Patents by Inventor Zheng Xia

Zheng Xia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11600736
    Abstract: A cytometer includes an avalanche photodiode, a switching power supply, a filter, and voltage adjustment circuitry. The switching power supply includes a feedback loop. The filter is electrically connected between the switching power supply and the avalanche photodiode. The voltage adjustment circuitry adjusts a voltage on the feedback loop based at least in part on a voltage measured between the filter and the avalanche photodiode.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: March 7, 2023
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, Glenn J. Szejna, Zheng Xia
  • Publication number: 20230032890
    Abstract: A microfluidic chip orients and isolates components in a sample fluid mixture by two step focusing, where sheath fluids compress the sample fluid mixture in a sample input channel in one direction, such that the sample fluid mixture becomes a narrower stream bounded by the sheath fluids, and by having the sheath fluids compress the sample fluid mixture in a second direction further downstream, such that the components are compressed and oriented in a selected direction to pass through an interrogation chamber in single file formation for identification and separation by various methods. The isolation mechanism utilizes external, stacked piezoelectric actuator assemblies disposed on a microfluidic chip holder, or piezoelectric actuator assemblies on-chip, so that the actuator assemblies are triggered by an electronic signal to actuate jet chambers on either side of the sample input channel, to jet selected components in the sample input channel into one of the output channels.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 2, 2023
    Inventors: Zheng Xia, Yu Zhou, John Larsen, Guocheng Shao, Shane Peterson, Marjorie Faust
  • Publication number: 20220390352
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation, and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 8, 2022
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Patent number: 11512691
    Abstract: A microfluidic chip orients and isolates components in a sample fluid mixture by two step focusing, where sheath fluids compress the sample fluid mixture in a sample input channel in one direction, such that the sample fluid mixture becomes a narrower stream bounded by the sheath fluids, and by having the sheath fluids compress the sample fluid mixture in a second direction further downstream, such that the components are compressed and oriented in a selected direction to pass through an interrogation chamber in single file formation for identification and separation by various methods. The isolation mechanism utilizes external, stacked piezoelectric actuator assemblies disposed on a microfluidic chip holder, or piezoelectric actuator assemblies on-chip, so that the actuator assemblies are triggered by an electronic signal to actuate jet chambers on either side of the sample input channel, to jet selected components in the sample input channel into one of the output channels.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: November 29, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Zheng Xia, Yu Zhou, John Larsen, Guocheng Shao, Shane Peterson, Marjorie Faust
  • Patent number: 11513114
    Abstract: A method of choosing which undesired cell to destroy in a multi-cell fluorescent event includes detecting fluorescence of cells, converting photons detected in the fluorescence into an analog voltage output signal, and identifying at least two discernable peaks associated with the cells. By looking solely at properties measured within the multi-cell fluorescent event, a decision of which cell to target for elimination can be made. Using this method with large population sizes can result in an effective sex skewed product. The sex skewed product can, for example, be formed from bull semen which is then later used to inseminate cows which results in an increased likelihood of giving birth to female cattle.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 29, 2022
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, Matthew Ebersole, Daniel McAda, David Appleyard, Zheng Xia
  • Publication number: 20220358537
    Abstract: Systems, devices, methods, and computer readable medium for evaluating visual quality of digital content are disclosed. Methods can include identifying content assets including one or more images that are combined to create different digital components distributed to one or more client devices. A quality of each of the one or more images is evaluated using one or more machine learning models trained to evaluate one or more visual aspects that are deemed indicative of visual quality. An aggregate quality for the content assets is determined based, at least in part, on an output of the one or more machine learning models indicating the visual quality of each of the one or more images. A graphical user interface of a first computing device is updated to present a visual indication of the aggregate quality of the content assets.
    Type: Application
    Filed: August 6, 2020
    Publication date: November 10, 2022
    Inventors: Catherine Shyu, Luying Li, Feng Yang, Junjie Ke, Xiyang Luo, Hao Feng, Chao-Hung Chen, Wenjing Kang, Zheng Xia, Shun-Chuan Chen, Yicong Tian, Xia Li, Han Ke
  • Publication number: 20220348865
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 3, 2022
    Inventors: Frederick Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda
  • Publication number: 20220297121
    Abstract: Disclosed is an approach to differentiating between different particle types in samples flowing through microfluidics chips. A sample may have an initial proportion of a first cell type to a second cell type. An illuminating light source may emit a coherent light at the sample, and light leaving the chip in a first direction may be detected using a first light detector, and light leaving the chip in a second direction (e.g., orthogonal to the first direction) may be detected using a second light detector. The detected light may be fluorescence. An orientational feature of a plurality of cells in the sample may be determined based on the light detected by the detectors. Based on the orientational features and the detected light, a biasing operation may be performed for each cell in the sample to obtain a modified proportion of cell types in the sample.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 22, 2022
    Inventors: David Appleyard, Daniel McAda, Zheng Xia, James Maxwell Schiller, Frederick Savage, John Walker Rupel, II, Timothy Miller, Alec Fisher
  • Patent number: 11427804
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: August 30, 2022
    Assignee: ABS Global, Inc.
