Patents by Inventor Yusuke Yoshizumi

Yusuke Yoshizumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8048702
    Abstract: In the method of fabricating a nitride-based semiconductor optical device by metal-organic chemical vapor deposition, a barrier layer is grown at a first temperature while supplying a gallium source to a reactor. The barrier layer comprises a first gallium nitride-based semiconductor. After the growth of the barrier layer, a nitrogen material and an indium material are supplied to the reactor without supply of the gallium source to perform a preflow of indium. Immediately after the preflow, a well layer is grown on the barrier layer at a second temperature while supplying an indium source and the gallium source to the reactor. The well layer comprises InGaN, and the second temperature is lower than the first temperature. The gallium source and the indium source are supplied to the reactor during plural first periods of the step of growing the well layer to grow plural InGaN layers, respectively.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yohei Enya, Yusuke Yoshizumi, Masaki Ueno, Takashi Kyono, Katsushi Akita
  • Publication number: 20110241016
    Abstract: A nitride-based semiconductor light-emitting element LE1 or LD1 has: a gallium nitride substrate 11 having a principal surface 11a which makes an angle ?, in the range 40° to 50° or in the range more than 90° to 130°, with the reference plane Sc perpendicular to the reference axis Cx extending in the c axis direction; an n-type gallium nitride-based semiconductor layer 13; a second gallium nitride-based semiconductor layer 17; and a light-emitting layer 15 including a plurality of well layers of InGaN and a plurality of barrier layers 23 of a GaN-based semiconductor, wherein the direction of piezoelectric polarization of the plurality of well layers 21 is the direction from the n-type gallium nitride-based semiconductor layer 13 toward the second gallium nitride-based semiconductor layer 17.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 6, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi Kyono, Yohei Enya, Yusuke Yoshizumi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Masahiro Adachi, Shinji Tokuyama
  • Publication number: 20110228804
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity of high lasing yield, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Application
    Filed: July 14, 2010
    Publication date: September 22, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Shimpei TAKAGI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Publication number: 20110227035
    Abstract: Provided is a nitride-based semiconductor light-emitting element having improved carrier injection efficiency into the well layer. The element comprises a substrate (5) formed from a hexagonal-crystal gallium nitride semiconductor; an n-type gallium nitride semiconductor region (7) disposed on a main surface (S1) of the substrate (5); a light-emitting layer (11) having a single quantum well structure disposed on the n-type gallium nitride semiconductor region (7); and a p-type gallium nitride semiconductor region (19) disposed on the light-emitting layer (11). The light-emitting layer (11) is disposed between the n-type gallium nitride semiconductor region (7) and the p-type gallium nitride semiconductor region (19). The light-emitting layer (11) comprises a well layer (15), a barrier layer (13), and a barrier layer (17). The well layer (15) is InGaN.
    Type: Application
    Filed: June 14, 2010
    Publication date: September 22, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi Kyono, Yohei Enya, Yusuke Yoshizumi, Katsushi Akita, Takamichi Sumitomo, Masaki Ueno
  • Publication number: 20110223701
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Takao NAKAMURA
  • Patent number: 8018029
    Abstract: A gallium nitride-based epitaxial wafer for a nitride light-emitting device comprises a gallium nitride substrate having a primary surface, a gallium nitride-based semiconductor film provided on the primary surface, and, an active layer provided on the semiconductor film, the active layer having a quantum well structure. A normal line of the primary surface and a C-axis of the gallium nitride substrate form an off angle with each other. The off angle monotonically increases on the line that extends from one point to another point through a center point of the primary surface. The one point and the other point are on an edge of the primary surface, and indium contents of the well layer defined at n points on the line monotonically decrease in a direction from the one point to the other point. The thickness values of the well layer defined at the n points monotonically increase in the direction.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: September 13, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Masaki Ueno, Takao Nakamura
  • Publication number: 20110212560
    Abstract: Provided is a method of fabricating a nitride semiconductor light emitting device, and this method can reduce degradation of a well layer during formation of a p-type gallium nitride based semiconductor region and a barrier layer. After growth of a gallium nitride based semiconductor region 13, a barrier layer 21a is grown on a substrate 11. The barrier layer 21a is formed at a growth temperature TB during a period from a time t1 to t2. The growth temperature TB (=T2) is in the range of not less than 760 Celsius degrees and not more than 800 Celsius degrees. At the time t2, the growth of the barrier layer 21a is completed. After the growth of the barrier layer 21a, a well layer 23a is grown on the substrate 11 without interruption of growth. The well layer 23a is formed at a growth temperature TW (=T2) during a period from the time t2 to t3. The growth temperature TW is the same as the growth temperature TB and can be in the range of not less than 760 Celsius degrees and not more than 800 Celsius degrees.
