirror and a refractive lens/mirror element. The focusing optics group is proximate to an intermediate image, and corrects for aberrations from the catadioptric group, especially high order spherical aberration and coma. The tube lens group forms the magnified image. Different tube lens groups can be used to obtain different magnifications, such as a varifocal tube lens group to continuously change magnifications from 20 to 200×. Multiple imaging modes are possible by varying the illumination geometry and apertures at the pupil plane.
    Type: Application
    Filed: May 20, 2002
    Publication date: January 2, 2003
    Applicant: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, David Shafer, Bin-Ming B. Tsai, J. Joseph Armstrong