Patents by Inventor Yusuke Maeda

Yusuke Maeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9905339
    Abstract: In a conductive film forming method using photo sintering, a conductive film having low electric resistance is easily formed. Disclosed is a conductive film forming method in which a conductive film is formed using a photo sintering, which includes the steps of: forming a liquid film made of a copper particulate dispersion on a substrate, drying the liquid film to form a copper particulate layer, subjecting the copper particulate layer to photo sintering to form a conductive film, attaching a sintering promoter to the conductive film, and further subjecting the conductive film having the sintering promoter attached to photo sintering. The sintering promoter is a compound which removes copper oxide from metallic copper. Thereby, the sintering promoter removes a surface oxide film of copper particulates in the conductive film.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 27, 2018
    Assignee: ISHIHARA CHEMICAL CO., LTD.
    Inventors: Yuichi Kawato, Kazushige Miyamoto, Yusuke Maeda, Tomio Kudo
  • Patent number: 9615455
    Abstract: The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle. The dispersant is a compound having at least one acidic functional group, which has a molecular weight of 200 or more and 100,000 or less, or a salt thereof. Whereby, the dispersant has compatibility with dispersion vehicle and a surface of copper particulates is coated with dispersant molecules, and thus the copper particulates are dispersed in the dispersion vehicle.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: April 4, 2017
    Assignees: ISHIHARA CHEMICAL CO., LTD., APPLIED NANOTECH HOLDINGS, INC.
    Inventors: Yuichi Kawato, Yusuke Maeda, Tomio Kudo
  • Publication number: 20160347129
    Abstract: Provided is a device for detecting a low-pressure state of a predetermined tire, comprising an index value calculation unit, a resonance frequency calculation unit and a low-pressure detection unit. The index value calculation unit calculates a low-pressure index value from wheel speed information of front and rear tires, the low-pressure index value being obtained by comparing rotation speeds of the front and rear tires. The resonance frequency calculation unit calculates a resonance frequency from wheel speed information of a tire. The low-pressure detection unit eliminates an influence of an imposed load on a vehicle and detects the low-pressure state of the predetermined tire based on: a predetermined parameter that indicates a linear relationship between the resonance frequency and the low-pressure index value under a low-pressure condition of the predetermined tire; the low-pressure index value thus calculated; and the resonance frequency thus calculated.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 1, 2016
    Applicant: SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventors: Kento YAMASHITA, Mitsuhiro WADA, Yusuke MAEDA
  • Patent number: 9120944
    Abstract: An object is to provide a copper particulate dispersion which is suited to discharge in the form of droplets. The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle having a boiling point within a range from 150° C. to 250° C. Whereby, when the copper particulate dispersion is discharged in the form of droplets, clogging at the discharge portion caused by drying of the dispersion vehicle is prevented and the viscosity is low for its high boiling point, and thus the copper particulate dispersion is suited to discharge in the form of droplets.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: September 1, 2015
    Assignees: ISHIHARA CHEMICAL CO., LTD., APPLIED NANOTECH HOLDINGS, INC.
    Inventors: Yuichi Kawato, Yusuke Maeda, Tomio Kudo
  • Publication number: 20150118413
    Abstract: In a conductive film forming method using photo sintering, a conductive film having low electric resistance is easily formed. Disclosed is a conductive film forming method in which a conductive film is formed using a photo sintering, which includes the steps of: forming a liquid film made of a copper particulate dispersion on a substrate, drying the liquid film to form a copper particulate layer, subjecting the copper particulate layer to photo sintering to form a conductive film, attaching a sintering promoter to the conductive film, and further subjecting the conductive film having the sintering promoter attached to photo sintering. The sintering promoter is a compound which removes copper oxide from metallic copper. Thereby, the sintering promoter removes a surface oxide film of copper particulates in the conductive film.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 30, 2015
    Inventors: Yuichi Kawato, Kazushige Miyamoto, Yusuke Maeda, Tomio Kudo
  • Publication number: 20150030784
    Abstract: In a conductive film forming method using photo sintering, a conductive film having low electric resistance is easily formed. The conductive film forming method is a method in which a conductive film is formed using photo sintering. This method includes the steps of forming a layer made of a sintering promoter on a substrate, forming a liquid film made of a copper particulate dispersion on the layer of the sintering promoter, drying the liquid film to form a copper particulate layer, and subjecting the copper particulate layer to photo sintering. The sintering promoter is a compound which removes copper oxide from metallic copper. Thereby, the sintering promoter removes a surface oxide film of copper particulates in photo sintering.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 29, 2015
    Inventors: Yuichi Kawato, Yusuke Maeda, Tomio Kudo
  • Publication number: 20150021071
    Abstract: In a conductive film formed by photo sintering of a film composed of copper particulates, adhesiveness to a base material of the conductive film is improved. A circuit board includes a circuit including a conductive film, and a substrate. The circuit board further includes a resin layer between the substrate and the conductive film. The substrate is made of a non-thermoplastic base material. The resin layer contains a thermoplastic resin. The conductive film is formed by photo sintering of a film composed of copper particulates, and thus improving adhesiveness of the conductive film to the base material through the resin layer.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 22, 2015
    Applicant: ISHIHARA CHEMICAL CO., LTD.
