Patents by Inventor Zhaoli Sun

Zhaoli Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130338183
    Abstract: The present invention relates to the field of hematopoietic stem cells. More specifically, the present invention provides methods and composition useful for peripheral blood stem cell mobilization. In one embodiment, a method of treating an organ transplant recipient comprises administering to the recipient a low dose of Tacrolimus in an amount sufficient to mobilize stem cells to the peripheral blood of the recipient. In a specific embodiment, the low dose of Tacrolimus is in the range of about 0.05 mg/kg to about 0.5 mg/kg.
    Type: Application
    Filed: December 7, 2011
    Publication date: December 19, 2013
    Applicant: The Johns Hopkins University
    Inventors: Zhaoli Sun, Takehiro Okabayashi
  • Patent number: 8575716
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: November 5, 2013
    Assignee: Micron Technology, Inc.
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Publication number: 20130249050
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 26, 2013
    Applicant: Micron Technology, Inc.
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Patent number: 8461016
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 11, 2013
    Assignee: Micron Technology, Inc.
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Patent number: 8431483
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 30, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Publication number: 20130087883
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Publication number: 20130052231
    Abstract: The present invention relates to the field of organ transplantation. In one aspect, the present invention provides methods of treating an organ transplant recipient comprising administering to the recipient a therapeutically effective amount of a stem cell mobilizer and an immunosuppressive agent. In particular embodiments, the present invention provides a method of treating an organ transplant recipient comprising administering to the recipient a therapeutically effective amount of an agent that mobilizes CD34+ and/or CD133+ stem cells and a low dose of an immunosuppressive agent.
    Type: Application
    Filed: December 10, 2010
    Publication date: February 28, 2013
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Zhaoli Sun, George Melville Williams
  • Publication number: 20120171716
    Abstract: The present invention relates to the field of organ transplantation. More specifically, the present invention provides methods for predicting organ function after transplantation. In certain embodiments, the method comprises measuring mitochondrial membrane potential from a biopsy sample from the donor organ. The present invention is also applicable to organ dysfunction in general. More specifically, the methods of the present invention may be useful in formulating prognoses for patients with acute or chronic organ dysfunction due to ischemia, infection, drug injury or age. In this rapid procedure, only small samples of tissue are required, enabling the clinical application of mitochondrial function previously thought impractical.
    Type: Application
    Filed: August 11, 2010
    Publication date: July 5, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Zhaoli Sun, George Williams
  • Patent number: 7407885
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: August 5, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Patent number: 7368389
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: May 6, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Publication number: 20070178695
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Application
    Filed: March 26, 2007
    Publication date: August 2, 2007
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Publication number: 20070173060
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Application
    Filed: March 26, 2007
    Publication date: July 26, 2007
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Publication number: 20060258155
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Application
    Filed: May 11, 2005
    Publication date: November 16, 2006
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Patent number: 6632294
    Abstract: Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: October 14, 2003
    Assignee: Advanced Mechanical Technology, Inc.
    Inventors: Florian B. Mansfeld, Zhaoli Sun
  • Publication number: 20020043649
    Abstract: Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
    Type: Application
    Filed: January 31, 2001
    Publication date: April 18, 2002
    Applicant: Advanced Mechanical Technology
    Inventors: Florian B. Mansfeld, Zhaoli Sun