Patents by Inventor Zhao Ma
Zhao Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12050104Abstract: A MEMS gyroscope includes an anchor point, at least two driving structures connected with the anchor point; a mass group connected with the driving structures, and coupling beams connected with adjacent driving structures. The mass group includes two detecting components arranged on opposite sides of the driving structures and connected with the driving structures. Each of the detecting components includes two mass blocks arranged at intervals and detecting transducers arranged below or above the mass blocks. The mass blocks are connected with the driving structures. At least portions of the mass blocks extend to outsides of the driving structures. The mass blocks and the detecting transducers are symmetrically arranged, which is convenient for realizing differential detection. In an out-plane oscillation mode, most portions of the mass blocks sense an angular velocity.Type: GrantFiled: July 26, 2022Date of Patent: July 30, 2024Assignee: AAC KAITAI TECHNOLOGIES (WUHAN) CO., LTDInventors: Xiao Kan, Zhan Zhan, Zhao Ma, Shan Yang, Shitao Yan, Hongtao Peng, Yang Li, Kahkeen Lai, Veronica Tan, Yan Hong
-
Patent number: 12050105Abstract: A MEMS gyroscope includes an anchor point, a resonator, and a transducer. The resonator includes eight resonating blocks arranged at equal intervals and a coupling beam connecting each two adjacent resonating blocks. The resonating blocks are connected with the anchor point through anchoring beams. The anchoring beams decouple radial motion and circumferential motion of the resonating blocks. The resonating blocks include first resonating blocks, second resonating blocks, third resonating blocks, and fourth resonating blocks. In a vibration mode, the transducer drives the first and second resonating blocks to vibrate along a first axis and a second axis respectively, so the third and fourth resonating blocks are driven to vibrate along the fourth axis and the third axis respectively. In a detection mode, the transducer detects vibration of the third resonating blocks along the third axis and the vibration of the fourth resonating blocks along the fourth axis.Type: GrantFiled: July 26, 2022Date of Patent: July 30, 2024Assignee: AAC KAITAI TECHNOLOGIES (WUHAN) CO., LTDInventors: Shan Yang, Zhan Zhan, Shitao Yan, Zhao Ma, Xiao Kan, Hongtao Peng, Yan Hong, Kahkeen Lai, Veronica Tan
-
Patent number: 12038282Abstract: A MEMS single-axis gyroscope includes an anchor point structure, a sensing unit elastically connected with the anchor point structure, and a driving decoupling structure elastically connected with the anchor point structure and the sensing unit. The sensing unit includes a plurality of mass blocks arranged side by side and rocker connecting pieces. Each of the rocker connecting pieces is connected between corresponding two adjacent mass blocks. Connecting positions between each of the rocker connecting pieces and the corresponding two adjacent mass blocks are located on a same side of the line connecting the centers of the plurality of mass blocks. The MEMS single-axis gyroscope is able to perform differential detection, which resists interference of external electrical and mechanical noise, and improves a signal-to-noise ratio. By adjusting the rocker connecting pieces arranged between each two adjacent mass blocks, a total vector displacement of the plurality of mass blocks is zero.Type: GrantFiled: July 26, 2022Date of Patent: July 16, 2024Assignee: AAC KAITAI TECHNOLOGIES (WUHAN) CO., LTDInventors: Shan Yang, Hongtao Peng, Zhan Zhan, Shitao Yan, Zhao Ma, Xiao Kan, Kahkeen Lai, Veronica Tan
-
