Patents by Inventor Zhendong Liu
Zhendong Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210387422Abstract: The present disclosure relates generally to a support material for three-dimensional printing comprising a blend of at least two cellulose ethers or a blend of at least one cellulose ether and at least one vinyl pyrrolidone polymer. Additionally, the present disclosure relates to a shaped material and a three-dimensionally printed object comprising the support material. Furthermore, a process for producing a three-dimensional object using the support material is also disclosed.Type: ApplicationFiled: October 7, 2019Publication date: December 16, 2021Applicant: HERCULES LLCInventor: Zhendong LIU
-
Publication number: 20200357616Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate.Type: ApplicationFiled: July 24, 2020Publication date: November 12, 2020Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
-
Patent number: 10763090Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.Type: GrantFiled: August 15, 2016Date of Patent: September 1, 2020Assignee: APPLIED MATERIALS, INC.Inventors: Adolph Miller Allen, Lara Hawrylchak, Zhigang Xie, Muhammad M. Rasheed, Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Srinivas Gandikota, Mei Chang, Michael S. Cox, Donny Young, Kirankumar Savandaiah, Zhenbin Ge
-
Patent number: 10718049Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.Type: GrantFiled: December 4, 2017Date of Patent: July 21, 2020Assignee: APPLIED MATERIALS, INC.Inventors: Muhammad Rasheed, Rongjun Wang, Zhendong Liu, Xinyu Fu, Xianmin Tang
-
Patent number: 10308516Abstract: Provided is a method for continuous production of zeolite in which a starting material is continuously supplied to a tubular reactor to produce an aluminophosphate zeolite that contains, in the framework structure, at least aluminum atoms and phosphorus atoms or an aluminosilicate zeolite having 5?SiO2/Al2O3?2000. The tubular reactor is heated using a heat medium; a ratio (volume)/(lateral surface area) of the volume (inner capacity) to the lateral surface area of the tubular reactor is 0.75 cm or smaller; and seed crystals are added to the starting material. Through using a small-diameter tubular reactor and heating with a heat medium, it becomes possible to heat sufficiently the entirety of a starting material (zeolite precursor gel) in a short time, and to allow reaction to proceed at a high rate. The occurrence of irregular pressure fluctuations during continuous production of the zeolite can be prevented by adding seed crystals.Type: GrantFiled: January 7, 2016Date of Patent: June 4, 2019Assignees: MITSUBISHI CHEMICAL CORPORATION, THE UNIVERSITY OF TOKYOInventors: Tatsuya Okubo, Toru Wakihara, Zhendong Liu, Takahiko Takewaki, Kazunori Oshima, Daisuke Nishioka
-
Patent number: 10060024Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.Type: GrantFiled: August 17, 2017Date of Patent: August 28, 2018Assignee: APPLIED MATERIALS, INC.Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
-
Publication number: 20180087147Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.Type: ApplicationFiled: December 4, 2017Publication date: March 29, 2018Inventors: MUHAMMAD RASHEED, RONGJUN WANG, ZHENDONG LIU, XINYU FU, XIANMIN TANG
-
Patent number: 9873535Abstract: The present invention concerns a composition and method of using non-molybdate corrosion inhibitors in sterilizing and pasteurizing applications. The composition is a blend of one or more components including corrosion inhibitors, surfactants, hydrotropes, polymer dispersants, pH adjusting agents and water. The composition may include two or more of a) alkyl-dicarboxylic acid; b) phosphono-carboxylic acid; c) tri(amino-carboxylic acid); d) anionic polymer dispersant; e) non-ionic surfactant; f) inorganic phosphate; g) phosphonotricarboxylic acid; and h) hydrotrope. Specifically, the composition may comprise sebacic acid, hydroxyphosphonoacetic acid, and 6,6?,6?-(1,3,5-triazine-2,4,6-triyltriimino)tris-hexanoic acid. Optionally, the composition can further comprise a co-polymer of acrylic acid and allyl-2-hydroxy-propyl-sulfonate ether (AA/AHPSE), 2-phosphono-1,2,4-butane-tricarboxylic acid, sodium phosphate monobasic or phosphoric acid, ?-decyl-?-hydroxy-poly(oxy-1,2ethanediyl), and sodium cumenesulfonate.Type: GrantFiled: June 19, 2012Date of Patent: January 23, 2018Assignee: Genral Electric CompanyInventors: Zhendong Liu, Donald A. Meskers, Jr., Peter Scheidel
-
Publication number: 20170350001Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.Type: ApplicationFiled: August 17, 2017Publication date: December 7, 2017Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
-
Patent number: 9834840Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.Type: GrantFiled: May 12, 2011Date of Patent: December 5, 2017Assignee: APPLIED MATERIALS, INC.Inventors: Muhammad Rasheed, Rongjun Wang, Zhendong Liu, Xinyu Fu, Xianmin Tang
-
Patent number: 9752228Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.Type: GrantFiled: March 12, 2010Date of Patent: September 5, 2017Assignee: Applied Materials, Inc.Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
-
Publication number: 20170145553Abstract: Implementations of the present disclosure relate to an improved shield for use in a processing chamber. In one implementation, the shield includes a hollow body having a cylindrical shape that is substantially symmetric about a central axis of the body, and a coating layer formed on an inner surface of the body. The coating layer is formed the same material as a sputtering target used in the processing chamber. The shield advantageously reduces particle contamination in films deposited using RF-PVD by reducing arcing between the shield and the sputtering target. Arcing is reduced by the presence of a coating layer on the interior surfaces of the shield.Type: ApplicationFiled: November 9, 2016Publication date: May 25, 2017Inventors: Zhendong LIU, Wenting HOU, Jianxin LEI, Donny YOUNG, William M. LU
