Patents by Inventor Yutaka Miyamoto

Yutaka Miyamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122127
    Abstract: A cultivation greenhouse includes: an inner lining that forms a housing space for housing a plant to be a cultivation target, the inner lining tightly sealing the housing space; an outer lining that is disposed on an outer side of the inner lining to house the inner lining, the outer lining forming, with the inner lining, a circulation space for flowing outside air; and a circulation device that circulates air outside the outer lining into the circulation space and discharges the air to outside of the outer lining.
    Type: Application
    Filed: January 27, 2022
    Publication date: April 18, 2024
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shohei Akagi, Keiichi Sato, Yutaka Miyamoto, Yoshitaka Shindo
  • Publication number: 20240088793
    Abstract: A power conversion apparatus is provided with: a plurality of power conversion circuits each provided with a transformer and supplying DC power to a common rechargeable battery; a control circuit configured to control the power conversion circuits; and a cooling device configured to cool the power conversion circuits. The cooling device is provided with at least one flow path for a coolant, the flow path being in thermal contact with the transformers of the power conversion circuits. When a load voltage of the rechargeable battery is equal to or higher than a predetermined threshold, the control circuit operates one power conversion circuit of the plurality of power conversion circuits, the one power conversion circuit provided with the transformer having a largest thermal contact area with the flow path, and stops operations of other power conversion circuits of the plurality of power conversion circuits.
    Type: Application
    Filed: December 27, 2021
    Publication date: March 14, 2024
    Inventors: Takehiko YAMAKAWA, Hiromu MATSUMOTO, Susumu NAKAMURA, Yutaka MIYAMOTO
  • Patent number: 11929784
    Abstract: A wavelength dispersion compensating apparatus, including: a signal light generating unit which generates, from predetermined signal light, signal light having a phase correlation centered on a degenerate frequency of a phase sensitive amplifier; a dispersion compensation transmission path which compensates for a wavelength dispersion of the predetermined signal light included in the signal light; a filter which compensates for a residual wavelength dispersion after compensation by the dispersion compensation transmission path of the predetermined signal light included in the signal light; a phase sensitive amplifier which amplifies the signal light input via the dispersion compensation transmission path and the filter; a residual wavelength dispersion calculating unit which calculates a residual wavelength dispersion amount based on a measurement result of output light amplified by the phase sensitive amplifier; and a filter control unit which controls the filter so as to add a wavelength dispersion that can
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: March 12, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shimpei Shimizu, Takushi Kazama, Takayuki Kobayashi, Yutaka Miyamoto
  • Publication number: 20240055995
    Abstract: A power conversion apparatus is provided with: a plurality of power conversion circuits each provided with a transformer and supplying DC power to a common rechargeable battery; and a control circuit configured to control the plurality of power conversion circuits. When a load voltage of the rechargeable battery is equal to or higher than a first threshold, the control circuit selectively and sequentially operates the plurality of power conversion circuits such that one of the plurality of power conversion circuits is operated, and others of the plurality of power conversion circuits are stopped.