Patent number: 12013240Abstract: A MEMS gyroscope includes an anchor point unit, a sensing unit elastically connected with the anchor point unit, and a driving unit elastically connected with the anchor point unit and the sensing unit. The anchor point unit includes four corner anchor point structures arranged at four corners of the MEMS gyroscope and four central anchor points. The sensing unit includes four first mass blocks elastically connected with the corner anchor point structures and the central anchor points to form avoiding spaces, four second mass blocks arranged within the avoiding spaces, and four decoupling mass blocks. The driving unit includes four driving pieces respectively connected with outer sides of the second mass blocks. The MEMS gyroscope realizes independent detection of angular velocities of three axes and realizes differential detection and balance of vibration moment, which immune to influence of acceleration shock and quadrature error and improves detection accuracy.Type: GrantFiled: July 25, 2022Date of Patent: June 18, 2024Assignee: AAC KAITAI TECHNOLOGIES (WUHAN) CO., LTDInventors: Zhao Ma, Zhan Zhan, Xiao Kan, Shan Yang, Shitao Yan, Hongtao Peng, Yang Li, Kahkeen Lai, Veronica Tan
-
Patent number: 12013414Abstract: A MEMS accelerometer includes a base, proof mass, at least one pair of seesaw structures, and an out-of-plane displacement detection component. The at least one pair of the seesaw structures are oppositely disposed and fixed on the base through anchor points, and the out-of-plane displacement detection component is configured to detect rotation of the at least one pair of the seesaw structures or out-of-plane linear motion of the proof mass. Linear displacement of the MEMS accelerometer is not only beneficial to improve linearity of a capacitive displacement detection, but also to other non-capacitive detection methods, such as optical displacement detection. In addition, a double coupling structure is adopted to jointly couple rotation of seesaws, and remaining translational and rotational modes of the seesaw structures are suppressed.Type: GrantFiled: August 3, 2022Date of Patent: June 18, 2024Assignee: AAC KAITAI TECHNOLOGIES (WUHAN) CO., LTDInventors: Shitao Yan, Zhan Zhan, Shan Yang, Zhao Ma, Xiao Kan, Hongtao Peng, Yang Li, Veronica Tan, Yan Hong, Kahkeen Lai
-
Publication number: 20240142234Abstract: The present invention provides a multimass MEMS gyroscope featuring an orthogonal arrangement, which comprises an anchor point unit, a sensing unit and a driving unit; the anchor point unit comprises a central anchor point subunit located at the center of a rectangle and four corner anchor points located at the four corners of the rectangle respectively; the sensing unit comprises four detection mass blocks each of which has a frame structure and is elastically connected between the central anchor point subunit and the corresponding corner anchor point, receding spaces being formed between the detection mass blocks, and four detection decoupling parts; and the driving unit comprises four driving mass blocks, and driving decoupling parts. The gyroscope can improve the arrangement area of transducers and reduce the mass of the detection mass blocks to improve the Coriolis gain, thereby improving the mechanical sensitivity of the gyroscope.Type: ApplicationFiled: June 21, 2023Publication date: May 2, 2024Inventors: Zhao Ma, Shan Yang, Zhan Zhan, Shitao Yan, Xiao Kan, Hongtao Peng, Yang Li, Kahkeen Lai, Veronica Tan
-
Publication number: 20240110938Abstract: The present invention provides a capacitive micromechanical acceleromete. The capacitive micromechanical acceleromete includes a base with anchor points, at least one detection structure pair arranged on one side of the base and elastically connected to the anchor points, and a detection electrode spaced apart from each detection structure pair. Each detection structure pair includes two seesaw structures elastically connected to the base respectively. The seesaw structures are asymmetric about a rotation axis where the anchor points are located; asymmetric portions of the two seesaw structures are reversed and parallel. In a detection modality, changing directions of spacings formed between the two seesaw structures and the detection electrode are opposite. The capacitive micromechanical acceleromete can reduce the impact of the noise of the angular acceleration of the external rotation or the stress and other external factors on the detection of the accelerometer, and improving the detection accuracy.Type: ApplicationFiled: January 4, 2023Publication date: April 4, 2024Inventors: Shitao Yan, Zhan Zhan, Shan Yang, Zhao Ma, Xiao Kan, Hongtao Peng, Yang Li, Kahkeen Lai, Veronica Tan
-
