Patents by Inventor Zhendong Liu

Zhendong Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170029941
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 2, 2017
    Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
  • Publication number: 20160115039
    Abstract: Provided is a method for continuous production of zeolite in which a starting material is continuously supplied to a tubular reactor to produce an aluminophosphate zeolite that contains, in the framework structure, at least aluminum atoms and phosphorus atoms or an aluminosilicate zeolite having 5?SiO2/Al2O3?2000. The tubular reactor is heated using a heat medium; a ratio (volume)/(lateral surface area) of the volume (inner capacity) to the lateral surface area of the tubular reactor is 0.75 cm or smaller; and seed crystals are added to the starting material. Through using a small-diameter tubular reactor and heating with a heat medium, it becomes possible to heat sufficiently the entirety of a starting material (zeolite precursor gel) in a short time, and to allow reaction to proceed at a high rate. The occurrence of irregular pressure fluctuations during continuous production of the zeolite can be prevented by adding seed crystals.
    Type: Application
    Filed: January 7, 2016
    Publication date: April 28, 2016
    Applicants: MITSUBISHI CHEMICAL CORPORATION, THE UNIVERSITY OF TOKYO
    Inventors: Tatsuya Okubo, Toru Wakihara, Zhendong Liu, Takahiko Takewaki, Kazunori Oshima, Daisuke Nishioka
  • Publication number: 20150206756
    Abstract: Semiconductor devices, methods and apparatus for forming the same are provided. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal silicon nitride film layer on the conductive film layer, and a tungsten film layer on the refractory metal silicon nitride film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal silicon nitride film layer on the conductive film layer and depositing a tungsten film layer on the refractory metal silicon nitride film layer.
    Type: Application
    Filed: November 25, 2014
    Publication date: July 23, 2015
    Inventors: Srinivas GANDIKOTA, Zhendong LIU, Jianxin LEI, Rajkumar JAKKARAJU
  • Patent number: 8992741
    Abstract: In a plasma-enhanced physical vapor deposition reactor, uniformity of radial distribution of the deposition rate across the workpiece is enhanced by applying both RF and D.C. power to the target and adjusting the power levels of the RF and D.C. power independently. Further optimization is obtained by adjusting the height of the magnet above the target, adjusting the radius of the orbital motion of the magnet above the target and providing an angle edge surface of the target.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 31, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Maurice E. Ewert
  • Patent number: 8895450
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Yong Cao, Xianmin Tang, Srinivas Gandikota, Wei D. Wang, Zhendong Liu, Kevin Moraes, Muhammad M. Rasheed, Thanh X. Nguyen, Ananthkrishna Jupudi
  • Publication number: 20140219994
    Abstract: The present invention concerns a composition and method of using non-molybdate corrosion inhibitors in sterilizing and pasteurizing applications. The composition is a blend of one or more components including corrosion inhibitors, surfactants, hydrotropes, polymer dispersants, pH adjusting agents and water. The composition may include two or more of a) alkyl-dicarboxylic acid; b) phosphono-carboxylic acid; c) tri(amino-carboxylic acid); d) anionic polymer dispersant; e) non-ionic surfactant; f) inorganic phosphate; g) phosphonotricarboxylic acid; and h) hydrotrope. Specifically, the composition may comprise sebacic acid, hydroxyphosphonoacetic acid, and 6,6?,6?-(1,3,5-triazine-2,4,6-triyltriimino)tris-hexanoic acid. Optionally, the composition can further comprise a co-polymer of acrylic acid and allyl-2-hydroxy-propyl-sulfonate ether (AA/AHPSE), 2-phosphono-1,2,4-butane-tricarboxylic acid, sodium phosphate monobasic or phosphoric acid, ?-decyl-?-hydroxy-poly(oxy-1,2ethanediyl), and sodium cumenesulfonate.