    Type: Application
    Filed: December 27, 2021
    Publication date: February 15, 2024
    Inventors: Takehiko YAMAKAWA, Hiromu MATSUMOTO, Susumu NAKAMURA, Yutaka MIYAMOTO
  • Patent number: 11888584
    Abstract: An optical transmission system includes a plurality of transmission lines through which a mode-multiplexed signal obtained by multiplexing a plurality of optical signals of different types of modes is transmitted, and one or more mode group permutation units provided between the plurality of transmission lines. The mode group permutation unit changes, on a mode-group-by-mode-group basis, an optical signal of a mode belonging to a mode group to an optical signal of another mode belonging to a mode group after permutation corresponding to the mode group in such a manner that modes are interchanged between at least some of the plurality of optical signals multiplexed into the mode-multiplexed signal input from one of the plurality of transmission lines on an input side, and outputs the mode-multiplexed signal after mode interchange to one of the plurality of transmission lines on an output side.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: January 30, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Koki Shibahara, Takayuki Mizuno, Yutaka Miyamoto
  • Patent number: 11888522
    Abstract: An optical transmission system including: N transmitters, each of the N transmitters being configured to convert one of N electrical signals indicating data sequences different from one another into an optical signal; a signal generator configured to cause N optical splitters to split the N optical signals output from the N transmitters to convert the N optical signals into M optical signals; a multiplexer configured to convert the M optical signals converted by the signal generator into one mode-multiplexed signal that is excitable in at least M modes; a demultiplexer configured to convert the mode-multiplexed signal converted by the multiplexer into M optical signals; M receivers, each of the M receivers being configured to convert one of the M optical signals converted by the demultiplexer into the electrical signal; and a signal detector configured to perform signal separation on the M electrical signals converted by the M receivers to extract the N data sequences.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: January 30, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Koki Shibahara, Takayuki Mizuno, Yutaka Miyamoto
  • Patent number: 11888281
    Abstract: There is provided a multimode optical amplifier that provides gain to a plurality of propagation modes of signal light. The multimode optical amplifier includes a multiplexer that multiplexes the signal light and excitation light; an amplifying fiber which has a core that propagates a predetermined plurality of propagation modes of the signal light and a predetermined plurality of propagation modes of the excitation light, and which provides an individual gain value for each of the predetermined propagation modes of the signal light; a wavelength-flattening filter that maintains a constant gain value for a frequency for all predetermined propagation modes of the signal light; and a mode-flattening filter that maintains the gain value at a constant value for a predetermined propagation mode of the signal light for all predetermined propagation modes of the signal light.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 30, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hirotaka Ono, Takayuki Mizuno, Koki Shibahara, Yutaka Miyamoto
  • Publication number: 20230421267
    Abstract: An interference component generated because a plurality of carrier generation units and a plurality of local oscillation units are asynchronous is used as state information, a predetermined state equation for calculating posterior state information on the basis of prior state information, and a transmission data sequence are used as observation information, a Kalman filter algorithm is applied to a predetermined observation equation for calculating the observation information in a state indicated by the posterior state information on the basis of the posterior state information calculated by the state equation, a reception data sequence, and a weight matrix to calculate a posterior state estimate of the interference component, and an estimated sequence of the transmission data sequence from which the interference component has been removed is calculated on the basis of the calculated posterior state estimate.
    Type: Application
    Filed: December 21, 2020
    Publication date: December 28, 2023
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Koki SHIBAHARA, Takayuki MIZUNO, Yutaka MIYAMOTO
  • Patent number: 11770205
    Abstract: An optical signal processing apparatus of an embodiment is an optical signal processing apparatus for separating and detecting an optical signal transmitted in a mode division multiplexing optical communication method by signal processing based on a multi-input multi-output (MIMO)-type linear filter. The device includes a signal processing unit configured to estimate weighting factors of the MIMO-type linear filter by sequential calculation based on an affine projection method.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: September 26, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Koki Shibahara, Takayuki Mizuno, Yutaka Miyamoto
  • Patent number: 11745258
    Abstract: A casting solidification analysis method, which can analyze positions of shrinkage cavities more accurately than in the past, a casting method using the above method, and an electronic program are provided. A following casting solidification analysis method is provided. An amount of expansion/shrinkage for each solidification step length separated by inflection points in a cooling curve is determined, by setting a solid phase ratio at a completion of pouring to 0, setting a solid phase ratio at an end of solidification to 1.0, and determining the expansion/shrinkage amount for the each solidification step length by proportionally distributing the each solidification step length to the total solid phase ratio length.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: September 5, 2023
    Inventors: Haruki Itofuji, Yutaka Miyamoto
  • Patent number: 11742950
    Abstract: A computation unit uses an assumed chromatic dispersion amount to compensate for dispersion of a coherently received optical signal and performs arithmetic of a signal power of the optical signal that is dispersion compensated. The computation unit performs computation of an evaluation function when a signal power and a delayed signal power obtained by applying a predetermined delay to the signal power satisfy a threshold condition. The evaluation function is a function for evaluating whether the assumed chromatic dispersion amount is a chromatic dispersion amount of the optical signal using the difference between the signal power and the delayed signal power. The chromatic dispersion amount calculation unit calculates a chromatic dispersion amount of the optical signal based on the computation result of the evaluation function by the computation unit when each of a plurality of different assumed chromatic dispersion amounts is used.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: August 29, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shimpei Shimizu, Takayuki Kobayashi, Masanori Nakamura, Yutaka Miyamoto
  • Publication number: 20230261755
    Abstract: An optical transmitter includes an I-component optical modulation unit, a Q-component optical modulation unit, and a 2×2 optical coupler. The I-component optical modulation unit generates modulated light based on an I-component data signal. The Q-component optical modulation unit generates modulated light based on a Q-component data signal. The 2×2 optical coupler receives the modulated light generated by the I-component optical modulation unit from a first input port, receives the modulated light generated by the Q-component optical modulation unit from a second input port, generates two optical QAM signals having a phase conjugate relationship from the modulated light which has been input from the first input port and the modulated light which has been input from the second input port, outputs one of said two optical QAM signals from a first output port, and outputs the other one of said two optical QAM signals from a second output port.