Patent number: 11943864Abstract: A fabrication method for stretchable/conformable electronic and optoelectronic circuits and the resulting circuits. The method may utilize a variety of electronic materials including, but not limited to Silicon, GaAs, InSb, Pb Se, CdTe, organic semiconductors, metal oxide semiconductors and related alloys or hybrid combinations of the aforementioned materials. While a wide range of fabricated electronic/optoelectronic devices, circuits, and systems could be manufactured using the embodied technology, a hemispherical image sensor is an exemplary advantageous optoelectronic device that is enabled by this technology. Other applications include but are not limited to wearable electronics, flexible devices for the internet-of-things, and advanced imaging systems.Type: GrantFiled: January 6, 2023Date of Patent: March 26, 2024Assignee: University of Central Florida Research Foundation, Inc.Inventors: Christopher Kyle Renshaw, Zhao Ma
-
Publication number: 20240093996Abstract: Provided is a fully decoupled MEMS gyroscope, including an anchor point unit, a sensing unit elastically connected to the anchor point unit, and a driving unit configured to drive the sensing unit to move. The anchor point unit includes a center anchor point subunit located at a center of a rectangle and four side anchor points. The driving unit includes four driving members located on four sides of the rectangle. The sensing unit includes two X mass blocks symmetrically arranged in two avoiding intervals, two Y mass blocks symmetrically arranged in the other two avoiding intervals, four Z mass blocks respectively located at an outer side of each driving member, and four Z detection decoupling members respectively located at an outer side of each Z mass block. The X mass blocks and the Y mass blocks are respectively connected to each side anchor point.Type: ApplicationFiled: December 27, 2022Publication date: March 21, 2024Inventors: Zhao Ma, Shitao Yan, Zhan Zhan, Xiao Kan, Shan Yang, Hongtao Peng, Yang Li, Kahkeen Lai, Veronica Tan
-
APPLICATION OF GOSSYPOL AND ITS OPTICAL ISOMERS TO PREPARATION OF CORONAVIRUS 3CL PROTEASE INHIBITOR
Publication number: 20240074990Abstract: The present invention relates to application of gossypol and its optical isomers to preparation of an anti-Coronavirus drug. Specifically disclosed is application of pharmaceutically acceptable salts, solvates, isotopes, stereoisomers, stereoisomer mixtures, and tautomers of the gossypol and its optical isomers to preparation of a drug for preventing and/or treating a disease caused by a Coronavirus. The Coronavirus is MERS-CoV, SARS-CoV, or SARS-CoV-2. It is found in the present invention for the first time that the gossypol and its optical isomers can inhibit the activity of Coronavirus 3CL proteases to achieve an anti-Coronavirus effect. The half maximal inhibitory concentrations of gossypol and (?)-gossypol to SARS-CoV proteases and SARS-CoV-2 3CL proteases are all lower than 10 ?M. The anti-Coronavirus 3CL protease effect is good. Therefore, the gossypol and its optical isomers have the potential for use in the preparation of a drug for preventing and/or treating novel Coronavirus infections.Type: ApplicationFiled: March 18, 2023Publication date: March 7, 2024Inventors: Xiaolin XIE, Dezhu ZHANG, Zhao MA, Boyang LI, Xuhua ZHOU, Lei TIAN, Chengyuan LIANG, Taotao QIANG, Jingyi LI, Liang XIN, Shaojun ZHANG, Kangxiong WU, Xiuding YANG, Sundian LIU, Yuting LIU -
Publication number: 20240069062Abstract: The present invention provides an accelerometer, including base, anchor points, seesaw structures elastically, and a differential detection assembly; the seesaw structures includes a first seesaw structure and a second seesaw structure which are parallel to each other and placed in reverse; the anchor points includes a first anchor point and a second anchor point; the first seesaw structure includes a first elastic member and a first mass block connected to the first elastic member; the first mass block is driven by a normal phase carrier drive signal from the first anchor point; the second seesaw structure includes a second elastic member and a second mass block connected to the second elastic member; and the second mass block is driven by a reversed phase carrier drive signal from the second anchor point. The accelerometer can effectively suppress the impact of noise of an angular acceleration of rotation.Type: ApplicationFiled: December 27, 2022Publication date: February 29, 2024Inventors: Shitao Yan, Shan Yang, Zhan Zhan, Zhao Ma, Xiao Kan, Hongtao Peng, Yang Li, Kahkeen Lai, Veronica Tan
