Patents by Inventor Yutaka Kishimoto

Yutaka Kishimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170194933
    Abstract: A piezoelectric module includes a piezoelectric thin film, a fixing layer, and a support substrate. The piezoelectric thin film is supported by the support substrate with the fixing layer in between. Functional conductors are provided on a surface of the piezoelectric thin film. A void is provided in the fixing layer to include a region overlapping with the functional conductors. A conductor pattern defining a circuit element is provided in a region of the void on a surface of the support substrate on the fixing layer side.
    Type: Application
    Filed: March 22, 2017
    Publication date: July 6, 2017
    Inventors: Yutaka KISHIMOTO, Yasuyuki IDA, Hideaki KOBAYASHI
  • Publication number: 20170179925
    Abstract: In a method of manufacturing a piezoelectric device in which a piezoelectric thin film on which functional conductors are formed is fixed to a support substrate by a fixing layer, an alignment mark is formed on one main surface of a light-transmitting piezoelectric substrate. A sacrificial layer is formed on a main surface of the piezoelectric substrate with reference to the alignment mark and the fixing layer is formed so as to cover the sacrificial layer and is bonded to the support substrate. The piezoelectric thin film is formed by being separated from the piezoelectric substrate and the functional conductors are formed on the surface of the piezoelectric thin film with reference to the alignment mark. The piezoelectric device is able to be manufactured while positions of formation regions of conductors are adjusted efficiently.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventor: Yutaka KISHIMOTO
  • Publication number: 20170149405
    Abstract: In a piezoelectric resonator manufacturing method, a sacrificial layer is formed on a back surface of a piezoelectric substrate. A support layer is formed on the back surface of the piezoelectric substrate so as to cover the sacrificial layer. A support layer as a piezoelectric resonator is formed by flattening the support layer. A recess in which the surface of the sacrificial layer is recessed with respect to the surface of the support layer is formed by abrading the surfaces of the support layer and the sacrificial layer. The recess extends to a vicinity of a boundary surface between the support layer and the sacrificial layer in the support layer. A support substrate is adhered to the surfaces of the support layer including the recess and the sacrificial layer via an adhesive material.
    Type: Application
    Filed: January 3, 2017
    Publication date: May 25, 2017
    Inventor: Yutaka KISHIMOTO
  • Publication number: 20160172574
    Abstract: A piezoelectric device that includes a piezoelectric film, which is formed by a sputtering method and which has a columnar structure, and electrodes disposed in contact with the piezoelectric film. The piezoelectric film has a composition containing an element which can substitute Nb and has an oxidation number of 2 or more and less than 5 when oxidized in a proportion of 3.3 mol or less relative to 100 mol of potassium sodium niobate represented by a general formula (K1-xNax)NbO3, where 0<x<1.
    Type: Application
    Filed: February 25, 2016
    Publication date: June 16, 2016
    Inventors: SHINSUKE IKEUCHI, Kansho Yamamoto, Yutaka Kishimoto, Yoshitaka Matsuki, Naoyuki Endo, Toshimaro Yoneda, Yutaka Takeshima
  • Patent number: 7867636
    Abstract: A ZnO-based transparent conductive film is produced by growing ZnO doped with a group III element oxide on a substrate and has a region with a crystal structure in which a c-axis grows along a plurality of different directions. The transparent conductive film produced by growing ZnO doped with a group III element oxide on a substrate has a ZnO (002) rocking curve full width at half maximum of about 13.5° or more. ZnO is doped with a group III element oxide so that the ratio of the group III element oxide in the transparent conductive film is about 7% to about 40% by weight. The transparent conductive film is formed on the substrate with a SiNx thin film provided therebetween. The transparent conductive film is formed on the substrate by a thin film formation method with a bias voltage applied to the substrate.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 11, 2011
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Osamu Nakagawara, Hiroyuki Seto, Yutaka Kishimoto
  • Publication number: 20090269588
    Abstract: A transparent conductive film made of ZnO includes a ZnO layer having a region having a granular crystal structure. The zinc oxide layer is doped with a group-III element. The dose of the group-III element is about 0.8 to about 11.5 weight percent on an oxide mass basis. The group-III element is at least one selected from the group consisting of Ga, Al, and In. The full width at half maximum of a ZnO (002) rocking curve is preferably about 10.5 degrees or less.
    Type: Application
    Filed: July 10, 2009
    Publication date: October 29, 2009
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Souko Fukahori, Yutaka Kishimoto
  • Publication number: 20080280119
    Abstract: A ZnO-based conductive film having acceptable practical use moisture resistance, properties required for a transparent conductive film, and economical advantage and a method for manufacturing the film are provided. A first ZnO conductive film layer 1, optionally containing a Group III oxide dopant, is formed on a surface of a substrate 11 and a second ZnO conductive film layer 2, which is transparent and includes a Group III oxide different from a Group III oxide (if present) included in the first conductive film layer is formed on the first ZnO conductive film layer to form a multi-layer structure. The thickness of the first ZnO conductive film layer is preferably 5 to 50 nm, and the second and any following ZnO conductive film layers include a Group III oxide at a concentration of 7 wt % or less.
    Type: Application
    Filed: July 30, 2008
    Publication date: November 13, 2008
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yutaka Kishimoto, Souko Fukahori
  • Publication number: 20080050595
    Abstract: A ZnO-based transparent conductive film has practicable moisture resistance, desired characteristics of a transparent conductive film, and excellent economy. The transparent conductive film is produced by growing ZnO doped with a group III element oxide on a substrate and has a region with a crystal structure in which a c-axis grows along a plurality of different directions. The transparent conductive film produced by growing ZnO doped with a group III element oxide on a substrate has a ZnO (002) rocking curve full width at half maximum of about 13.5° or more. ZnO is doped with a group III element oxide so that the ratio of the group III element oxide in the transparent conductive film is about 7% to about 40% by weight. The transparent conductive film is formed on the substrate with a SiNx thin film provided therebetween. The transparent conductive film is formed on the substrate by a thin film formation method with a bias voltage applied to the substrate.
    Type: Application
    Filed: November 22, 2006
    Publication date: February 28, 2008
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Osamu NAKAGAWARA, Hiroyuki SETO, Yutaka KISHIMOTO
  • Patent number: 6565812
    Abstract: A base is provided with a concave and three leads, and the central lead is bent to the side opposite to the concave, and the other leads are bent to the side of the concave. A central electrode of a sensor element is attached to the central lead and the bottom of the concave and a coil serving as both a heater and an electrode is attached to the other leads to support the sensor element on a small base at four points.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: May 20, 2003
    Assignee: Figaro Engineering Inc.
    Inventors: Tohru Nomura, Hideki Okoshi, Tomoko Yoshimura, Yutaka Kishimoto, Yuichiro Tajiri