    Type: Application
    Filed: April 20, 2011
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takamichi SUMITOMO, Katsushi AKITA, Takashi KYONO, Yusuke YOSHIZUMI
  • Publication number: 20110210378
    Abstract: A high electron mobility transistor includes a free-standing supporting base having a III nitride region, a first III nitride barrier layer which is provided on the first III nitride barrier layer, a III nitride channel layer which is provided on the first III nitride barrier layer and forms a first heterojunction with the first III nitride barrier layer, a gate electrode provided on the III nitride channel layer so as to exert an electric field on the first heterojunction, a source electrode on the III nitride channel layer and the first III nitride barrier, and a drain electrode on the III nitride channel layer and the first III nitride barrier. The III nitride channel layer has compressive internal strain, and the piezoelectric field of the III nitride channel layer is oriented in the direction from the supporting base towards the first III nitride barrier layer.
    Type: Application
    Filed: July 29, 2010
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Takashi KYONO, Yohei ENYA, Takamichi SUMITOMO, Yusuke YOSHIZUMI
  • Publication number: 20110198566
    Abstract: A method for manufacturing a light emitting element is directed to a method for manufacturing a light emitting element of a III-V group compound semiconductor having a quantum well structure including In and N, including the steps of: forming a well layer including In and N; forming a barrier layer having a bandgap wider than a bandgap of the well layer; and supplying a gas including N and interrupting epitaxial growth after the step of forming the well layer and before the step of forming the barrier layer. In the step of interrupting epitaxial growth, the gas having decomposition efficiency higher than decomposition efficiency of decomposition from N2 and NH3 into active nitrogen at 900° C. is supplied. In addition, in the step of interrupting epitaxial growth, the gas different from a gas used as an N source of the well layer is supplied.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 18, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke Yoshizumi, Masaki Ueno, Takao Nakamura, Toshio Ueda, Eiryo Takasuka, Yasuhiko Senda
  • Publication number: 20110186860
    Abstract: Disclosed is a nitride-based semiconductor light emitting device with excellent light extraction efficiency. A light emitting device 11 includes a support base 13 and a semiconductor laminate 15. The semiconductor laminate 15 includes an n-type GaN-based semiconductor region 17, an active layer 19, and a p-type GaN-based semiconductor region 21. The n-type GaN-based semiconductor region 17, the active layer 19, and the p-type GaN-based semiconductor region 21 are mounted on a principal surface 13a, and are arranged in the direction of a predetermined axis Ax orthogonal to the principal surface 13a. A rear surface 13b of the support base 13 is inclined with respect to a plane orthogonal to a reference axis extending in the c-axis direction of a hexagonal gallium nitride semiconductor of the support base 13. A vector VC represents the c-axis direction. A surface morphology M of the rear surface 13b has a plurality of protrusions 23 protruding in the direction of a <000-1>-axis.
