Patents by Inventor Zhengming Zhang
Zhengming Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10347890Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.Type: GrantFiled: July 29, 2016Date of Patent: July 9, 2019Assignee: Celgard, LLCInventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
-
Patent number: 10326121Abstract: A method for preventing oxidation of a polyolefin separator in a lithium ion secondary battery includes the steps of: providing a lithium ion secondary battery having a positive electrode and a polyolefin separator film; and positioning an antioxidative barrier coating between the positive electrode and the polyolefin separator film, the antioxidative barrier coating being made of a polymer having a resistance to oxidation greater than polyethylene.Type: GrantFiled: April 10, 2017Date of Patent: June 18, 2019Assignee: Celgard, LLCInventors: Zhengming Zhang, Pankaj Arora
-
Patent number: 10229759Abstract: A reactor lateral reflection layer telescoped control rod capable of separately achieving cold shutdown includes an inner rod, an outer rod and a guide cylinder assembly which are vertically and coaxially arranged, wherein the outer rod and the guide cylinder assembly are hollow cylindrical bodies; the top end of the inner rod can move up and down inside the outer rod and the other end of the inner rod moves up and down, along with the top end, inside a control rod passage which is positioned below the guide cylinder assembly and is coaxial with the guide cylinder assembly; and the top end of the outer rod can move up and down in the guide cylinder assembly and the other end of the outer rod moves up and down, along with the top end, inside the control rod passage.Type: GrantFiled: September 3, 2014Date of Patent: March 12, 2019Assignee: TSINGHUA UNIVERSITYInventors: Zuoyi Zhang, Xingzhong Diao, Zhengming Zhang, Libin Sun, He Yan
-
Publication number: 20170222281Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.Type: ApplicationFiled: April 20, 2017Publication date: August 3, 2017Inventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson
-
Publication number: 20170214023Abstract: A method for preventing oxidation of a polyolefin separator in a lithium ion secondary battery includes the steps of: providing a lithium ion secondary battery having a positive electrode and a polyolefin separator film; and positioning an antioxidative barrier coating between the positive electrode and the polyolefin separator film, the antioxidative barrier coating being made of a polymer having a resistance to oxidation greater than polyethylene.Type: ApplicationFiled: April 10, 2017Publication date: July 27, 2017Inventors: Zhengming Zhang, Pankaj Arora
-
Patent number: 9666847Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.Type: GrantFiled: September 18, 2013Date of Patent: May 30, 2017Assignee: Celgard, LLCInventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson
-
Patent number: 9660290Abstract: A lithium ion rechargeable battery comprises: a negative electrode adapted to give up electrons during discharge, a positive electrode adapted to gain electrons during discharge, a microporous separator sandwiched between said positive electrode and said negative electrode, an organic electrolyte being contained within said separator and being in electrochemical communication with said positive electrode and said negative electrode, and an oxidative barrier interposed between said separator and said positive electrode, and thereby preventing oxidation of said separator.Type: GrantFiled: October 13, 2006Date of Patent: May 23, 2017Assignee: Celgard, LLCInventors: Zhengming Zhang, Pankaj Arora
-
Patent number: 9570727Abstract: A battery separator is a microporous membrane. The membrane has a major volume of a thermoplastic polymer and a minor volume of an inert particulate filler. The filler is dispersed throughout the polymer. The membrane exhibits a maximum Z-direction compression of 95% of the original membrane thickness. Alternatively, the battery separator is a microporous membrane having a TMA compression curve with a first substantially horizontal slope between ambient temperature and 125° C., a second substantially horizontal slope at greater than 225° C. The curve of the first slope has a lower % compression than the curve of the second slope. The curve of the second slope is not less than 5% compression. The TMA compression curve is graphed so that the Y-axis represents % compression from original thickness and the X-axis represents temperature.Type: GrantFiled: October 18, 2005Date of Patent: February 14, 2017Assignee: Celgard LLCInventors: Zhengming Zhang, Khuy V. Nguyen, Pankaj Arora, Ronald W. Call, Donald K. Simmons, Tien Dao