    Inventors: Yuichi Kawato, Tomohiro Mita, Yusuke Maeda, Tomio Kudo
  • Publication number: 20140370310
    Abstract: An object is to provide the formulation of a copper particulate dispersion in which copper particulates are dispersed. The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle. The dispersant is a compound having at least one acidic functional group, which has a molecular weight of 200 or more and 100,000 or less, or a salt thereof. Whereby, the dispersant has compatibility with dispersion vehicle and a surface of copper particulates is coated with dispersant molecules, and thus the copper particulates are dispersed in the dispersion vehicle.
    Type: Application
    Filed: January 4, 2012
    Publication date: December 18, 2014
    Applicants: APPLIED NANOTECH HOLDINGS, INC., ISHIHARA CHEMICAL CO., LTD.
    Inventors: Yuichi Kawato, Yusuke Maeda, Tomio Kudo
  • Publication number: 20140216798
    Abstract: An object is to provide a copper particulate dispersion which is suited to discharge in the form of droplets. The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle having a boiling point within a range from 150° C. to 250° C. Whereby, when the copper particulate dispersion is discharged in the form of droplets, clogging at the discharge portion caused by drying of the dispersion vehicle is prevented and the viscosity is low for its high boiling point, and thus the copper particulate dispersion is suited to discharge in the form of droplets.
    Type: Application
    Filed: January 4, 2012
    Publication date: August 7, 2014
    Applicants: APPLIED NANOTECH HOLDINGS, INC., ISHIHARA CHEMICAL CO., LTD.
    Inventors: Yuichi Kawato, Yusuke Maeda, Tomio Kudo
  • Publication number: 20140216799
    Abstract: An object is to provide a conductive film forming method which can form a conductive film having low electric resistance on a base material by utilizing photo sintering even when the base material has low heat resistance. A conductive film forming method is a method in which a conductive film is formed on a base material, and the method includes the steps of forming a film composed of copper particulates on a base material, subjecting the film to photo sintering, and applying plating to the photo-sintered film. Whereby, it is possible to form a conductive film on a base material by lowering irradiation energy of light in photo sintering even when the base material has low heat resistance. Since the conductive film includes a plated layer, electric resistance decreases.
    Type: Application
    Filed: August 13, 2012
    Publication date: August 7, 2014
    Applicants: APPLIED NANOTECH HOLDINGS, INC., ISHIHARA CHEMICAL CO., LTD.
    Inventors: Yuichi Kawato, Tomohiro Mito, Yusuke Maeda, Tomio Kudo
  • Patent number: 6703123
    Abstract: A white conductive fiber is manufactured at an inexpensive cost having superior conductivity and high degree of whiteness, in which a metal coating plated on the fiber has superior adhesiveness. A method for manufacturing the white conductive fiber comprises the steps of mounting a wound fiber body formed by winding a continuous fiber to the fixing shaft, a step of flowing a plating solution from the fixing shaft to a plating bath via the wound fiber body so as to infiltrate the plating solution into the wound fiber body, and a step of performing electroless plating of silver, platinum, or the like on the fiber material while the plating solution flows.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: March 9, 2004
    Assignees: Mitsubishi Materials Corporation, Japan Electric Metals Corporation, Ltd. Akita Plant
    Inventors: Daisuke Shibuta, Hiroyuki Imai, Masahiro Yokomizo, Makoto Tsunashima, Yusuke Maeda, Nobuo Furuya
  • Patent number: 4078970
    Abstract: There is disclosed a process for producing an insolubilized glucose isomerase useful for converting glucose into fructose comprising contacting a macroporous anion exchange resin with glucose isomerase to effect absorption of the isomerase on the resin, said resin having high porosity and high ion exchange capacity, whereby the resulted insolubilized glucose isomerase has high degree of adsorption, high activity retention and high activity yield.
    Type: Grant
    Filed: September 10, 1976
    Date of Patent: March 14, 1978
    Assignees: Mitsubishi Chemical Industries Ltd., Seikagaku Kogyo Co., Ltd.
    Inventors: Yoshimasa Fujita, Akiyoshi Matsumoto, Isao Kawakami, Tadashi Hishida, Akira Kamata, Yusuke Maeda