Patents by Inventor Yutaka Nishimura

Yutaka Nishimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8305483
    Abstract: An imaging device includes an image pickup device having an arrangement of photoelectric converting units, the arrangement in which a plurality of pairs of photoelectric converting units are arranged along a predetermined direction, each pair of photoelectric converting units receiving light beams of a subject passing through partial areas in a pair that are lopsided in reverse to each other along the predetermined direction in an exit pupil of a shooting optical system, and a focus detector for performing focus detection of a phase-difference detecting technique according to data obtained from the pair of photoelectric converting units in the arrangement of the photoelectric converting units. The focus detector corrects the data according to a correction amount corresponding to a positional shift amount from the normalized position, and performs focus detection of the phase-difference detecting technique according to the corrected data.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 6, 2012
    Assignee: Sony Corporation
    Inventors: Shinichi Fujii, Kazuhito Shimoda, Yasutoshi Katsuda, Hiroki Ui, Yutaka Nishimura
  • Publication number: 20120104479
    Abstract: A solid-state imaging device includes a semiconductor substrate including a pixel portion having a photoelectric conversion portion and a peripheral circuit portion; a first sidewall composed of a sidewall film and disposed on each sidewall of gate electrodes of MOS transistors in the pixel portion; a second sidewall composed of the sidewall film and disposed on each sidewall of gate electrodes of MOS transistors in the peripheral circuit portion; a first silicide blocking film composed of the sidewall film and disposed on the photoelectric conversion portion and a part of the MOS transistors in the pixel portion; and a second silicide blocking film disposed on the MOS transistors in the pixel portion so as to overlap with a part of the first silicide blocking film, wherein the MOS transistors in the pixel portion are covered with the first and second silicide blocking films.
    Type: Application
    Filed: January 12, 2012
    Publication date: May 3, 2012
    Applicant: SONY CORPORATION
    Inventors: Takuji Matsumoto, Tetsuji Yamaguchi, Keiji Tatani, Yutaka Nishimura, Kazuichiro Itonaga, Hiroyuki Mori, Norihiro Kubo, Fumihiko Koga, Shinichiro Izawa, Susumu Ooki
  • Patent number: 8115154
    Abstract: A solid-state imaging device includes a semiconductor substrate including a pixel portion having a photoelectric conversion portion and a peripheral circuit portion; a first sidewall composed of a sidewall film and disposed on each sidewall of gate electrodes of MOS transistors in the pixel portion; a second sidewall composed of the sidewall film and disposed on each sidewall of gate electrodes of MOS transistors in the peripheral circuit portion; a first silicide blocking film composed of the sidewall film and disposed on the photoelectric conversion portion and a part of the MOS transistors in the pixel portion; and a second silicide blocking film disposed on the MOS transistors in the pixel portion so as to overlap with a part of the first silicide blocking film, wherein the MOS transistors in the pixel portion are covered with the first and second silicide blocking films.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 14, 2012
    Assignee: Sony Corporation
    Inventors: Takuji Matsumoto, Tetsuji Yamaguchi, Keiji Tatani, Yutaka Nishimura, Kazuichiro Itonaga, Hiroyuki Mori, Norihiro Kubo, Fumihiko Koga, Shinichiro Izawa, Susumu Ooki
  • Patent number: 8098321
    Abstract: An image pickup element includes a light receiver having a matrix arrangement formed by disposing first-direction arrays, each having photoelectric converters arranged in a first direction with a gap therebetween, in a second direction orthogonal thereto, and micro-lenses above the light receiver. In the matrix arrangement, a certain first-direction array has two first photoelectric converters receiving, via two micro-lenses, photographic-subject light passing through two segmental regions in an exit pupil of a photographic optical system, and a certain second-direction array has two second photoelectric converters receiving photographic-subject light passing through two segmental regions in the exit pupil. Light axes of the two micro-lenses extend through vicinities of edges, farthest from each other in the first direction, of the first photoelectric converters.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: January 17, 2012
    Assignee: Sony Corporation
    Inventors: Kazuhito Shimoda, Shinichi Fujii, Yasutoshi Katsuda, Hiroki Ui, Yutaka Nishimura
  • Publication number: 20110273581
    Abstract: A technology of a phase-difference detecting image pickup element that can precisely detect a focus by a phase difference detection method and that can be properly produced even if pixels are becoming finer is provided. An image pickup element of an image pickup device includes an AF pixel pair 11f performing a pupil division function by receiving an object light beam transmitted through a pair of portions Qa, Qb in an exit pupil; and ordinary pixels that are not provided with the pupil division function. The AF pixel pair 11f includes a pair of photoelectric converters PD having the same size as photoelectric converters of the ordinary pixels and being disposed adjacent to each other in a horizontal direction. A light-intercepting section LS and one microlens ML are provided above the pair of photoelectric converters PD. The light-intercepting section LS has two light-intercepting areas Ea, Eb that intercept the light beam transmitted through the exit pupil.