-
Publication number: 20170033346Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.Type: ApplicationFiled: July 29, 2016Publication date: February 2, 2017Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
-
Publication number: 20170025658Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.Type: ApplicationFiled: July 22, 2016Publication date: January 26, 2017Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
-
Publication number: 20160301052Abstract: In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed.Type: ApplicationFiled: April 8, 2016Publication date: October 13, 2016Inventors: Changqing Wang Adams, Michael Bielmann, Zhengming Zhang
-
Patent number: 9453805Abstract: The instant application relates to an X-ray sensitive battery separator for a secondary lithium battery and a method for detecting the position of a separator in a secondary lithium battery. The X-ray sensitive battery separator includes a microporous membrane having an X-ray detectable element therein, thereon, or added thereto. The X-ray detectable element constitutes less than 20% by weight of the microporous membrane or separator. The method for detecting the position of a separator in a battery, cell, stack, jellyroll, can, or the like includes the following steps: (1) providing a battery, cell, stack, jellyroll, or the like including an X-ray sensitive battery separator; (2) subjecting the battery, cell, stack, jellyroll, or the like to X-ray radiation; and (3) thereby detecting the position of said separator in said battery, cell, stack, jellyroll, or the like.Type: GrantFiled: January 19, 2010Date of Patent: September 27, 2016Assignee: Celgard, LLCInventors: Xuefa Li, C. Glen Wensley, Zhengming Zhang
-
Publication number: 20160196884Abstract: A reactor lateral reflection layer telescoped control rod capable of separately achieving cold shutdown includes an inner rod, an outer rod and a guide cylinder assembly which are vertically and coaxially arranged, wherein the outer rod and the guide cylinder assembly are hollow cylindrical bodies; the top end of the inner rod can move up and down inside the outer rod and the other end of the inner rod moves up and down, along with the top end, inside a control rod passage which is positioned below the guide cylinder assembly and is coaxial with the guide cylinder assembly; and the top end of the outer rod can move up and down in the guide cylinder assembly and the other end of the outer rod moves up and down, along with the top end, inside the control rod passage.Type: ApplicationFiled: September 3, 2014Publication date: July 7, 2016Inventors: Zuoyi ZHANG, Xingzhong DIAO, Zhengming ZHANG, Libin SUN, He YAN
-
Publication number: 20160164060Abstract: In accordance with at least selected embodiments, new or improved ceramic coated separators, membranes, films, or the like for use in lithium batteries, new or improved batteries including such ceramic coated separators, membranes, films, or the like, and methods of making or using such ceramic coated separators, membranes, films or the like are disclosed. In accordance with at least certain embodiments, new or improved aqueous or water-based polymeric coated separators, membranes, films, or the like are disclosed. In accordance with at least particular embodiments, new or improved aqueous or water-based polyvinylidene fluoride (PVDF) or polyvinylidene difluoride (PVDF) homopolymer or co-polymers of PVDF with hexafluoropropylene (HFP or [—CF(CF3)—CF2—]), chlorotrifluoroethylene (CTFE), vinylidene fluoride (VF2.Type: ApplicationFiled: December 4, 2015Publication date: June 9, 2016Inventors: Zhengming Zhang, Jinbo He, Xuefa Li, Insik Jeon, Lie Shi, Jill V. Watson
-
Patent number: 9274068Abstract: A method for detecting the position of a separator relative to electrodes in a secondary lithium battery includes the steps of: providing a secondary lithium battery including a positive electrode, a negative electrode, a X-ray sensitive separator located between the electrodes, and a can or pouch housing the electrodes and separator, the X-ray sensitive separator comprising a microporous membrane having a X-ray detectable element dispersed therein or thereon, the X-ray detectable element comprising at least 2 and no greater than 20 weight % of the membrane; subjecting the secondary lithium battery to X-ray radiation; determining the position of the separator relative to the electrodes; and approving or rejecting the secondary lithium battery based upon the position of the separator relative to the electrodes.Type: GrantFiled: September 21, 2015Date of Patent: March 1, 2016Assignee: Celgard LLCInventors: Xuefa Li, C. Glen Wensley, Zhengming Zhang
