Patents by Inventor Zhengming Zhang

Zhengming Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11094995
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 17, 2021
    Assignee: Celgard, LLC
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Publication number: 20210167420
    Abstract: The problems or issues faced by typical larger SSE batteries are solved by providing an interface or interfacial layer at least between the anode, which comprises Li or Na, and the solid state electrolyte (SSE). In some other embodiments, an interfacial layer may be provided between the anode, which comprises Li or Na, and the SSE, and an interface or interfacial layer may also be provided between the cathode and the SSE. In at least selected embodiments, aspects or objects, the interfacial layer may act as a shock absorber between a SSE (e.g., a sulfide glass SSE) and an anode material that is soft compared to the SSE (e.g., Li metal). In other embodiments, the interfacial layer may act as a shock absorber between the SSE and a cathode material that is softer than the SSE. In at least certain embodiments, the interfacial layer may improve ionic conductance between the anode and the SSE and/or the SSE and the cathode.
    Type: Application
    Filed: April 4, 2019
    Publication date: June 3, 2021
    Inventor: Zhengming Zhang
  • Publication number: 20210167428
    Abstract: A system for differentiating short circuiting in a battery includes: a detector coupled to the battery; a monitor in communication with the detector, the monitor including a profile of a battery shorting behavior, and a comparator for matching data from the detector to the profile; and a controller for taking action based upon information from the detector. A method for detecting short circuiting in a battery includes the steps of: detecting a behavior of the battery; comparing the behavior of the battery to a predetermined battery behavior profile; determining the type of short based on the comparison; and taking mitigating action based on the determination. The system/method may monitor temperature of the battery, heat generation from the battery, current flow through the battery, voltage drop across the battery, and/or combinations thereof. The system/method discriminates between the various battery shorting behaviors for aggressive response or passive response.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Zhengming Zhang, Weifeng Fang
  • Patent number: 11023300
    Abstract: Techniques for governing access to third-party application programming interfaces (API's) are disclosed. A proxy service exposes an API configured to receive requests, from user-facing services, to perform functions of backend services. The proxy service stores a usage policy that defines a criterion that is (a) different from any authorization criterion and (b) associated with using a function of a backend service. The proxy service receives a request to perform the function of the first backend service for a user-facing service and determines that the request does not satisfy the usage policy. Based on determining that the request does not satisfy the usage policy, the proxy service refrains from accessing the backend service to perform the function responsive to the request, and transmits an alert to the user-facing service indicating that the request does not satisfy the usage policy.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 1, 2021
    Assignee: Oracle International Corporation
    Inventors: Tuck Chang, Zhengming Zhang
  • Publication number: 20210143511
    Abstract: New and/or improved coatings, layers or treatments for porous substrates, including battery separators or separator membranes, and/or coated or treated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components, and/or to new or improved coated or treated porous substrates, including battery separators, where the coating comprises at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components are disclosed.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 13, 2021
    Inventors: Zhengming Zhang, Michael B. Lane, Insik Jeon, Edward Kruger, Xiang E. Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma, Daniel R. Alexander
  • Patent number: 10921385
    Abstract: A system for differentiating short circuiting in a battery includes: a detector coupled to the battery; a monitor in communication with the detector, the monitor including a profile of a battery shorting behavior, and a comparator for matching data from the detector to the profile; and a controller for taking action based upon information from the detector. A method for detecting short circuiting in a battery includes the steps of: detecting a behavior of the battery; comparing the behavior of the battery to a predetermined battery behavior profile; determining the type of short based on the comparison; and taking mitigating action based on the determination. The system/method may monitor: temperature of the battery, heat generation from the battery, current flow through the battery, voltage drop across the battery, and/or combinations thereof. The system/method discriminates between the various battery shorting behaviors for aggressive response or passive response.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: February 16, 2021
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Weifeng Fang
  • Publication number: 20200278400
    Abstract: A system for differentiating short circuiting in a battery includes: a detector coupled to the battery; a monitor in communication with the detector, the monitor including a profile of a battery shorting behavior, and a comparator for matching data from the detector to the profile; and a controller for taking action based upon information from the detector. A method for detecting short circuiting in a battery includes the steps of: detecting a behavior of the battery; comparing the behavior of the battery to a predetermined battery behavior profile; determining the type of short based on the comparison; and taking mitigating action based on the determination. The system/method may monitor: temperature of the battery, heat generation from the battery, current flow through the battery, voltage drop across the battery, and/or combinations thereof. The system/method discriminates between the various battery shorting behaviors for aggressive response or passive response.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Zhengming Zhang, Weifeng Fang
  • Publication number: 20200176744
    Abstract: A ceramic-coated battery separator having a microporous polyolefin membrane and a ceramic coating on at least one surface of the microporous polyolefin membrane, wherein the ceramic-coated separator exhibits a strain shrinkage of 0% at temperatures greater than or equal to 120 degrees Celsius is provided.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Inventors: Zhengming Zhang, Xuefa Li, Lie Shi, Premanand Ramadass, Paul M. Halmo, Xiaomin Zhang
  • Patent number: 10656195
    Abstract: A system for differentiating short circuiting in a battery includes: a detector coupled to the battery; a monitor in communication with the detector, the monitor including a profile of a battery shorting behavior, and a comparator for matching data from the detector to the profile; and a controller for taking action based upon information from the detector. A method for detecting short circuiting in a battery includes the steps of: detecting a behavior of the battery; comparing the behavior of the battery to a predetermined battery behavior profile; determining the type of short based on the comparison; and taking mitigating action based on the determination. The system/method may monitor: temperature of the battery, heat generation from the battery, current flow through the battery, voltage drop across the battery, and/or combinations thereof. The system/method discriminates between the various battery shorting behaviors for aggressive response or passive response.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 19, 2020
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Weifeng Fang
  • Publication number: 20200125700
    Abstract: Techniques for brokering authorization between a user-facing service and a backend service are disclosed. A proxy service, operating independently of the user-facing service and the backend service, exposes an application programming interface (API) configured to receive requests from the user-facing services to perform functions of the plurality of backend services. The proxy service stores user authorization data that authorizes a user of a particular user-facing service to use a function of a backend service. The proxy service receives, via the API, a request to perform the function for an account associated with the user. Responsive to receiving to the request, the proxy service uses the user authorization data to access the backend service to perform the function for the account associated with the user.