-
Publication number: 20240060778Abstract: The present invention provides a three-axis gyroscope and electronic products, including a drive structure used for driving the three-axis gyroscope, a first sensitive structure used for sensing an angular velocity in a first direction, a second sensitive structure used for sensing an angular velocity in the second direction, a third sensitive structure used for sensing an angular velocity in a third direction.Type: ApplicationFiled: December 27, 2022Publication date: February 22, 2024Inventors: Zhan Zhan, Zhao Ma, Xiao Kan, Shitao Yan, Shan Yang, Veronica Tan, Yang Li, Kahkeen Lai
-
Patent number: 11885618Abstract: One of the objects of the present invention is to provide a three-axis micromachined gyroscope which improves the detection sensitivity for detecting angular velocity. Accordingly, the present invention provides a three-axis micromachined gyroscope, including: a base; a vibration part suspended by the base, including a vibration assembly for receiving Coriolis force and generating a position change; a drive electrode for driving the vibration part; a detection part connected with the vibration part for detecting position change of the weights after receiving Coriolis force, and converting the position change of the weight into an electrical signal for outputting; and a swing center of each weight being outside the corresponding weight. When the three-axis micromachined gyroscope receives an angular velocity, the swinging weight is subjected to Coriolis force and a corresponding position change occurs.Type: GrantFiled: December 31, 2021Date of Patent: January 30, 2024Assignee: AAC KAITAI TECHNOLOGIES (WUHAN) CO., LTDInventors: Zhao Ma, Zhan Zhan, Shan Yang, Xiao Kan, Yang Li, Veronica Tan, Yan Hong, Kahkeen Lai
-
Patent number: 11879907Abstract: The invention provides an acceleration sensor, including a sensing unit, a sensing unit includes a ring-shaped outer coupling unit; seesaw structures, including at least two and arranged on an inner side of the outer coupling unit; an inner coupling unit, including an inner coupling elastic beam connecting two adjacent seesaw structures; proof mass blocks fixed on the outer coupling unit or the inner coupling unit or the seesaw structures; an in-plane coupling elastic member elastically connecting the seesaw structures to the outer coupling unit; in-plane displacement detection devices arranged on the proof mass blocks and configured to detect movements of the proof mass blocks along the first direction and/or along the second direction; and out-of-plane displacement detection devices arranged on the outer coupling unit and/or the seesaw structures and/or the inner coupling unit configured to detect movements of the seesaw structures along the third direction.Type: GrantFiled: August 3, 2022Date of Patent: January 23, 2024Assignee: AAC Kaitai Technologies (Wuhan) CO., LTDInventors: Shitao Yan, Zhan Zhan, Shan Yang, Zhao Ma, Hongtao Peng, Xiao Kan, Yang Li, Kahkeen Lai, Yan Hong, Veronica Tan
-
Publication number: 20230403792Abstract: A fabrication method for stretchable/conformable electronic and optoelectronic circuits and the resulting circuits. The method may utilize a variety of electronic materials including, but not limited to Silicon, GaAs, InSb, PbSe, CdTe, organic semiconductors, metal oxide semiconductors and related alloys or hybrid combinations of the aforementioned materials. While a wide range of fabricated electronic/optoelectronic devices, circuits, and systems could be manufactured using the embodied technology, a hemispherical image sensor is an exemplary advantageous optoelectronic device that is enabled by this technology. Other applications include but are not limited to wearable electronics, flexible devices for the internet-of-things, and advanced imaging systems.Type: ApplicationFiled: January 6, 2023Publication date: December 14, 2023Inventors: Christopher Kyle Renshaw, Zhao Ma
-