    Type: Application
    Filed: July 8, 2020
    Publication date: August 17, 2023
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hiroto KAWAKAMI, Hiroshi YAMAZAKI, Yutaka MIYAMOTO
  • Patent number: 11716144
    Abstract: An optical transmission system includes: a transmission unit configured to co-propagate a signal light in which data is modulated and an idler light having complex amplitude that is phase conjugate with the signal light via an optical transmission medium; at least one optical amplifier configured to perform a phase sensitive amplification operation through an action among the signal light, the idler light, and an excitation light in a nonlinear medium; and a reception unit configured to receive the signal light that has been amplified by the optical amplifier, coherently detect the signal light and the idler light individually, and conduct a diversity synthesis to demodulate the data.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: August 1, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shimpei Shimizu, Takayuki Kobayashi, Yutaka Miyamoto
  • Patent number: 11710645
    Abstract: A manufacturing method of a mounting structure includes: a step of preparing a mounting member including a first circuit member and a plurality of second circuit members placed on the first circuit member; a disposing step of disposing a thermosetting sheet and a thermoplastic sheet on the mounting member, with the thermosetting sheet interposed between the thermoplastic sheet and the first circuit member; a first sealing step of pressing a stack of the thermosetting sheet and the thermoplastic sheet against the first circuit member, and heating the stack, to seal the second circuit members and to cure the thermosetting sheet into a cured layer; and a removal step of removing the thermoplastic sheet from the cured layer. At least one of the second circuit members is a hollow member having a space from the first circuit member, and in the first sealing step, the second circuit members are sealed so as to maintain the space.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: July 25, 2023
    Assignee: NAGASE CHEMTEX CORPORATION
    Inventors: Eiichi Nomura, Yutaka Miyamoto, Takayuki Hashimoto
  • Publication number: 20230216589
    Abstract: The signal detection device includes the signal detection unit that derives the estimation vector of the transmission signal vector, the first conversion unit that converts the estimation vector of the transmission signal vector to the estimation vector of the transmission signal vector based on the reduced basis, the first determination unit that converts the estimation vector of the transmission signal vector based on the reduced basis to the determination value vector of the transmission signal vector, the first update unit that updates the separation matrix, the second conversion unit that converts the first error signal vector to the second error signal vector based on the reduced basis, the second update unit that updates the error covariance matrix based on the reduced basis, the second determination unit that determines whether or not the predetermined condition is satisfied, and a third update unit that updates the unimodular matrix, the inverse matrix of the unimodular matrix, and the error covarian
    Type: Application
    Filed: August 20, 2020
    Publication date: July 6, 2023
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Koki SHIBAHARA, Takayuki MIZUNO, Yutaka MIYAMOTO
  • Patent number: 11632185
    Abstract: A receiver convolutes each of a real component and an imaginary component of each polarization of a polarization-multiplexed reception signal with an impulse response for compensating for frequency characteristics of the receiver and a complex impulse response for wavelength dispersion compensation, and generates, as input signals, the convoluted real component and imaginary component of each polarization and phase conjugations thereof, for each polarization.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: April 18, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takayuki Kobayashi, Masanori Nakamura, Fukutaro Hamaoka, Yutaka Miyamoto
  • Publication number: 20230059003