    Inventors: Frederick Hershel Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda
  • Patent number: 11415503
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation, and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: August 16, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Publication number: 20220246785
    Abstract: A cytometer includes an avalanche photodiode, a switching power supply, a filter, and voltage adjustment circuitry. The switching power supply includes a feedback loop. The filter is electrically connected between the switching power supply and the avalanche photodiode. The voltage adjustment circuitry adjusts a voltage on the feedback loop based at least in part on a voltage measured between the filter and the avalanche photodiode.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Inventors: Frederick Savage, Glenn J. Szejna, Zheng Xia
  • Publication number: 20220226827
    Abstract: A microfluidic system configured to focus particles suspended in a fluid. One general aspect includes a microfluidic system comprising one or more substrates and a focusing channel formed in the one or more substrates and spanning a length from an inlet to an outlet for receiving a flow of particles suspended in fluid, wherein the particles have a diameter (a) and the focusing channel has a hydraulic diameter (dh).
    Type: Application
    Filed: April 5, 2022
    Publication date: July 21, 2022
    Inventors: Gerson Aguirre, Zheng Xia, Gopakumar Kamalakshakurup
  • Publication number: 20220163438
    Abstract: Modular flow cytometry systems and methods for processing samples are described herein. The systems include automated or semi-automated modules that are replaceable and removable. A sample pathway module may be removed and placed in a microfluidic device cleaning module for cleaning, and then reinstalled or stored for later use. The systems further include optical modules, electronics modules, and mixing and collection modules. The optical module includes a photo-damaging assembly and detection laser assembly that may be on the same side relative to a plane or surface of a flow cytometry device and opposite of a detection assembly. The laser beam may have a beam waist that is wider in a direction perpendicular to a flow direction than in the flow direction. The mixing and collection module can automatically mix a sample being collected in a sample tube and switch to another sample tube when the other tube is full.
    Type: Application
    Filed: November 12, 2021
    Publication date: May 26, 2022
    Inventors: Gary Klas, Daniel McAda, Zheng Xia, Matthew Ebersole, Brian Lena, David Appleyard, Richard Lu, Scott Buckley, Mark Abermoske
  • Patent number: 11342473
    Abstract: A cytometer includes an avalanche photodiode, a switching power supply, a filter, and voltage adjustment circuitry. The switching power supply includes a feedback loop. The filter is electrically connected between the switching power supply and the avalanche photodiode. The voltage adjustment circuitry adjusts a voltage on the feedback loop based at least in part on a voltage measured between the filter and the avalanche photodiode.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: May 24, 2022
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, Glenn J. Szejna, Zheng Xia
  • Patent number: 11331670
    Abstract: A microfluidic system configured to focus particles suspended in a fluid. One general aspect includes a microfluidic system comprising one or more substrates and a focusing channel formed in the one or more substrates and spanning a length from an inlet to an outlet for receiving a flow of particles suspended in fluid, wherein the particles have a diameter (a) and the focusing channel has a hydraulic diameter (dh).
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 17, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Gerson Aguirre, Zheng Xia, Gopakumar Kamalakshakurup
  • Publication number: 20220099555
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation; and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Application
    Filed: October 7, 2021
    Publication date: March 31, 2022
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Publication number: 20220057662
    Abstract: A method for fast and convenient manufacture of liquid crystal display panels of different and uncommon sizes without retooling provides a first liquid crystal display panel having a first display area of a large first size. The color filter substrate is cut to make the first liquid crystal display panel into a vacuum-broken state. A sealant is coated onto the array substrate, wherein the sealant seals the liquid crystal layer and extends to a side of the color filter substrate away from the array substrate to cover part of the first display area, thereby obtaining a second liquid crystal display panel with a second display area of a second size.
    Type: Application
    Filed: July 20, 2021
    Publication date: February 24, 2022
    Inventors: HUI WANG, ZHENG-XIA HE, YUAN XIONG, NING FANG, CHIH-CHUNG LIU, MENG-CHIEH TAI
  • Publication number: 20220050347
    Abstract: A method for fast and convenient manufacture of liquid crystal display panels of different sizes without retooling provides an array substrate having a first display area of a first size. A closed-shaped sealant is coated onto the array substrate, the sealant defining a second display area of a second size, the second display area including an actual display area and an undesired display area adjacent to the actual display area and the sealant. Liquid crystals are applied in the second display area and sealing and coupling are carried out to obtain a liquid crystal cell, the liquid crystal cell being cut along an outer periphery of the sealant to obtain a working liquid crystal display panel of the desired size.
    Type: Application
    Filed: July 8, 2021
    Publication date: February 17, 2022
    Inventors: ZHENG-XIA HE, NING FANG, YUAN XIONG, HUI WANG, WEN-LIN CHEN, CHIH-CHUNG LIU
  • Publication number: 20220026341
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation, and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Publication number: 20210372390
    Abstract: A microfluidic chip orients and isolates components in a sample fluid mixture by two step focusing, where sheath fluids compress the sample fluid mixture in a sample input channel in one direction, such that the sample fluid mixture becomes a narrower stream bounded by the sheath fluids, and by having the sheath fluids compress the sample fluid mixture in a second direction further downstream, such that the components are compressed and oriented in a selected direction to pass through an interrogation chamber in single file formation for identification and separation by various methods. The isolation mechanism utilizes external, stacked piezoelectric actuator assemblies disposed on a microfluidic chip holder, or piezoelectric actuator assemblies on-chip, so that the actuator assemblies are triggered by an electronic signal to actuate jet chambers on either side of the sample input channel, to jet selected components in the sample input channel into one of the output channels.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Zheng Xia, Yu Zhou, John Larsen, Guocheng Shao, Shane Peterson, Marjorie Faust