Patents by Inventor Yunwen Huang

Yunwen Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11670515
    Abstract: Disclosed is a capacitively coupled plasma etching apparatus, wherein a lower electrode is fixed to a lower end of an electrically conductive supporting rod, a retractable electrically conductive part is fixed to the lower end of the electrically conductive supporting rod, wherein the retractable electrically conductive part being extended or retracted along an axial direction of the electrically conductive supporting rod; besides, the lower end of the retractable electrically conductive part is electrically connected with the output end of the radio-frequency matcher via an electrically connection portion, and the loop end of the radio-frequency matcher is fixed to the bottom of a chamber body.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 6, 2023
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC. CHINA
    Inventors: Yunwen Huang, Tuqiang Ni, Jie Liang, Jinlong Zhao, Lei Wu
  • Patent number: 11515168
    Abstract: Disclosed is a capacitively coupled plasma etching apparatus, wherein an electrically conductive supporting rod where a lower electrode is fixed is connected to driving means, the driving means driving the electrically conductive support rod to move axially; besides, the lower electrode is fixed to the bottom of a chamber body via a retractable sealing part, causing the upper surface of the lower electrode to be hermetically sealed in an accommodation space in the chamber body; an electrical connection part is connected on the chamber body; the radio frequency current in the chamber body returns, via the electrical connection part, to the loop end of a radio frequency matcher.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 29, 2022
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC. CHINA
    Inventors: Yunwen Huang, Tuqiang Ni, Jie Liang, Jinlong Zhao
  • Patent number: 11373843
    Abstract: Disclosed is a capacitively coupled plasma etching apparatus, wherein a lower electrode is fixed to a lower end of an electrically conductive supporting rod, a telescope electrically conductive part is fixed to the lower end of the electrically conductive supporting rod, wherein the retractable electrically conductive part being telescoped along an axial direction of the electrically conductive supporting rod; besides, the lower end of the retractable electrically conductive part is electrically connected with the output end of the radio-frequency matcher via an electrically connection portion. In this way, the height of the lower electrode may be controlled through telescoping of the retractable electrically conductive part, such that the spacing between the upper and lower pads becomes adjustable.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 28, 2022
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC. CHINA
    Inventors: Yunwen Huang, Tuqiang Ni, Jie Liang, Jinlong Zhao, Lei Wu
  • Publication number: 20220157570
    Abstract: Disclosed are a plasma processing apparatus and an adjusting method of the same. The apparatus includes: a vacuum chamber enclosed by a chamber body and a chamber lid; a movable upper electrode assembly disposed in the vacuum chamber; a bottom electrode assembly, arranged opposite the movable upper electrode assembly, the bottom electrode assembling being detachably connected with the bottom of the chamber body; a plurality of self-alignment devices each including a self-alignment upper structure and a self-alignment lower structure, the self-alignment upper structure and the self-alignment lower structure being connected to the movable upper electrode assembly and the bottom electrode assembly, respectively, wherein when the self-alignment upper structures and the self-alignment bottom structures are aligned to be jointed together, the center of the movable upper electrode assembly is aligned with that of the bottom electrode assembly.
    Type: Application
    Filed: November 8, 2021
    Publication date: May 19, 2022
    Inventors: Mingming WANG, Yunwen HUANG, Dee WU, Jinquan YANG
  • Publication number: 20200194230
    Abstract: Disclosed is a capacitively coupled plasma etching apparatus, wherein a lower electrode is fixed to a lower end of an electrically conductive supporting rod, a telescope electrically conductive part is fixed to the lower end of the electrically conductive supporting rod, wherein the retractable electrically conductive part being telescoped along an axial direction of the electrically conductive supporting rod; besides, the lower end of the retractable electrically conductive part is electrically connected with the output end of the radio-frequency matcher via an electrically connection portion. In this way, the height of the lower electrode may be controlled through telescoping of the retractable electrically conductive part, such that the spacing between the upper and lower pads becomes adjustable.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: Yunwen Huang, Tuqiang Ni, Jie Liang, Jinlong Zhao, Lei Wu
  • Publication number: 20200194275
    Abstract: Disclosed is a capacitively coupled plasma etching apparatus, wherein a lower electrode is fixed to a lower end of an electrically conductive supporting rod, a retractable electrically conductive part is fixed to the lower end of the electrically conductive supporting rod, wherein the retractable electrically conductive part being extended or retracted along an axial direction of the electrically conductive supporting rod; besides, the lower end of the retractable electrically conductive part is electrically connected with the output end of the radio-frequency matcher via an electrically connection portion, and the loop end of the radio-frequency matcher is fixed to the bottom of a chamber body.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: Yunwen Huang, Tuqiang Ni, Jie Liang, Jinlong Zhao, Lei Wu
  • Publication number: 20200194276
    Abstract: Disclosed is a capacitively coupled plasma etching apparatus, wherein an electrically conductive supporting rod where a lower electrode is fixed is connected to driving means, the driving means driving the electrically conductive support rod to move axially; besides, the lower electrode is fixed to the bottom of a chamber body via a retractable sealing part, causing the upper surface of the lower electrode to be hermetically sealed in an accommodation space in the chamber body; an electrical connection part is connected on the chamber body; the radio frequency current in the chamber body returns, via the electrical connection part, to the loop end of a radio frequency matcher.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Inventors: Yunwen Huang, Tuqiang Ni, Jie Liang, Jinlong Zhao
  • Patent number: 10020208
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 10, 2018
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Publication number: 20170140952
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Patent number: 9633833
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or counter clockwise.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 25, 2017
    Assignee: ACM RESEARCH (SHANGHAI) INC.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Patent number: 9595457
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5?/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: March 14, 2017
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Publication number: 20170032959
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or counter clockwise.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 2, 2017
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Patent number: 9492852
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or counter clockwise.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 15, 2016
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Patent number: 8671961
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 18, 2014
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He
  • Publication number: 20140034094
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 6, 2014
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He
  • Patent number: 8580042
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: November 12, 2013
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He
  • Patent number: 8518224
    Abstract: The present invention provides a plating apparatus with multiple anode zones and cathode zones. The electrolyte flow field within each zone is controlled individually with independent flow control devices. A gas bubble collector whose surface is made into pleated channels is implemented for gas removal by collecting small bubbles, coalescing them, and releasing the residual gas. A buffer zone built within the gas bubble collector further allows unstable microscopic bubbles to dissolve.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 27, 2013
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Yue Ma, Xi Wang, Yunwen Huang, Zhenxu Pang, Voha Nuch, David Wang
  • Publication number: 20120097195
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or count clockwise.
    Type: Application
    Filed: March 31, 2009
    Publication date: April 26, 2012
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Publication number: 20110290277
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5?/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Application
    Filed: December 12, 2008
    Publication date: December 1, 2011
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Publication number: 20110114120
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Application
    Filed: December 10, 2007
    Publication date: May 19, 2011
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He