Patents by Inventor Yunsang Kim

Yunsang Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030211750
    Abstract: Disclosed herein is a method of etching a trench in a silicon-containing dielectric material, in the absence of a trench etch-stop layer, where the silicon-containing dielectric material has a dielectric constant of about 4 or less. The method comprises exposing the dielectric material to a plasma generated from a source gas comprising a fluorine-containing etchant gas and an additive gas selected from the group consisting of carbon monoxide (CO), argon, and combinations thereof. A volumetric flow ratio of the additive gas to the fluorine-containing etchant gas is within the range of about 1.25:1 to about 20:1 (more typically, about 2.5:1 to about 20:1), depending on the particular fluorine-containing etchant gas used. The method provides good control over critical dimensions and etch profile during trench etching. Also disclosed herein is a method of forming a dual damascene structure, without the need for an intermediate etch stop layer.
    Type: Application
    Filed: May 10, 2002
    Publication date: November 13, 2003
    Inventors: Yunsang Kim, Kenny L. Doan, Claes H. Bjorkman, Hongqing Shan
  • Patent number: 6511920
    Abstract: A method of forming an optical marker layer for etch endpoint determination in integrated circuit fabrication processes is disclosed. The optical marker layer is used in conjunction with organic and/or carbon-containing material layers that are used as bulk insulating materials and barrier materials. The optical marker layer is formed on the bulk insulating material layer and/or the barrier material layer by incorporating an optical marker into the surface thereof. The optical marker is incorporated into the surface of the bulk insulating material layer and/or the barrier material layer by treating such layer with an optical marker-containing gas. The optical marker layer provides an optical marker emission spectrum when it is etched during a subsequent patterning step.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: January 28, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Huong Thanh Nguyen, Yunsang Kim, Ellie Yieh, Li-Qun Xia
  • Publication number: 20020192845
    Abstract: A method of forming an optical marker layer for etch endpoint determination in integrated circuit fabrication processes is disclosed. The optical marker layer is used in conjunction with organic and/or carbon-containing material layers that are used as bulk insulating materials and barrier materials. The optical marker layer is formed on the bulk insulating material layer and/or the barrier material layer by incorporating an optical marker into the surface thereof. The optical marker is incorporated into the surface of the bulk insulating material layer and/or the barrier material layer by treating such layer with an optical marker-containing gas. The optical marker layer provides an optical marker emission spectrum when it is etched during a subsequent patterning step.
    Type: Application
    Filed: June 14, 2001
    Publication date: December 19, 2002
    Inventors: Huong Thanh Nguyen, Yunsang Kim, Ellie Yieh, Li-Qun Xia
  • Publication number: 20020084257
    Abstract: A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
    Type: Application
    Filed: November 5, 2001
    Publication date: July 4, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Claes H. Bjorkman, Melissa Min Yu, Hongqing Shan, David W. Cheung, Wai-Fan Yau, Kuowei Liu, Nasreen Gazala Chapra, Gerald Yin, Farhad K. Moghadam, Judy H. Huang, Dennis Yost, Betty Tang, Yunsang Kim
  • Publication number: 20020074309
    Abstract: A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
    Type: Application
    Filed: November 5, 2001
    Publication date: June 20, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Claes H. Bjorkman, Melissa Min Yu, Hongqing Shan, David W. Cheung, Wai-Fan Yau, Kuowei Liu, Nasreen Gazala Chapra, Gerald Yin, Farhad K. Moghadam, Judy H. Huang, Dennis Yost, Betty Tang, Yunsang Kim
  • Patent number: 6403491
    Abstract: A method for etching a dielectric in a thermally controlled plasma etch chamber with an expanded processing window. The method is adapted to incorporate benefits of a the thermal control and high evacuation capability of the chamber. Etchent gases include hydrocarbons, oxygen and inert gas. Explanation is provided for enablling the use of hexafluoro-1,3-butadiene in a capacitively coupled etch plasma. The method is very useful for creating via, self aligned contacts, dual damascene, and other dielectric etch.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 11, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jingbao Liu, Judy Wang, Takehiko Komatsu, Bryan Y Pu, Kenny L Doan, Claes Bjorkman, Melody Chang, Yunsang Kim, Hongching Shan, Ruiping Wang
  • Patent number: 6340435
    Abstract: A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: January 22, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Claes H. Bjorkman, Min Melissa Yu, Hongquing Shan, David W. Cheung, Wai-Fan Yau, Kuowei Liu, Nasreen Gazala Chapra, Gerald Yin, Farhad K. Moghadam, Judy H. Huang, Dennis Yost, Betty Tang, Yunsang Kim
  • Patent number: 6326307
    Abstract: A photoresist plasma pretreatment performed prior to a plasma oxide etch. The plasma pretreatment is performed with an argon plasma or a carbon tetrafluoride and trifluoromethane plasma with lower power than in the main etch or is performed with a plasma of difluoromethane or trifluoromethane and carbon monoxide but no argon diluent gas. Thereby, striations on the oxide wall are reduced.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: December 4, 2001
    Assignee: Appllied Materials, Inc.
    Inventors: Roger A. Lindley, Henry Fong, Yunsang Kim, Takehito Komatsu, Ajey M. Joshi, Bryan Y. Pu, Hongqing Shan