    Type: Application
    Filed: April 11, 2019
    Publication date: April 23, 2020
    Applicant: Oracle International Corporation
    Inventors: Tuck Chang, Srikant Krishnapuram Tirumalai, Zhengming Zhang
  • Publication number: 20200067046
    Abstract: In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed.
    Type: Application
    Filed: September 18, 2019
    Publication date: February 27, 2020
    Inventors: Changqing Wang Adams, Michael Bielmann, Zhengming Zhang
  • Patent number: 10559802
    Abstract: A battery separator for a secondary lithium battery includes a microporous/porous membrane with a ceramic coating of one or more layers, a layer may include one or more particles having an average particle size ranging from 0.01 ?m to 5 ?m and/or binders that include poly (sodium acrylate-acrylamide-acrylonitrile) copolymer.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 11, 2020
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Xuefa Li, Lie Shi, Premanand Ramadass, Paul M. Halmo, Xiaomin Zhang
  • Publication number: 20200044278
    Abstract: An improved battery separator and an energy cell comprising the improved battery separator are provided. The improved battery separator comprises a porous membrane having at least one of the following properties when wet with electrolyte: has no or low volume; has no or low mass; soaks as much liquid electrolyte as possible; blocks or removes any harmful substances in the electrolyte; never melts at any high temperature; does not react with the cathode or the anode under any conditions; has a mechanical strength equal to or greater than steel; is an electronic insulator under any conditions; and blocks metal dendrite growth.
    Type: Application
    Filed: March 19, 2018
    Publication date: February 6, 2020
    Inventors: Zhengming ZHANG, Weifeng Fang
  • Publication number: 20190334214
    Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson
  • Publication number: 20190334151
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Patent number: 10461293
    Abstract: In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: October 29, 2019
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Michael Bielmann, Zhengming Zhang
  • Publication number: 20190305280
    Abstract: A lithium ion rechargeable battery comprises: a negative electrode adapted to give up electrons during discharge, a positive electrode adapted to gain electrons during discharge, a microporous separator sandwiched between said positive electrode and said negative electrode, an organic electrolyte being contained within said separator and being in electrochemical communication with said positive electrode and said negative electrode, and an oxidative barrier interposed between said separator and said positive electrode, and thereby preventing oxidation of said separator.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Zhengming Zhang, Pankaj Arora
  • Publication number: 20190286502
    Abstract: Techniques for governing access to third-party application programming interfaces (API's) are disclosed. A proxy service exposes an API configured to receive requests, from user-facing services, to perform functions of backend services. The proxy service stores a usage policy that defines a criterion that is (a) different from any authorization criterion and (b) associated with using a function of a backend service. The proxy service receives a request to perform the function of the first backend service for a user-facing service and determines that the request does not satisfy the usage policy. Based on determining that the request does not satisfy the usage policy, the proxy service refrains from accessing the backend service to perform the function responsive to the request, and transmits an alert to the user-facing service indicating that the request does not satisfy the usage policy.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: Oracle International Corporation
    Inventors: Tuck Chang, Zhengming Zhang, Tim Diekmann
  • Patent number: 10347951
    Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: July 9, 2019
    Assignee: Celgard, LLC
    Inventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson
  • Patent number: RE47520
    Abstract: The instant invention is directed to a separator for a high energy rechargeable lithium battery and the corresponding battery. The separator includes a ceramic composite layer and a polymeric microporous layer. The ceramic layers includes a mixture of inorganic particles and a matrix material. The ceramic layer is adapted, at least, to block dendrite growth and to prevent electronic shorting. The polymeric layer is adapted, at least, to block ionic flow between the anode and the cathode in the event of thermal runaway.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: July 16, 2019
    Assignee: Celgard, LLC
    Inventor: Zhengming Zhang