    Type: Application
    Filed: September 2, 2009
    Publication date: November 10, 2011
    Applicant: SONY CORPORATION
    Inventors: Shinichi Fujii, Hiroki Ui, Yutaka Nishimura
  • Publication number: 20100282037
    Abstract: A multi-axis turning center for turning operations includes a machine body, a tool rest means for holding a tool, a first headstock for holding a workpiece, and a second headstock disposed in confronting relation to the first headstock, for holding a workpiece. The second headstock has a front chuck and a rear chuck for gripping respective workpieces. The second headstock performs a workpiece changing function by swiveling about a central axis. The multi-axis turning center is capable of automatically changing the workpieces by itself while it is carrying out a machining process, without the need for a workpiece changer. The multi-axis turning center does not need to stop its machining process for changing workpieces, resulting in an increase in the utilization ratio thereof.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 11, 2010
    Applicant: MORI SEIKI CO., LTD
    Inventors: Koji FUJIMOTO, Kento Komine, Tsutomu Tokuma, Yutaka Nishimura
  • Publication number: 20100245656
    Abstract: An imaging device includes an image pickup device having an arrangement of photoelectric converting units, the arrangement in which a plurality of pairs of photoelectric converting units are arranged along a predetermined direction, each pair of photoelectric converting units receiving light beams of a subject passing through partial areas in a pair that are lopsided in reverse to each other along the predetermined direction in an exit pupil of a shooting optical system, and a focus detector for performing focus detection of a phase-difference detecting technique according to data obtained from the pair of photoelectric converting units in the arrangement of the photoelectric converting units. The focus detector corrects the data according to a correction amount corresponding to a positional shift amount from the normalized position, and performs focus detection of the phase-difference detecting technique according to the corrected data.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicant: Sony Corporation
    Inventors: Shinichi Fujii, Kazuhito Shimoda, Yasutoshi Katsuda, Hiroki Ui, Yutaka Nishimura
  • Publication number: 20100224951
    Abstract: A solid-state imaging device includes: a peripheral circuit element formed on a semiconductor substrate having an image sensing area where an image sensing element that captures an image of an object is provided and a peripheral area located on the periphery of the image sensing area, the peripheral circuit element being in the peripheral area; a plurality of insulation films formed to cover at least the peripheral circuit element; and a contact plug formed in a contact hole through the plurality of insulation films and above the peripheral circuit element in such a manner that the contact plug is electrically connected to the peripheral circuit element; the plurality of insulation films including a first insulation film, and a second insulation film formed to cover the first insulation film, the contact hole being formed by etching the second insulation film so as to remove a portion thereof where the contact hole is to be formed, and then etching the first insulation film so as to remove a portion thereof w
    Type: Application
    Filed: March 1, 2010
    Publication date: September 9, 2010
    Applicant: Sony Corporation
    Inventor: Yutaka Nishimura
  • Publication number: 20100176273
    Abstract: An image pickup element includes a light-receiving portion having a matrix arrangement formed by disposing first-direction arrays, each having photoelectric conversion portions arranged in a first direction with a predetermined gap maintained therebetween, in a second direction orthogonal to the first direction, and micro-lenses provided above the light-receiving portion. A certain first-direction array in the matrix arrangement is provided with a pair of photoelectric conversion portions that optically receive, via a pair of micro-lenses, photographic-subject light beams passing through a pair of segmental regions in an exit pupil of a photographic optical system, the pair of segmental regions being disposed biasedly in opposite directions from each other in the first direction. The pair of micro-lenses is disposed such that light axes thereof extend through vicinities of edges of the pair of photoelectric conversion portions, the edges being the farthest edges from each other in the first direction.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 15, 2010
    Applicant: Sony Corporation
    Inventors: Kazuhito Shimoda, Shinichi Fujii, Yasutoshi Katsuda, Hiroki Ui, Yutaka Nishimura
  • Publication number: 20100177205