    Abstract: A wavelength dispersion compensating apparatus, including: a signal light generating unit which generates, from predetermined signal light, signal light having a phase correlation centered on a degenerate frequency of a phase sensitive amplifier; a dispersion compensation transmission path which compensates for a wavelength dispersion of the predetermined signal light included in the signal light; a filter which compensates for a residual wavelength dispersion after compensation by the dispersion compensation transmission path of the predetermined signal light included in the signal light; a phase sensitive amplifier which amplifies the signal light input via the dispersion compensation transmission path and the filter; a residual wavelength dispersion calculating unit which calculates a residual wavelength dispersion amount based on a measurement result of output light amplified by the phase sensitive amplifier; and a filter control unit which controls the filter so as to add a wavelength dispersion that can
    Type: Application
    Filed: February 12, 2020
    Publication date: February 23, 2023
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shimpei SHIMIZU, Takushi KAZAMA, Takayuki KOBAYASHI, Yutaka MIYAMOTO
  • Publication number: 20230054203
    Abstract: An optical transmission system includes a plurality of transmission lines through which a mode-multiplexed signal obtained by multiplexing a plurality of optical signals of different types of modes is transmitted, and one or more mode group permutation units provided between the plurality of transmission lines. The mode group permutation unit changes, on a mode-group-by-mode-group basis, an optical signal of a mode belonging to a mode group to an optical signal of another mode belonging to a mode group after permutation corresponding to the mode group in such a manner that modes are interchanged between at least some of the plurality of optical signals multiplexed into the mode-multiplexed signal input from one of the plurality of transmission lines on an input side, and outputs the mode-multiplexed signal after mode interchange to one of the plurality of transmission lines on an output side.
    Type: Application
    Filed: February 18, 2020
    Publication date: February 23, 2023
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Koki SHIBAHARA, Takayuki MIZUNO, Yutaka MIYAMOTO
  • Publication number: 20230057448
    Abstract: An optical transmission system including: N transmitters, each of the N transmitters being configured to convert one of N electrical signals indicating data sequences different from one another into an optical signal; a signal generator configured to cause N optical splitters to split the N optical signals output from the N transmitters to convert the N optical signals into M optical signals; a multiplexer configured to convert the M optical signals converted by the signal generator into one mode-multiplexed signal that is excitable in at least M modes; a demultiplexer configured to convert the mode-multiplexed signal converted by the multiplexer into M optical signals; M receivers, each of the M receivers being configured to convert one of the M optical signals converted by the demultiplexer into the electrical signal; and a signal detector configured to perform signal separation on the M electrical signals converted by the M receivers to extract the N data sequences.
    Type: Application
    Filed: February 19, 2020
    Publication date: February 23, 2023
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Koki SHIBAHARA, Takayuki MIZUNO, Yutaka MIYAMOTO
  • Publication number: 20230028214
    Abstract: A transformer includes a primary winding, a secondary winding, a first core, and a second core. The primary winding and the secondary winding are inserted into the first core and the second core, and the first core and the second core are disposed to face each other. The first core includes one first core portion, and the second core includes a plurality of second core portions. The first core is a lower core, and the second core is an upper core. The first core and the second core are disposed to face each other with a gap interposed between the first core and the second core. The first core and the second core include a heat-resistant elastic body in the gap, and are disposed to face each other. Each of the second core portions is disposed with a heat-resistant elastic body interposed between the second core portions.
    Type: Application
    Filed: December 10, 2020
    Publication date: January 26, 2023
    Inventors: Takehiko YAMAKAWA, Hiromu MATSUMOTO, Susumu NAKAMURA, Yutaka MIYAMOTO