Patents by Inventor Yuzo Koda

Yuzo Koda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010022991
    Abstract: A two-layer structured electric power application electrode including a non-split electrode consisting of a single planar plate and six split electrodes arranged on the non-split electrode so as to be electrically in contact with the non-split electrode is arranged on the upper side of a discharge chamber provided within a vacuum container such that the power application electrode faces a strip substrate in parallel. The split electrodes are arranged in such a manner as to form a planar plane, and the distance between the surfaces of the split electrodes facing the strip substrate and the strip substrate is uniform. The total area of the surfaces of the split electrodes facing the strip substrate is the same as the area of the non-split electrode on which the split electrodes are mounted. This improves the uniformity in plasma generated in the apparatus for forming a deposited film and enables cutting-down of the costs required to form deposited films.
    Type: Application
    Filed: January 24, 2001
    Publication date: September 20, 2001
    Inventors: Takeshi Shishido, Masahiro Kanai, Yuzo Koda, Takahiro Yajima
  • Patent number: 6287943
    Abstract: The invention provides a process for producing a semiconductor layer by introducing a raw gas into a discharge chamber and supplying high-frequency power to the chamber to decompose the raw gas by discharge, thereby forming a semiconductor layer on a substrate within the discharge chamber, the process comprising the steps of supplying high-frequency power of at least very high frequency (VHF) as the high-frequency power; supplying bias power of direct current power and/or high-frequency power of radio-frequency (RF) together with the high-frequency power of VHF to the discharge chamber; and controlling a direct current component of an electric current flowing into an electrode, to which the bias power is supplied, so as to fall within a range of from 0.1 A/m2 to 10 A/m2 in terms of a current density based on the area of an inner wall of the discharge chamber. A good-quality semiconductor layer can be deposited over a large area at a high speed.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: September 11, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Fujioka, Shotaro Okabe, Masahiro Kanai, Akira Sakai, Tadashi Sawayama, Yuzo Koda, Takahiro Yajima
  • Patent number: 5769963
    Abstract: A photovoltaic device comprises a semiconductor region having at least one set of semiconductor layers comprised of a first semiconductor layer having a first conductivity type, an intrinsic or substantially intrinsic second semiconductor layer, and a third semiconductor layer having a conductivity type opposite to that of the first conductivity type, the layers being formed in this order, and first and second electrodes provided such that the electrodes interpose the semiconductor region; wherein the density of a dopant impurity determining the conductivity type of the first semiconductor layer in a set of semiconductor layers which is in contact with the first electrode is varied so as to be lower on the side of the first electrode, or the grain size of crystals in the first semiconductor layer is varied so as to be smaller on the side of the first electrode.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: June 23, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Fujioka, Shotaro Okabe, Masahiro Kanai, Akira Sakai, Yuzo Koda, Tadashi Hori, Tomonori Nishimoto, Takahiro Yajima
  • Patent number: 5720826
    Abstract: Provided are a photovoltaic element suitable for practical use, low in cost, high in reliability, and high in photoelectric conversion efficiency, and a fabrication process thereof. In the photovoltaic element having stacked layers of non-single-crystal semiconductors, at least an i-type semiconductor layer and a second conductivity type semiconductor layer are stacked on a first conductivity type semiconductor layer, and the second conduction type semiconductor layer has a layer A formed by exposing the surface of the i-type semiconductor layer to a plasma containing a valence electron controlling agent and a layer B deposited on the layer A by a CVD process using at least the valence electron controlling agent and the main constituent elements of the i-type semiconductor layer.
    Type: Grant
    Filed: May 29, 1996
    Date of Patent: February 24, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryo Hayashi, Yasushi Fujioka, Shotaro Okabe, Masahiro Kanai, Jinsho Matsuyama, Akira Sakai, Yuzo Koda, Tadashi Hori, Takahiro Yajima
  • Patent number: 5510631
    Abstract: A non-monocrystalline silicon carbide semiconductor comprises carbon atoms, silicon atoms, and at least one of hydrogen atoms and halogen atoms, the non-monocrystalline silicon carbide semiconductor having therein microvoids with an average radius of not more than 3.5 .ANG. at a microvoid density of not more than 1.times.10.sup.19 cm.sup.-3.