    Type: Application
    Filed: June 19, 2012
    Publication date: August 7, 2014
    Inventors: Zhendong Liu, Donald J. Meskers, JR., Peter Scheidel
  • Patent number: 8735293
    Abstract: A method for chemical mechanical polishing of a substrate comprising a germanium-antimony-tellurium chalcogenide phase change alloy using a chemical mechanical polishing composition comprising water; 1 to 40 wt % colloidal silica abrasive particles having an average particle size of ?50 nm; and 0 to 5 wt % quarternary ammonium compound; wherein the chemical mechanical polishing composition is oxidizer free and chelating agent free; and, wherein the chemical mechanical polishing composition has a pH >6 to 12.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 27, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Zhendong Liu
  • Publication number: 20140042016
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Yong CAO, Xianmin TANG, Srinivas GANDIKOTA, Wei D. WANG, Zhendong LIU, Kevin MORAES, Muhammad M. RASHEED, Thanh X. NGUYEN, Ananthkrishna JUPUDI
  • Publication number: 20140001576
    Abstract: Semiconductor devices, methods and apparatus for forming the same are provided. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal silicon nitride film layer on the conductive film layer, and a tungsten film layer on the refractory metal silicon nitride film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal silicon nitride film layer on the conductive film layer and depositing a tungsten film layer on the refractory metal silicon nitride film layer.
    Type: Application
    Filed: June 19, 2013
    Publication date: January 2, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Srinivas GANDIKOTA, Zhendong LIU, Jianxin LEI, Rajkumar JAKKARAJU
  • Publication number: 20130327641
    Abstract: Sputtering in a physical vapor deposition (PVD) chamber may, in one embodiment, utilize a target laterally offset from and tilted with respect to the substrate. In another aspect, target power may be reduced to enhance film protection. In yet another aspect, magnetron magnets may be relatively strong and well balanced to enhance film protection. In another aspect, a shutter may be provided to protect the substrate in start up conditions. Other embodiments are described and claimed.
    Type: Application
    Filed: May 20, 2013
    Publication date: December 12, 2013
    Inventors: Mengqi YE, Zhendong LIU, Peijun DING
  • Patent number: 8568610
    Abstract: A chemical mechanical polishing composition is provided, comprising, as initial components: water, an abrasive; a diquaternary substance according to formula (I); a derivative of guanidine according to formula (II); and, optionally, a quaternary ammonium salt. Also, provided is a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises silicon dioxide; providing the chemical mechanical polishing composition of the present invention; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein the chemical mechanical polishing composition has a pH of 2 to 6.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: October 29, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Zhendong Liu, Yi Guo, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8558299
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal nitride film layer on the conductive film layer, a silicon-containing film layer on the refractory metal nitride film layer, and a tungsten film layer on the silicon-containing film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 15, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yong Cao, Xianmin Tang, Srinivas Gandikota, Wei D. Wang, Zhendong Liu, Kevin Moraes, Muhammad M. Rasheed, Thanh X. Nguyen, Ananthkrishna Jupudi
  • Patent number: 8513126
    Abstract: A chemical mechanical polishing slurry composition is provided, having, as initial components: water; an abrasive, wherein the abrasive is colloidal silica abrasive; a halogenated quaternary ammonium compound according to formula (I); optionally, a diquaternary substance according to formula (II); and, optionally, a pH adjusting agent selected from phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, ammonium hydroxide and potassium hydroxide; wherein the chemical mechanical polishing slurry composition has a pH of 2 to <7. Also, provided are methods for making the chemical mechanical polishing slurry composition and for using the chemical mechanical polishing composition to polish a substrate.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: August 20, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Zhendong Liu, Yi Guo, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8496843
    Abstract: A method for chemical mechanical polishing of a substrate is provided, comprising: providing a substrate, wherein the substrate comprises polysilicon and at least one of silicon oxide and silicon nitride; providing a chemical mechanical polishing composition, comprising, as initial components: water; an abrasive; and an alkyl aryl polyether sulfonate compound, wherein the alkyl aryl polyether sulfonate compound has a hydrophobic portion having an alkyl group bound to an aryl ring and a nonionic acyclic hydrophilic portion having 4 to 100 carbon atoms; providing a chemical mechanical polishing pad with a polishing surface; moving the polishing surface relative to the substrate; dispensing the chemical mechanical polishing composition onto the polishing surface; and, abrading at least a portion of the substrate to polish the substrate; wherein at least some of the polysilicon is removed from the substrate; and, wherein at least some of the at least one of silicon oxide and silicon nitride is removed from the su