-
Patent number: 9583349Abstract: Semiconductor devices, methods and apparatus for forming the same are provided. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal silicon nitride film layer on the conductive film layer, and a tungsten film layer on the refractory metal silicon nitride film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal silicon nitride film layer on the conductive film layer and depositing a tungsten film layer on the refractory metal silicon nitride film layer.Type: GrantFiled: November 25, 2014Date of Patent: February 28, 2017Assignee: APPLIED MATERIALS, INC.Inventors: Srinivas Gandikota, Zhendong Liu, Jianxin Lei, Rajkumar Jakkaraju
-
Publication number: 20170029941Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.Type: ApplicationFiled: August 15, 2016Publication date: February 2, 2017Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
-
Publication number: 20160115039Abstract: Provided is a method for continuous production of zeolite in which a starting material is continuously supplied to a tubular reactor to produce an aluminophosphate zeolite that contains, in the framework structure, at least aluminum atoms and phosphorus atoms or an aluminosilicate zeolite having 5?SiO2/Al2O3?2000. The tubular reactor is heated using a heat medium; a ratio (volume)/(lateral surface area) of the volume (inner capacity) to the lateral surface area of the tubular reactor is 0.75 cm or smaller; and seed crystals are added to the starting material. Through using a small-diameter tubular reactor and heating with a heat medium, it becomes possible to heat sufficiently the entirety of a starting material (zeolite precursor gel) in a short time, and to allow reaction to proceed at a high rate. The occurrence of irregular pressure fluctuations during continuous production of the zeolite can be prevented by adding seed crystals.Type: ApplicationFiled: January 7, 2016Publication date: April 28, 2016Applicants: MITSUBISHI CHEMICAL CORPORATION, THE UNIVERSITY OF TOKYOInventors: Tatsuya Okubo, Toru Wakihara, Zhendong Liu, Takahiko Takewaki, Kazunori Oshima, Daisuke Nishioka
-
Publication number: 20150206756Abstract: Semiconductor devices, methods and apparatus for forming the same are provided. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal silicon nitride film layer on the conductive film layer, and a tungsten film layer on the refractory metal silicon nitride film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal silicon nitride film layer on the conductive film layer and depositing a tungsten film layer on the refractory metal silicon nitride film layer.Type: ApplicationFiled: November 25, 2014Publication date: July 23, 2015Inventors: Srinivas GANDIKOTA, Zhendong LIU, Jianxin LEI, Rajkumar JAKKARAJU
-
Patent number: 8992741Abstract: In a plasma-enhanced physical vapor deposition reactor, uniformity of radial distribution of the deposition rate across the workpiece is enhanced by applying both RF and D.C. power to the target and adjusting the power levels of the RF and D.C. power independently. Further optimization is obtained by adjusting the height of the magnet above the target, adjusting the radius of the orbital motion of the magnet above the target and providing an angle edge surface of the target.Type: GrantFiled: August 8, 2008Date of Patent: March 31, 2015Assignee: Applied Materials, Inc.Inventors: Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Maurice E. Ewert
-
Patent number: 8895450Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.Type: GrantFiled: October 15, 2013Date of Patent: November 25, 2014Assignee: Applied Materials, Inc.Inventors: Yong Cao, Xianmin Tang, Srinivas Gandikota, Wei D. Wang, Zhendong Liu, Kevin Moraes, Muhammad M. Rasheed, Thanh X. Nguyen, Ananthkrishna Jupudi
-
Publication number: 20140219994Abstract: The present invention concerns a composition and method of using non-molybdate corrosion inhibitors in sterilizing and pasteurizing applications. The composition is a blend of one or more components including corrosion inhibitors, surfactants, hydrotropes, polymer dispersants, pH adjusting agents and water. The composition may include two or more of a) alkyl-dicarboxylic acid; b) phosphono-carboxylic acid; c) tri(amino-carboxylic acid); d) anionic polymer dispersant; e) non-ionic surfactant; f) inorganic phosphate; g) phosphonotricarboxylic acid; and h) hydrotrope. Specifically, the composition may comprise sebacic acid, hydroxyphosphonoacetic acid, and 6,6?,6?-(1,3,5-triazine-2,4,6-triyltriimino)tris-hexanoic acid. Optionally, the composition can further comprise a co-polymer of acrylic acid and allyl-2-hydroxy-propyl-sulfonate ether (AA/AHPSE), 2-phosphono-1,2,4-butane-tricarboxylic acid, sodium phosphate monobasic or phosphoric acid, ?-decyl-?-hydroxy-poly(oxy-1,2ethanediyl), and sodium cumenesulfonate.Type: ApplicationFiled: June 19, 2012Publication date: August 7, 2014Inventors: Zhendong Liu, Donald J. Meskers, JR., Peter Scheidel
-
Patent number: 8735293Abstract: A method for chemical mechanical polishing of a substrate comprising a germanium-antimony-tellurium chalcogenide phase change alloy using a chemical mechanical polishing composition comprising water; 1 to 40 wt % colloidal silica abrasive particles having an average particle size of ?50 nm; and 0 to 5 wt % quarternary ammonium compound; wherein the chemical mechanical polishing composition is oxidizer free and chelating agent free; and, wherein the chemical mechanical polishing composition has a pH >6 to 12.Type: GrantFiled: November 5, 2008Date of Patent: May 27, 2014Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.Inventor: Zhendong Liu