    Abstract: An image pickup element includes a light receiver having a matrix arrangement formed by disposing first-direction arrays, each having photoelectric converters arranged in a first direction with a gap therebetween, in a second direction orthogonal thereto, and micro-lenses above the light receiver. In the matrix arrangement, a certain first-direction array has two first photoelectric converters receiving, via two micro-lenses, photographic-subject light passing through two segmental regions in an exit pupil of a photographic optical system, and a certain second-direction array has two second photoelectric converters receiving photographic-subject light passing through two segmental regions in the exit pupil. Light axes of the two micro-lenses extend through vicinities of edges, farthest from each other in the first direction, of the first photoelectric converters.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 15, 2010
    Applicant: Sony Corporation
    Inventors: Kazuhito Shimoda, Shinichi Fujii, Yasutoshi Katsuda, Hiroki Ui, Yutaka Nishimura
  • Publication number: 20100025569
    Abstract: A solid-state imaging device includes a semiconductor substrate including a pixel portion having a photoelectric conversion portion and a peripheral circuit portion; a first sidewall composed of a sidewall film and disposed on each sidewall of gate electrodes of MOS transistors in the pixel portion; a second sidewall composed of the sidewall film and disposed on each sidewall of gate electrodes of MOS transistors in the peripheral circuit portion; a first silicide blocking film composed of the sidewall film and disposed on the photoelectric conversion portion and a part of the MOS transistors in the pixel portion; and a second silicide blocking film disposed on the MOS transistors in the pixel portion so as to overlap with a part of the first silicide blocking film, wherein the MOS transistors in the pixel portion are covered with the first and second silicide blocking films.
    Type: Application
    Filed: July 27, 2009
    Publication date: February 4, 2010
    Applicant: SONY CORPORATION
    Inventors: Takuji Matsumoto, Tetsuji Yamaguchi, Keiji Tatani, Yutaka Nishimura, Kazuichiro Itonaga, Hiroyuki Mori, Norihiro Kubo, Fumihiko Koga, Shinichiro Izawa, Susumu Ooki
  • Patent number: 7207314
    Abstract: An engine electronic control unit is inserted through a through hole provided in an intake pipe and mounted in an intake air passage in a direction substantially perpendicularly with respect to a plane of the intake pipe forming the intake air passage. This unit is then secured to the intake pipe using a fixing flange provided at a connector portion. A fixing rail is protruded inside the intake pipe and leading edges of a metal base and a metal cover of the unit are inserted into this rail, thereby securing in position an end opposite to a side of the connector portion of the unit. This realizes an engine electronic control unit offering an outstanding heat radiation performance and vibration resistance, without having to provide special heat radiating parts or without involving an increase in an intake air resistance within the intake air passage. By using such an engine electronic control unit, it is possible to provide a low-cost, compact engine air intake system.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: April 24, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Kohei Sakurai, Minoru Ohsuga, Nobuyasu Kanekawa, Masatoshi Hoshino, Atsushi Kanke, Yutaka Nishimura, Mitsuru Watabe, Noriyoshi Urushiwara
  • Patent number: 7047939
    Abstract: An engine electronic control unit is inserted through a through hole provided in an intake pipe and mounted in an intake air passage in a direction substantially perpendicularly with respect to a plane of the intake pipe forming the intake air passage. This unit is then secured to the intake pipe using a fixing flange provided at a connector portion. A fixing rail is protruded inside the intake pipe and leading edges of a metal base and a metal cover of the unit are inserted into this rail, thereby securing in position an end opposite to a side of the connector portion of the unit.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: May 23, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Kohei Sakurai, Minoru Ohsuga, Nobuyasu Kanekawa, Masatoshi Hoshino, Atsushi Kanke, Yutaka Nishimura, Mitsuru Watabe, Noriyoshi Urushiwara
  • Publication number: 20050252487
    Abstract: An engine electronic control unit is inserted through a through hole provided in an intake pipe and mounted in an intake air passage in a direction substantially perpendicularly with respect to a plane of the intake pipe forming the intake air passage. This unit is then secured to the intake pipe using a fixing flange provided at a connector portion. A fixing rail is protruded inside the intake pipe and leading edges of a metal base and a metal cover of the unit are inserted into this rail, thereby securing in position an end opposite to a side of the connector portion of the unit. This realizes an engine electronic control unit offering an outstanding heat radiation performance and vibration resistance, without having to provide special heat radiating parts or without involving an increase in an intake air resistance within the intake air passage. By using such an engine electronic control unit, it is possible to provide a low-cost, compact engine air intake system.