Publication number: 20230391736Abstract: The present invention relates to the technical field of medicinal chemistry, and particularly to a method for preparing a 3-tetrazolylmethyl-1,3,5-triazin-2,4-dione compound inhibiting coronavirus 3CL protease activity and use thereof. Specifically, a compound of Formula I, or a pharmaceutically acceptable salt, or an optical isomer, or an isotope-substituted form thereof is provided. The compound effectively inhibits the SARS-CoV-2 3CLpro activity, and is useful in the preparation of a SARS-CoV-2 3CLpro inhibitor to block the replication and transcription of SARS-CoV-2 viruses in patients. The compound prepared in the present invention has high in-vitro safety, and very good prospect of application in the preparation of SARS-CoV-2 3CLpro inhibitors and anti-SARS-CoV-2 drugs.Type: ApplicationFiled: March 18, 2023Publication date: December 7, 2023Inventors: Xiaolin XIE, Dezhu Zhang, Zhao Ma, Boyang Li, Xuhua Zhou, Chengyuan Liang, Liang Xin, Lei Tian, Jingyi Li, Kangxiong Wu, Shaojun Zhang, Xiuding Yang, Sundian Liu, Yuting Liu
-
Publication number: 20230372534Abstract: The present inventions provides drug-drug conjugates, drug-porphyrin conjugates, nanoparticles of the conjugates, as well as modified nanoparticles having PEGylated exteriors or encapsulated by red blood cell vesicles. The conjugates, nanoparticles and nanocarriers are useful for treating cancers and other diseases, as well as for imaging diseased tissue or organs.Type: ApplicationFiled: November 8, 2022Publication date: November 23, 2023Inventors: Yuanpei LI, Xiangdong XUE, Yee HUANG, Zhao MA
-
Publication number: 20230348419Abstract: The present invention provides bisaminoquinoline compounds of Formula (I). The present invention also provides nanocarriers comprising compounds of the present invention, and methods of using the nanocarriers for treating diseases and imaging.Type: ApplicationFiled: September 18, 2020Publication date: November 2, 2023Inventors: Yuanpei LI, Zhao MA
-
Publication number: 20230314137Abstract: A MEMS single-axis gyroscope includes an anchor point structure, a sensing unit elastically connected with the anchor point structure, and a driving decoupling structure elastically connected with the anchor point structure and the sensing unit. The sensing unit includes a plurality of mass blocks arranged side by side and rocker connecting pieces. Each of the rocker connecting pieces is connected between corresponding two adjacent mass blocks. Connecting positions between each of the rocker connecting pieces and the corresponding two adjacent mass blocks are located on a same side of the line connecting the centers of the plurality of mass blocks. The MEMS single-axis gyroscope is able to perform differential detection, which resists interference of external electrical and mechanical noise, and improves a signal-to-noise ratio. By adjusting the rocker connecting pieces arranged between each two adjacent mass blocks, a total vector displacement of the plurality of mass blocks is zero.Type: ApplicationFiled: July 26, 2022Publication date: October 5, 2023Inventors: Shan Yang, Hongtao Peng, Zhan Zhan, Shitao Yan, Zhao Ma, Xiao Kan, Kahkeen Lai, Veronica Tan
-
Publication number: 20230314139Abstract: A three-axis MEMS gyroscope includes a substrate, a sensing unit connected with the substrate, and a driving unit driving the sensing unit to move. The substrate includes anchor point structures and coupling structures connected with the anchor point structures. The driving unit includes driving pieces. One ends of each of the driving pieces are elastically connected with an adjacent coupling structure. The sensing unit includes X and Y mass blocks and Z mass blocks. Each of the X and Y mass blocks is arranged in a corresponding avoiding space. The X and Y mass blocks are respectively connected with adjacent coupling structures to form a rectangular frame. The Z mass blocks are connected with the driving pieces and separately arranged on one side of each driving piece away from each anchor point structure. The three-axis MEMS gyroscope is differentially driven, which realizes differential detection and reduces quadrature error.Type: ApplicationFiled: August 3, 2022Publication date: October 5, 2023Inventors: Zhao Ma, Zhan Zhan, Xiao Kan, Shan Yang, Shitao Yan, Hongtao Peng, Yang Li, Kahkeen Lai, Veronica Tan