    Type: Application
    Filed: April 13, 2011
    Publication date: August 4, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yohei ENYA, Yusuke YOSHIZUMI, Takashi KYONO, Masaki UENO, Takao NAKAMURA
  • Publication number: 20110182311
    Abstract: Provided is a gallium nitride based semiconductor light-emitting device with a structure capable of enhancing the degree of polarization. A light-emitting diode 11a is provided with a semiconductor region 13, an InGaN layer 15 and an active layer 17. The semiconductor region 13 has a primary surface 13a having semipolar nature, and is made of GaN or AlGaN. The primary surface 13a of the semiconductor region 13 is inclined at an angle ? with respect to a plane Sc perpendicular to a reference axis Cx which extends in a direction of the [0001] axis in the primary surface 13a. The thickness D13 of the semiconductor region 13 is larger than the thickness DInGaN of the InGaN layer 17, and the thickness DInGaN of the InGaN layer 15 is not less than 150 nm. The InGaN layer 15 is provided directly on the primary surface 13a of the semiconductor region 13 and is in contact with the primary surface 13a.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Masaki UENO, Takashi KYONO
  • Publication number: 20110180805
    Abstract: A III-nitride semiconductor device has a support base comprised of a III-nitride semiconductor and having a primary surface extending along a first reference plane perpendicular to a reference axis inclined at a predetermined angle ALPHA with respect to the c-axis of the III-nitride semiconductor, and an epitaxial semiconductor region provided on the primary surface of the support base. The epitaxial semiconductor region includes a plurality of GaN-based semiconductor layers. The reference axis is inclined at a first angle ALPHA1 in the range of not less than 10 degrees, and less than 80 degrees from the c-axis of the III-nitride semiconductor toward a first crystal axis, either one of the m-axis and a-axis. The reference axis is inclined at a second angle ALPHA2 in the range of not less than ?0.30 degrees and not more than +0.30 degrees from the c-axis of the III-nitride semiconductor toward a second crystal axis, the other of the m-axis and a-axis.
    Type: Application
    Filed: July 14, 2010
    Publication date: July 28, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei ENYA, Yusuke YOSHIZUMI, Takashi KYONO, Takamichi SUMITOMO, Katsushi AKITA, Masaki UENO, Takao NAKAMURA
  • Publication number: 20110176569
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity enabling a low threshold current, on a semipolar surface of a support base the c-axis of a hexagonal group-III nitride of which tilts toward the m-axis. In a laser structure 13, a first surface 13a is a surface opposite to a second surface 13b and first and second fractured faces 27, 29 extend each from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. A scribed mark SM1 extending from the edge 13c to the edge 13d is made, for example, at one end of the first fractured face 27, and the scribed mark SM1 or the like has a depressed shape extending from the edge 13c to the edge 13d. The fractured faces 27, 29 are not formed by dry etching and thus are different from the conventional cleaved facets such as c-planes, m-planes, or a-planes. It is feasible to use emission of a band transition enabling a low threshold current.
    Type: Application
    Filed: July 14, 2010
    Publication date: July 21, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shimpei TAKAGI, Yusuke YOSHIZUMI, Koji KATAYAMA, Masaki UENO, Takatoshi IKEGAMI
  • Publication number: 20110164638
    Abstract: In a group-III nitride semiconductor laser device, a laser structure includes a support base comprising a hexagonal group-III nitride semiconductor and having a semipolar principal surface, and a semiconductor region provided on the semipolar principal surface of the support base. An electrode is provided on the semiconductor region of the laser structure. An angle between a normal axis to the semipolar principal surface and the c-axis of the hexagonal group-III nitride semiconductor is in a range of not less than 45° and not more than 80° or in a range of not less than 100° and not more than 135°. The laser structure includes a laser stripe extending in a direction of a waveguide axis above the semipolar principal surface of the support base. The laser structure includes first and second surfaces and the first surface is a surface opposite to the second surface.
    Type: Application
    Filed: July 15, 2010
    Publication date: July 7, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Shimpei TAKAGI, Takatoshi IKEGAMI, Masaki UENO, Koji KATAYAMA
  • Publication number: 20110164637
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Publication number: 20110158275
    Abstract: In a III-nitride semiconductor laser device, a laser structure includes a support base comprised of a hexagonal III-nitride semiconductor and having a semipolar primary surface, and a semiconductor region provided on the semipolar primary surface of the support base. An electrode is provided on the semiconductor region of the laser structure.