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: July 30, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Zhendong Liu, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8491808
    Abstract: A method for chemical mechanical polishing of a substrate is provided, comprising: providing a substrate, wherein the substrate comprises polysilicon, silicon oxide and silicon nitride; providing a chemical mechanical polishing composition, comprising, as initial components: water; an abrasive; an alkyl aryl polyether sulfonate compound, wherein the alkyl aryl polyether sulfonate compound has a hydrophobic portion having an alkyl group bound to an aryl ring and a nonionic acyclic hydrophilic portion having 4 to 100 carbon atoms; and a substance according to formula I wherein each of R1, R2, R3, R4, R5, R6 and R7 is a bridging group having a formula ā€”(CH2)nā€”, wherein n is an integer selected from 1 to 10; providing a chemical mechanical polishing pad with a polishing surface; moving the polishing surface relative to the substrate; dispensing the chemical mechanical polishing composition onto the polishing surface; and, abrading at least a portion of the substrate to polish the substrate; wherein at least s
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: July 23, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Zhendong Liu, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8492277
    Abstract: A method for chemical mechanical polishing of a substrate is provided, comprising: providing a substrate, wherein the substrate comprises polysilicon and at least one of silicon oxide and silicon nitride; providing a chemical mechanical polishing composition, comprising, as initial components: water; an abrasive; and an acyclic organosulfonic acid compound, wherein the acyclic organosulfonic acid compound has an acyclic hydrophobic portion having 6 to 30 carbon atoms and a nonionic acyclic hydrophilic portion having 10 to 300 carbon atoms; providing a chemical mechanical polishing pad with a polishing surface; moving the polishing surface relative to the substrate; dispensing the chemical mechanical polishing composition onto the polishing surface; and, abrading at least a portion of the substrate to polish the substrate; wherein at least some of the polysilicon is removed from the substrate; and, wherein at least some of the at least one of silicon oxide and silicon nitride is removed from the substrate.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: July 23, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc
    Inventors: Yi Guo, Zhendong Liu, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8460519
    Abstract: Sputtering in a physical vapor deposition (PVD) chamber may, in one embodiment, utilize a target laterally offset from and tilted with respect to the substrate. In another aspect, target power may be reduced to enhance film protection. In yet another aspect, magnetron magnets may be relatively strong and well balanced to enhance film protection. In another aspect, a shutter may be provided to protect the substrate in start up conditions. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: June 11, 2013
    Assignee: Applied Materials Inc.
    Inventors: Mengqi Ye, Zhendong Liu, Peijun Ding
  • Patent number: 8454804
    Abstract: Sputtering in a physical vapor deposition (PVD) chamber may, in one embodiment, utilize a target laterally offset from and tilted with respect to the substrate. In another aspect, target power may be reduced to enhance film protection. In yet another aspect, magnetron magnets may be relatively strong and well balanced to enhance film protection. In another aspect, a shutter may be provided to protect the substrate in start up conditions. Other embodiments are described and claimed.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: June 4, 2013
    Assignee: Applied Materials Inc.
    Inventors: Mengqi Ye, Zhendong Liu, Peijun Ding
  • Patent number: 8444728
    Abstract: A chemical mechanical polishing composition, comprising, as initial components: water; 0.1 to 20 wt % abrasive having an average particle size of 5 to 50 nm; and, 0.001 to 1 wt % of an adamantyl substance according to formula (II): wherein A is selected from N and P; wherein each R8 is independently selected from hydrogen, a saturated or unsaturated C1-15 alkyl group, C6-15 aryl group, C6-15 aralkyl group, C6-15 alkaryl group; and, wherein the anion in formula (II) can be any anion that balances the positive charge on the cation in formula (II).
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: May 21, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Zhendong Liu, Kancharla-Arun Kumar Reddy, Guangyun Zhang
  • Patent number: 8431490
    Abstract: A method for chemical mechanical polishing of a substrate is provided, comprising: providing a substrate, wherein the substrate comprises silicon oxide; providing a chemical mechanical polishing composition, comprising, as initial components: water; an abrasive; and a substance according to formula I wherein R1, R2 and R3 are each independently selected from a C1-4 alky group; providing a chemical mechanical polishing pad with a polishing surface; moving the polishing surface relative to the substrate; dispensing the chemical mechanical polishing composition onto the polishing surface; and, abrading at least a portion of the substrate to polish the substrate; wherein the substance according to formula I included in the chemical mechanical polishing composition provides an enhanced silicon oxide removal rate and an improved polishing defectivity performance; and, wherein at least some of the silicon oxide is removed from the substrate.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 30, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Zhendong Liu, Kancharla-Arun Kumar Reddy, Guangyun Zhang