Patents by Inventor Yung-Ho Chuang

Yung-Ho Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6483638
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: November 19, 2002
    Assignee: KLA-Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Publication number: 20020085271
    Abstract: An ultraviolet (UV) catadioptric imaging system, with broad spectrum correction of primary and residual, longitudinal and lateral, chromatic aberrations for wavelengths extending into the deep UV (as short as about 0.16 &mgr;m), comprises a focusing lens group with multiple lens elements that provide high levels of correction of both image aberrations and chromatic variation of aberrations over a selected wavelength band, a field lens group formed from lens elements with at least two different refractive materials, such as silica and a fluoride glass, and a catadioptric group including a concave reflective surface providing most of the focusing power of the system and a thick lens providing primary color correction in combination with the focusing lens group. The field lens group is located near the intermediate image provided by the focusing lens group and functions to correct the residual chromatic aberrations. The system is characterized by a high numerical aperture (typ, greater than 0.
    Type: Application
    Filed: November 6, 2001
    Publication date: July 4, 2002
    Applicant: KLA Instruments Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 6392793
    Abstract: A system for imaging is disclosed herein. The system has a numerical aperture (NA) preferably greater than 0.9, but greater than 0.65, and uses unique illumination entrances to collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. Illumination can enter the catadioptric optical system using an auxiliary beamsplitter or mirror, or through the catadioptric group at any angle from 0 to 85 degrees from vertical. The high NA catadioptric system can also have a relayed pupil plane, used to select different imaging modes, providing simultaneous operation of different imaging modes, Fourier filtering, and other pupil shaping operations.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: May 21, 2002
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, David Shafer, Bin-Ming B. Tsai, J. Joseph Armstrong
  • Publication number: 20010040722
    Abstract: A design for inspecting specimens, such as photomasks, for unwanted particles and features such as pattern defects is provided. The system provides no central obscuration, an external pupil for aperturing and Fourier filtering, and relatively relaxed manufacturing tolerances, and is suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths below 365 nm. In many instances, the lenses used may be fashioned or fabricated using a single material. Multiple embodiments of the objective lensing arrangement are disclosed, all including at least one small fold mirror and a Mangin mirror. The system is implemented off axis such that the returning second image is displaced laterally from the first image so that the lateral separation permits optical receipt and manipulation of each image separately.
    Type: Application
    Filed: July 7, 1999
    Publication date: November 15, 2001
    Inventors: DAVID R. SHAFER, YUNG-HO CHUANG, J. JOSEPH ARMSTRONG
  • Patent number: 6313467
    Abstract: An ultraviolet (UV) catadioptric imaging system, with broad spectrum correction of primary and residual, longitudinal and lateral, chromatic aberrations for wavelengths extending into the deep UV (as short as about 0.16 &mgr;m), comprises a focusing lens group with multiple lens elements that provide high levels of correction of both image aberrations and chromatic variation of aberrations over a selected wavelength band, a field lens group formed from lens elements with at least two different refractive materials, such as silica and a fluoride glass, and a catadioptric group including a concave reflective surface providing most of the focusing power of the system and a thick lens providing primary color correction in combination with the focusing lens group. The field lens group is located near the intermediate image provided by the focusing lens group and functions to correct the residual chromatic aberrations. The system is characterized by a high numerical aperture (typ. greater than 0.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: November 6, 2001
    Assignee: KLA-Tencor, Inc.