-
Publication number: 20160011127Abstract: A method for detecting the position of a separator relative to electrodes in a secondary lithium battery includes the steps of: providing a secondary lithium battery including a positive electrode, a negative electrode, a X-ray sensitive separator located between the electrodes, and a can or pouch housing the electrodes and separator, the X-ray sensitive separator comprising a microporous membrane having a X-ray detectable element dispersed therein or thereon, the X-ray detectable element comprising at least 2 and no greater than 20 weight % of the membrane; subjecting the secondary lithium battery to X-ray radiation; determining the position of the separator relative to the electrodes; and approving or rejecting the secondary lithium battery based upon the position of the separator relative to the electrodes.Type: ApplicationFiled: September 21, 2015Publication date: January 14, 2016Inventors: Xuefa Li, C. Glen Wensley, Zhengming Zhang
-
Publication number: 20150377948Abstract: A system for differentiating short circuiting in a battery includes: a detector coupled to the battery; a monitor in communication with the detector, the monitor including a profile of a battery shorting behavior, and a comparator for matching data from the detector to the profile; and a controller for taking action based upon information from the detector. A method for detecting short circuiting in a battery includes the steps of: detecting a behavior of the battery; comparing the behavior of the battery to a predetermined battery behavior profile; determining the type of short based on the comparison; and taking mitigating action based on the determination. The system/method may monitor: temperature of the battery, heat generation from the battery, current flow through the battery, voltage drop across the battery, and/or combinations thereof. The system/method discriminates between the various battery shorting behaviors for aggressive response or passive response.Type: ApplicationFiled: June 30, 2015Publication date: December 31, 2015Inventors: Zhengming Zhang, Weifeng Fang
-
Publication number: 20150226419Abstract: A steam generator includes a heat exchanger, a liquid header and a steam header. The heat exchanger is assembled by several heat exchanging subassemblies with the same structure. The heat exchanging subassembly includes a spiral heat transmission pipe bundle, a central cylinder and a sleeve. The spiral heat transmission pipes with different radii are concentrically and spirally arranged in an annular space between the central cylinder and the sleeve, to form one or more concentric heat exchanging pillar surfaces. One end of the liquid header is connected with a main water feeding pipe, and the other end of the liquid header is connected with the spiral heat transmission pipe bundle. One end of the steam header is connected with a main steam pipe, and the other end of the steam header is connected with the spiral heat transmission pipe bundle.Type: ApplicationFiled: April 20, 2015Publication date: August 13, 2015Inventors: Shuyan HE, Huaiming JU, Xinxin WU, Xiaowei LUO, Zhengming ZHANG, Zongxin WU, Zuoyi ZHANG
-
Patent number: 9062918Abstract: A steam generator includes a heat exchanger, a liquid header and a steam header. The heat exchanger is assembled by several heat exchanging subassemblies with the same structure. The heat exchanging subassembly includes a spiral heat transmission pipe bundle, a central cylinder and a sleeve. The spiral heat transmission pipes with different radii are concentrically and spirally arranged in an annular space between the central cylinder and the sleeve, to form one or more concentric heat exchanging pillar surfaces. One end of the liquid header is connected with a main water feeding pipe, and the other end of the liquid header is connected with the spiral heat transmission pipe bundle. One end of the steam header is connected with a main steam pipe, and the other end of the steam header is connected with the spiral heat transmission pipe bundle.Type: GrantFiled: June 18, 2009Date of Patent: June 23, 2015Assignee: TSINGHUA UNIVERSITYInventors: Shuyan He, Huaiming Ju, Xinxin Wu, Xiaowei Luo, Zhengming Zhang, Zongxin Wu, Zuoyi Zhang
-
Publication number: 20140079980Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.Type: ApplicationFiled: September 18, 2013Publication date: March 20, 2014Applicant: CELGARD, LLCInventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson