Patents by Inventor Zhen Peng

Zhen Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10209445
    Abstract: Compact photonics platforms and methods of forming the same are provided. An example of a compact photonics platform includes a layered structure having an active region along a longitudinal axis, a facet having an angle no less than a critical angle formed at at least one longitudinal end of the active region, and a waveguide having at least one grating coupler positioned in alignment with the angled facet to couple light out to or in from the waveguide.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 19, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Di Liang, David A. Fattal, Marco Florentino, Zhen Peng, Charles M. Santori, Raymond G. Beausoleil
  • Patent number: 10120198
    Abstract: A directional backlight is disclosed. The directional backlight has a plurality of light sources to generate a plurality of input planar lightbeams. The plurality of input planar lightbeams illuminates a directional backplane that has a plurality of directional pixels to scatter the plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. The directional backlight can be used to generate a 3D image by specifying the characteristics of the directional pixels in the directional backplane.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: November 6, 2018
    Assignee: LEIA INC.
    Inventors: Charles M. Santori, David A. Fattal, Marco Fiorentino, James A. Brug, Zhen Peng
  • Patent number: 10082613
    Abstract: A directional backlight has a directional backplane that has a plurality of directional pixels configured to scatter a plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. A modulation layer having a plurality of modulators configured to modulate the plurality of directional lightbeams. The directional backlight is configured to generate a 3D image with multiple views by specifying the characteristics of the directional pixels in the directional backplane.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 25, 2018
    Assignee: LEIA INC.
    Inventors: David A. Fattal, James A. Brug, Charles M. Santori, Marco Fiorentino, Zhen Peng
  • Publication number: 20180267239
    Abstract: Compact photonics platforms and methods of forming the same are provided. An example of a compact photonics platform includes a layered structure having an active region along a longitudinal axis, a facet having an angle no less than a critical angle formed at at least one longitudinal end of the active region, and a waveguide having at least one grating coupler positioned in alignment with the angled facet to couple light out to or in from the waveguide.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 20, 2018
    Inventors: Di Liang, David A. Fattal, Marco Fiorentino, Zhen Peng, Charles M. Santori, Raymond G. Beausoleil
  • Patent number: 9995876
    Abstract: Compact photonics platforms and methods of forming the same are provided. An example of a compact photonics platform includes a layered structure having an active region along a longitudinal axis, a facet having an angle no less than a critical angle formed at least one longitudinal end of the active region, and a waveguide having at least one grating coupler positioned in alignment with the angled facet to couple light out to or in from the waveguide.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: June 12, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Di Liang, David A. Fattal, Marco Fiorentino, Zhen Peng, Charles M. Santori, Raymond G. Beausoleil
  • Patent number: 9829727
    Abstract: A polymer-clad optical modulator includes a substrate comprising an insulating material; a silicon microring on the substrate; silicon waveguides on the substrate adjacent the silicon microring; an electro-optic polymer covering the silicon microring and the silicon waveguide; and an electrical contact on top of the electro-optic polymer. The silicon microring or a portion of an adjacent silicon layer is lightly doped. A polymer-clad depletion type optical modulator and a polymer-clad carrier injection type optical modulator, each employing the lightly doped silicon microring or an adjacent lightly doped silicon layer, are also described.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: November 28, 2017
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Zhihong Huang, Di Liang, Zhen Peng, Raymond G Beausoleil
  • Patent number: 9581761
    Abstract: Controlling temperatures in optical circuits includes using a device with a waveguide located between a base cladding and an over cladding. The base cladding is deposited over a substrate and the over cladding is made of a thermally conductive dielectric material.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 28, 2017
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Di Liang, Zhen Peng, Raymond G. Beausoleil
  • Publication number: 20170045762
    Abstract: A polymer-clad optical modulator includes a substrate comprising an insulating material; a silicon microring on the substrate; silicon waveguides on the substrate adjacent the silicon microring; an electro-optic polymer covering the silicon microring and the silicon waveguide; and an electrical contact on top of the electro-optic polymer. The silicon microring or a portion of an adjacent silicon layer is lightly doped. A polymer-clad depletion type optical modulator and a polymer-clad carrier injection type optical modulator, each employing the lightly doped silicon microring or an adjacent lightly doped silicon layer, are also described.
    Type: Application
    Filed: May 7, 2014
    Publication date: February 16, 2017
    Inventors: Zhihong Huang, Di Liang, Zhen Peng, Raymond G Beausoleil
  • Patent number: 9568672
    Abstract: An optical coupling system and method of fabrication are included. The optical coupling system includes a substrate layer and an optical waveguide material overlying the substrate layer. The optical waveguide material can include a grating. The system also includes a cover material overlying the optical waveguide material to couple an optical signal to the optical waveguide material via the grating at a coupling angle. Approximately zero energy of the coupled optical signal is lost in the substrate layer due to a combination of the coupling angle and a difference in refractive indices between the cover material and the substrate layer.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 14, 2017
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: David A. Fattal, Zhen Peng, Marco Fiorentino, Raymond G. Beausoleil
  • Publication number: 20160370594
    Abstract: A directional backlight is disclosed. The directional backlight has a plurality of light sources to generate a plurality of input planar lightbeams. The plurality of input planar lightbeams illuminates a directional backplane that has a plurality of directional pixels to scatter the plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. The directional backlight can be used to generate a 3D image by specifying the characteristics of the directional pixels in the directional backplane.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Charles M. Santori, David A. Fattal, Marco Fiorentino, James A. Brug, Zhen Peng
  • Patent number: 9520946
    Abstract: One example relates to an optical engine comprising a given layer of given material overlaying an optical waveguide of another material. The given layer of given material can comprise an aligning seat to receive an optical transmitter to provide the optical signal. The aligning seat can also align the optical transmitter such that the optical transmitter provides the optical signal in a direction that is substantially non-oblique relative to a longitudinal axis of the optical waveguide. The optical engine can also include an optical signal redirector to tilt the optical signal by a tilt angle. The optical waveguide can comprise a grating coupler to diffract the optical signal provided at the tilt angle into the optical waveguide.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 13, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Zhen Peng, David A. Fattal, Marco Fiorentino
  • Patent number: 9490385
    Abstract: A device includes a first region, a multiplication region, a second region, and an absorption region. The first region is associated with a first terminal, and the second region is associated with a second terminal. The first region is separated from the second region by the multiplication region. The absorption region is disposed on the multiplication region and associated with a third terminal. A multiplication region electric field is independently controllable with respect to an absorption region electric field, based on the first terminal, the second terminal, and the third terminal.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 8, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Zhihong Huang, Marco Fiorentino, Charles M. Santori, Zhen Peng, Di Liang, Raymond G. Beausoleil
  • Patent number: 9459461
    Abstract: A directional backlight is disclosed. The directional backlight has a plurality of light sources to generate a plurality of input planar lightbeams. The plurality of input planar lightbeams illuminates a directional backplane that has a plurality of directional pixels to scatter the plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. The directional backlight can be used to generate a 3D image by specifying the characteristics of the directional pixels in the directional backplane.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: October 4, 2016
    Assignee: LEIA INC.
    Inventors: Charles M. Santori, David A. Fattal, Marco Fiorentino, James A. Brug, Zhen Peng
  • Patent number: 9389415
    Abstract: A directional pixel for use in a display screen is disclosed. The directional pixel receives a planar lightbeam and includes a light propagating layer and a grating to scatter a portion of the planar lightbeam into a directional lightbeam having a direction and angular spread controlled by the grating.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: July 12, 2016
    Assignee: LEIA INC.
    Inventors: David A. Fattal, James A. Brug, Zhen Peng, Marco Fiorentino, Raymond G. Beausoleil
  • Publication number: 20160195664
    Abstract: Multibeam diffraction grating-based backlighting includes a light guide and a multibeam diffraction grating at a surface of the light guide. The light guide is to guide light from a light source. The multibeam diffraction grating is to couple out a portion of the guided light using diffractive coupling and to direct the coupled out portion away from the light guide as a plurality of light beams with different principal angular directions.
    Type: Application
    Filed: July 30, 2013
    Publication date: July 7, 2016
    Inventors: David A. Fattal, Zhen Peng, Charles M. Santori
  • Publication number: 20160141473
    Abstract: A light emitting diode device is described which includes at least one planar non-periodic high-index-contrast grating. The light emitting diode device includes a cavity formed between a reflective optical element and a transmissive optical element. One or both of the optical elements can be a planar non-periodic high-index-contrast grating. The transmissive optical element can be a collimating lens used to collimate incident beams of light while the reflective optical element can be a parabolic reflector used to reflect incident beams of light along a direction opposite to an incidence direction. A light emitter can be disposed within the cavity and can emit beams of light.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 19, 2016
    Inventors: Zhen Peng, Nathaniel Quitoriano, Marco Fiorentino
  • Patent number: 9261632
    Abstract: A light emitting diode device is described which includes at least one planar non-periodic high-index-contrast grating. The light emitting diode device includes a cavity formed between a reflective optical element and a transmissive optical element. One or both of the optical elements can be a planar non-periodic high-index-contrast grating. The transmissive optical element can be a collimating lens used to collimate incident beams of light while the reflective optical element can be a parabolic reflector used to reflect incident beams of light along a direction opposite to an incidence direction. A light emitter can be disposed within the cavity and can emit beams of light.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 16, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Zhen Peng, Nathaniel Quitoriano, Marco Fiorentino
  • Publication number: 20160033706
    Abstract: A directional backlight has a directional backplane that has a plurality of directional pixels configured to scatter a plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. A modulation layer having a plurality of modulators configured to modulate the plurality of directional lightbeams. The directional backlight is configured to generate a 3D image with multiple views by specifying the characteristics of the directional pixels in the directional backplane.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: David A. Fattal, James A. Brug, Charles M. Santori, Marco Fiorentino, Zhen Peng
  • Patent number: 9201270
    Abstract: A directional backlight is disclosed. The directional backlight has a directional backplane that has a plurality of directional pixels to scatter a plurality of input planar lightbeams into a plurality of directional lightbeams. Each directional lightbeam has a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. A modulation layer having a plurality of modulators modulates the plurality of directional lightbeams. The directional backlight can be used to generate a 3D image with multiple views by specifying the characteristics of the directional pixels in the directional backplane.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: December 1, 2015
    Assignee: LEIA INC.
    Inventors: David A. Fattal, James A. Brug, Charles M. Santori, Marco Fiorentino, Zhen Peng
  • Publication number: 20150316718
    Abstract: An optical coupling system and method of fabrication are included. The optical coupling system includes a substrate layer and an optical waveguide material overlying the substrate layer. The optical waveguide material can include a grating. The system also includes a cover material overlying the optical waveguide material to couple an optical signal to the optical waveguide material via the grating at a coupling angle. Approximately zero energy of the coupled optical signal is lost in the substrate layer due to a combination of the coupling angle and a difference in refractive indices between the cover material and the substrate layer.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 5, 2015
    Inventors: David A. Fattal, Zhen Peng, Marco Fiorentino, Raymond G. Beausoleil