Patents by Inventor Yusuke Nakayama

Yusuke Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7150266
    Abstract: In a hybrid vehicle driven by a dual injection internal combustion engine including an injector for in-cylinder injection and an injector for in-intake air path injection, and assistive dynamic, to control learning of the internal combustion engine's air fuel ratio learning value to learn the engine's air fuel ratio the engine is steadily operated and only any one of the injectors is allowed to inject fuel, while learning of the air fuel ratio is controlled, and after controlling the learning has completed the other injector is alone allowed to inject the fuel, while learning of air fuel ratio is controlled.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: December 19, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yusuke Nakayama, Yukihiro Sonoda, Koji Morita
  • Publication number: 20060168944
    Abstract: In an engine 5 including an in-cylinder injector, the valve timing of an intake valve is retarded by VVT (Variable Valve Timing) controlled by an engine ECU to decompress in a combustion chamber at engine startup. In accordance with a configuration in which the valve timing of intake valve is advanced in a stepped manner from an initial set value, fuel injection from in-cylinder injector is inhibited during the time when the advance is equal to or below a predetermined standard value, and fuel injection from in-cylinder injector is allowed when exceeding the predetermined standard value, whereby degradation in the exhaust emission level in accordance with start time decompression control can be suppressed.
    Type: Application
    Filed: January 25, 2006
    Publication date: August 3, 2006
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshio Inoue, Tsukasa Abe, Shunsuke Fushiki, Mamoru Tomatsuri, Daigo Ando, Keiko Hasegawa, Osamu Harada, Katsuhiko Yamaguchi, Keita Fukui, Yukihiro Sonoda, Koji Morita, Takuji Matsubara, Yusuke Nakayama
  • Publication number: 20050274353
    Abstract: When an injection sharing ratio r is neither 0 nor 1, an engine ECU executes a program including a step of calculating a purge reduction amount of an in-cylinder injector as fpg×r and calculating a purge reduction amount of an intake manifold injector as fpg×(1-r) when performing purge processing according to a current fuel injection sharing ratio of the injectors, and a step of calculating a correction fuel injection amount of the in-cylinder injector by raising the fuel injection amount to a minimum fuel injection amount, and calculating a correction fuel injection amount of the intake manifold injector by subtracting the raised amount from the fuel injection amount of the intake manifold injector when the fuel injection amount of the in-cylinder injector calculated by using the purge reduction amount is lower than the minimum injection amount.
    Type: Application
    Filed: June 13, 2005
    Publication date: December 15, 2005
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeo Okubo, Zenichiro Mashiki, Nobuyuki Shibagaki, Hiroyuki Nomura, Yoshiyuki Shogenji, Kenichi Kinose, Takuji Matsubara, Yusuke Nakayama, Yukihiro Sonoda, Koji Morita
  • Publication number: 20050271964
    Abstract: Satisfactory anti-blocking property of powder toner can be realized, while avoiding increase in softening temperature of the powder toner, by coating the surface of a low melting point powder toner with a thermosetting resin. This leads to the realization of toner fixing at lower temperatures and is particularly effective when using a urea resin as the thermosetting resin or employing polymerized toner as the powder toner. Use of the surface-coated powder toner with a low softening temperature and less blocking tendency makes possible reduction of thermal energy and time required for fusing, thereby realizing energy-saving and high-speed fusing process.
    Type: Application
    Filed: August 21, 2003
    Publication date: December 8, 2005
    Applicant: Toppan Forms Co., Ltd.
    Inventors: Kei Etou, Hisano Higurashi, Yusuke Nakayama, Kaori Ezaki, Toru Kimura
  • Publication number: 20050257771
    Abstract: In a hybrid vehicle driven by a dual injection internal combustion engine including an injector for in-cylinder injection and an injector for in-intake air path injection, and assistive dynamic, to control learning of the internal combustion engine's air fuel ratio learning value to learn the engine's air fuel ratio the engine is steadily operated and only any one of the injectors is allowed to inject fuel, while learning of the air fuel ratio is controlled, and after controlling the learning has completed the other injector is alone allowed to inject the fuel, while learning of air fuel ratio is controlled.
    Type: Application
    Filed: May 17, 2005
    Publication date: November 24, 2005
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yusuke Nakayama, Yukihiro Sonoda, Koji Morita