    Type: Application
    Filed: July 15, 2010
    Publication date: June 30, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Shimpei TAKAGI, Takatoshi IKEGAMI, Masaki UENO, Koji KATAYAMA
  • Publication number: 20110158277
    Abstract: A III-nitride semiconductor laser device is provided with a laser structure and an electrode. The laser structure includes a support base which comprises a hexagonal III-nitride semiconductor and has a semipolar primary surface, and a semiconductor region provided on the semipolar primary surface. The electrode is provided on the semiconductor region. The semiconductor region includes a first cladding layer of a first conductivity type GaN-based semiconductor, a second cladding layer of a second conductivity type GaN-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The laser structure includes first and second fractured faces intersecting with an m-n plane defined by the m-axis of the hexagonal III-nitride semiconductor and an axis normal to the semipolar primary surface. A laser cavity of the III-nitride semiconductor laser device includes the first and second fractured faces.
    Type: Application
    Filed: July 16, 2010
    Publication date: June 30, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Takamichi SUMITOMO, Nobuhiro SAGA, Masahiro ADACHI, Kazuhide SUMIYOSHI, Shinji TOKUYAMA, Shimpei TAKAGI, Takatoshi IKEGAMI, Masaki UENO, Koji KATAYAMA
  • Publication number: 20110158276
    Abstract: In a III-nitride semiconductor laser device, a laser structure includes a support base comprised of a hexagonal III-nitride semiconductor and having a semipolar primary surface, and a semiconductor region provided on the semipolar primary surface of the support base. An electrode is provided on the semiconductor region of the laser structure. The c-axis of the hexagonal III-nitride semiconductor of the support base is inclined at an angle ALPHA with respect to a normal axis toward the m-axis of the hexagonal III-nitride semiconductor. The angle ALPHA is in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees. The laser structure includes first and second fractured faces that intersect with an m-n plane defined by the m-axis of the hexagonal III-nitride semiconductor and the normal axis. A laser cavity of the III-nitride semiconductor laser device includes the first and second fractured faces.
    Type: Application
    Filed: July 15, 2010
    Publication date: June 30, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shimpei TAKAGI, Yusuke YOSHIZUMI, Koji KATAYAMA, Masaki UENO, Takatoshi IKEGAMI
  • Publication number: 20110128983
    Abstract: Provided are a group-III nitride semiconductor laser device with a laser cavity to enable a low threshold current on a semipolar surface of a hexagonal group-III nitride, and a method for fabricating the group-III nitride semiconductor laser device on a stable basis. Notches, e.g., notch 113a and others, are formed at four respective corners of a first surface 13a located on the anode side of a group-III nitride semiconductor laser device 11. The notch 113a or the like is a part of a scribed groove provided for separation of the device 11. The scribed grooves are formed with a laser scriber and the shape of the scribed grooves is adjusted by controlling the laser scriber. For example, a ratio of the depth of the notch 113a or the like to the thickness of the group-III nitride semiconductor laser device 11 is not less than 0.05 and not more than 0.
    Type: Application
    Filed: July 14, 2010
    Publication date: June 2, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shimpei TAKAGI, Yusuke YOSHIZUMI, Koji KATAYAMA, Masaki UENO, Takatoshi IKEGAMI
  • Publication number: 20110124142
    Abstract: In a GaN based semiconductor optical device 11a, the primary surface 13a of the substrate 13 tilts at a tilting angle toward an m-axis direction of the first GaN based semiconductor with respect to a reference axis “Cx” extending in a direction of a c-axis of the first GaN based semiconductor, and the tilting angle is 63 degrees or more, and is less than 80 degrees. The GaN based semiconductor epitaxial region 15 is provided on the primary surface 13a. On the GaN based semiconductor epitaxial region 15, an active layer 17 is provided. The active layer 17 includes one semiconductor epitaxial layer 19. The semiconductor epitaxial layer 19 is composed of InGaN. The thickness direction of the semiconductor epitaxial layer 19 tilts with respect to the reference axis “Cx.” The reference axis “Cx” extends in the direction of the [0001] axis. This structure provides the GaN based semiconductor optical device that can reduces decrease in light emission characteristics due to the indium segregation.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 26, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei Enya, Yusuke Yoshizumi, Masaki Ueno, Katsushi Akita, Takashi Kyono, Takamichi Sumitomo, Takao Nakamura