    Type: Application
    Filed: July 1, 2005
    Publication date: November 17, 2005
    Inventors: Kohei Sakurai, Minoru Ohsuga, Nobuyasu Kanekawa, Masatoshi Hoshino, Atsushi Kanke, Yutaka Nishimura, Mitsuru Watabe, Noriyoshi Urushiwara
  • Publication number: 20050220937
    Abstract: The present invention relates to a seasoning and a processed food which are obtained by processing a fermented soybean paste-like foodstuff, and a method of the production thereof.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 6, 2005
    Applicant: Ajinomoto Co., Inc.
    Inventors: Keiko Ito, Atsuko Kayahara, Gaku Hibino, Yutaka Nishimura, Yasushi Nishimura, Hiroaki Nishiuchi
  • Publication number: 20030168043
    Abstract: An engine electronic control unit is inserted through a through hole provided in an intake pipe and mounted in an intake air passage in a direction substantially perpendicularly with respect to a plane of the intake pipe forming the intake air passage. This unit is then secured to the intake pipe using a fixing flange provided at a connector portion. A fixing rail is protruded inside the intake pipe and leading edges of a metal base and a metal cover of the unit are inserted into this rail, thereby securing in position an end opposite to a side of the connector portion of the unit. This realizes an engine electronic control unit offering an outstanding heat radiation performance and vibration resistance, without having to provide special heat radiating parts or without involving an increase in an intake air resistance within the intake air passage. By using such an engine electronic control unit, it is possible to provide a low-cost, compact engine air intake system.
    Type: Application
    Filed: September 27, 2002
    Publication date: September 11, 2003
    Applicant: Hitachi, Ltd..
    Inventors: Kohei Sakurai, Minoru Ohsuga, Nobuyasu Kanekawa, Masatoshi Hoshino, Atsushi Kanke, Yutaka Nishimura, Mitsuru Watabe, Noriyoshi Urushiwara
  • Publication number: 20030031196
    Abstract: The wire communications device 30 comprises a primary modulating portion 32, a PN code generating portion 34, a spread spectrum modulating portion 36, and a communications interface portion 38. The primary modulating portion 32 performs primary modulation of the transmission data to produces a primary modulated signal. The PN code generating portion 34 generates a PN code in synchronization with a synchronizing signal that has a predetermined period. The spread spectrum modulating portion 36 performs spread spectrum modulation of the primary modulated signal using the PN code, thereby producing a spread spectrum modulated signal. The communications interface portion 38 sends the synchronizing signal and spread spectrum modulated signal to the wire communications channel 3. Accordingly, the receiver can produce a spread spectrum code for reverse spread spectrum demodulation with respect to the synchronizing signal received from the wire communications channel 3.
    Type: Application
    Filed: August 19, 2002
    Publication date: February 13, 2003
    Inventor: Yutaka Nishimura
  • Patent number: RE40647
    Abstract: The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760 Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectric glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: March 10, 2009
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaki Aoki, Hideo Torii, Eiji Fujii, Mitsuhiro Ohtani, Takashi Inami, Hiroyuki Kawamura, Hiroyoshi Tanaka, Ryuichi Murai, Yasuhisa Ishikura, Yutaka Nishimura, Katsuyoshi Yamashita
  • Patent number: RE40871
    Abstract: The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760 Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectric glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: August 18, 2009
    Assignee: Panasonic Corporation
    Inventors: Masaki Aoki, Hideo Torii, Eiji Fujii, Mitsuhiro Ohtani, Takashi Inami, Hiroyuki Kawamura, Hiroyoshi Tanaka, Ryuichi Murai, Yasuhisa Ishikura, Yutaka Nishimura, Katsuyoshi Yamashita
  • Patent number: RE41503
    Abstract: The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760 Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectric glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: August 17, 2010
    Assignee: Panasonic Corporation
    Inventors: Masaki Aoki, Hideo Torii, Eiji Fujii, Mitsuhiro Ohtani, Takashi Inami, Hiroyuki Kawamura, Hiroyoshi Tanaka, Ryuichi Murai, Yasuhisa Ishikura, Yutaka Nishimura, Katsuyoshi Yamashita, Yasuko Nishimura, Syunsuke Nishimura, Emi Kawahara