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 6137570
    Abstract: Disclosed is a method and apparatus for using far field scattered and diffracted light to determine whether a collection of topological features on a surface (e.g., a semiconductor wafer) conforms to an expected condition or quality. This determination is made by comparing the far field diffraction pattern of a surface under consideration with a corresponding diffraction pattern (a "baseline"). If the baseline diffraction pattern and far field diffraction pattern varies by more than a prescribed amount or in characteristic ways, it is inferred that the surface features are defective. The method may be implemented as a die-to-die comparison of far field diffraction patterns of two dies on a semiconductor wafer. The portion of the far field scattered and diffracted light sensitive to a relevant condition or quality can also be reimaged to obtain an improved signal-to-noise ratio.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: October 24, 2000
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, David L. Brown, Jason Z. Lin, Bin-Ming Benjamin Tsai
  • Patent number: 6133576
    Abstract: Broad spectrum ultraviolet inspection methods employ an achromatic catadioptric system to image the surface of an object, such as a semiconductor wafer or photomask, at multiple ultraviolet (UV) wavelengths over a large flat field (with a size on the order of 0.5 mm) in order to detect and identify defects. The imaging system provides broad band correction of primary and residual, longitudinal and lateral, chromatic aberrations for wavelengths extending into the deep UV. UV imaging applications include a method that illuminates an object with fluorescence-excitation radiation to stimulate fluorescent emission at a plurality of UV wavelengths, then images the fluorescent emissions and detects the images so formed in UV wavelength bands distributed over at least 50 nm (preferably 100-200 nm) wavelength. Photoresist patterns can be analyzed in this way.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: October 17, 2000
    Assignee: KLA Instruments Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 6064517
    Abstract: A system for multiple mode imaging is disclosed herein. The system is a catadioptric system preferably having an NA greater than 0.9, highly corrected for low and high order monochromatic aberrations. This system uses unique illumination entrances and can collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. The catadioptric group includes a focusing mirror and a refractive lens/mirror element. The focusing optics group is proximate to an intermediate image, and corrects for aberrations from the catadioptric group, especially high order spherical aberration and coma. The tube lens group forms the magnified image. Different tube lens groups can be used to obtain different magnifications, such as a varifocal tube lens group to continuously change magnifications from 20 to 200.times.. Multiple imaging modes are possible by varying the illumination geometry and apertures at the pupil plane.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: May 16, 2000
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, David Shafer, Bin-Ming B. Tsai, J. Joseph Armstrong
  • Patent number: 5999310
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: December 7, 1999
    Inventors: David Ross Shafer, Yung-Ho Chuang, Bin-Ming Benjamin Tsai
  • Patent number: 5956174
    Abstract: An ultraviolet (UV) catadioptric imaging system, with broad spectrum correction of primary and residual, longitudinal and lateral, chromatic aberrations for wavelengths extending into the deep UV (as short as about 0.16 .mu.m), comprises a focusing lens group with multiple lens elements that provide high levels of correction of both image aberrations and chromatic variation of aberrations over a selected wavelength band, a field lens group formed from lens elements with at least two different refractive materials, such as silica and a fluoride glass, and a catadioptric group including a concave reflective surface providing most of the focusing power of the system and a thick lens providing primary color correction in combination with the focusing lens group. The field lens group is located near the intermediate image provided by the focusing lens group and functions to correct the residual chromatic aberrations. The system is characterized by a high numerical aperture (type. greater than 0.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: September 21, 1999
    Assignee: KLA Instruments Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 5717518
    Abstract: An ultraviolet (UV) catadioptric imaging system, with broad spectrum correction of primary and residual, longitudinal and lateral, chromatic aberrations for wavelengths extending into the deep UV (as short as about 0.16 .mu.m), comprises a focusing lens group with multiple lens elements that provide high levels of correction of both image aberrations and chromatic variation of aberrations over a selected wavelength band, a field lens group formed from lens elements with at least two different refractive materials, such as silica and a fluoride glass, and a catadioptric group including a concave reflective surface providing most of the focusing power of the system and a thick lens providing primary color correction in combination with the focusing lens group. The field lens group is located near the intermediate image provided by the focusing lens group and functions to correct the residual chromatic aberrations. The system is characterized by a high numerical aperture (typ. greater than 0.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: February 10, 1998
    Assignee: KLA Instruments Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 5095487
    Abstract: Ultra short (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles.
    Type: Grant
    Filed: December 14, 1990
    Date of Patent: March 10, 1992
    Assignee: The University of Rochester
    Inventors: David D. Meyerhofer, Ansgar W. Schmid, Yung-ho Chuang
  • Patent number: 4507704
    Abstract: A cigarette box with self-lighting device and spare lighter is comprised of a main box and a spare box. The main box is in "L" shape, with a pivoted main box cover plate which has a view window and a retaining plate chute and can be optionally opened, closed and fixed. One side of the interior of the main box has a cigarette self-lighting device, and the other side has a spare cigarette lighting device. Ten cigarettes may be stored in the main box. The spare cigarette box is dish shaped and is pivoted to the main box cover plate at the outside. A mobile wave-shape cover plate is pivoted to the front of the spare box for storing 10 cigarettes. A lighted cigarette will be ready for the user with a light touch on the self-lighting button.
    Type: Grant
    Filed: December 13, 1983
    Date of Patent: March 26, 1985
    Inventor: Yung-Ho Chuang