    Type: Grant
    Filed: August 11, 1994
    Date of Patent: April 23, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Tatsuyuki Aoike, Toshimitsu Kariya, Yuzo Koda
  • Patent number: 5439533
    Abstract: An object of the present invention is to provide a photovoltaic device and a method of producing the photovoltaic device which can prevent recombination of photo-excited carriers and which permits increases in the open circuit voltage and the carrier range. The photovoltaic device of the present invention has a laminate structure composed of at least a p-type layer of a silicon non-single crystal semiconductor, a photoactive layer having a plurality of i-type layers, and an n-type layer. The photoactive layer has a laminate structure composed of a first i-type layer deposited on the side of the n-type layer by a microwave plasma CVD process, and a second i-type layer deposited on the side of said the p-type layer by an RF plasma CVD process.
    Type: Grant
    Filed: November 7, 1994
    Date of Patent: August 8, 1995
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Jinsho Matsuyama, Toshimitsu Kariya, Koichi Matsuda, Yuzo Koda, Naoto Okada
  • Patent number: 5418680
    Abstract: An apparatus for repairing a defective semiconductor device having an electrically short-circuited portion, wherein the semiconductor device includes a semiconductor thin film and a conductive thin film disposed in the named order on a conductive surface of a substrate and in which the conductive thin film and the conductive surface of the substrate are electrically short-circuited at a pinhole occurring in the semiconductor thin film to form an electrically short-circuited portion so that the semiconductor device is defective. The apparatus includes a substrate holding unit for holding the substrate of the defective semiconductor device and an electrode arranged above the substrate holding unit so that, when the defective semiconductor is positioned on the substrate holding unit, there is a predetermined distance between the electrode and the conductive thin film of the defective semiconductor device, the electrode being capable of moving in relation to the substrate of the defective semiconductor device.
    Type: Grant
    Filed: November 22, 1993
    Date of Patent: May 23, 1995
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Tatsuyuki Aoike, Mitsuyuki Niwa, Toshimitsu Kariya, Yuzo Koda
  • Patent number: 5371380
    Abstract: A non-single crystalline semiconductor containing at least one kind of atoms selected from the group consisting of silicon atoms (Si) and germanium atoms (Ge) as a matrix, and at least one kind of atoms selected from the group consisting of hydrogen atoms (H) and halogen atoms (X), wherein said non-single crystalline semiconductor has an average radius of 3.5 .ANG. or less and a density of 1.times.10.sup.19 (cm.sup.-3) or less as for microvoids contained therein. The non-single crystalline semiconductor excels in semiconductor characteristics and adhesion with other materials and are effectively usable as a constituent element of various semiconductor devices.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: December 6, 1994
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Tatsuyuki Aoike, Mitsuyuki Niwa, Toshimitsu Kariya, Yuzo Koda
  • Patent number: 5362684
    Abstract: A non-monocrystalline silicon carbide semiconductor comprises carbon atoms, silicon atoms, and at least one of hydrogen atoms and halogen atoms, the non-monocrystalline silicon carbide semiconductor having therein microvoids with an average radius of not more than 3.5.ANG. at a microvoid density of not more than 1.times.10.sup.19 cm.sup.-3.
    Type: Grant
    Filed: February 25, 1992
    Date of Patent: November 8, 1994
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Tatsuyuki Aoike, Toshimitsu Kariya, Yuzo Koda
  • Patent number: 5281541
    Abstract: A method for repairing a defective semiconductor device, the defective semiconductor device including a semiconductor thin film and a conductive thin film, disposed in the named order, on a conductive surface of a substrate, such that the conductive thin film and the conductive surface of the substrate are electrically short-circuited at a pinhole occurring in the semiconductor thin film to form an electrically short-circuited portion.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: January 25, 1994
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Tatsuyuki Aoike, Mitsuyuki Niwa, Toshimitsu Kariya, Yuzo Koda