Patents by Inventor Zhenguo Yang

Zhenguo Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190379079
    Abstract: In one embodiment of the present disclosure, a composition for producing a vanadium electrolyte includes a vanadium compound and an ion solution containing vanadium ions and hydrogen ions. In another embodiment, a method for producing a vanadium electrolyte includes obtaining a vanadium compound, and mixing the vanadium compound with an ion solution containing vanadium ions and hydrogen ions.
    Type: Application
    Filed: April 15, 2019
    Publication date: December 12, 2019
    Applicant: UniEnergy Technologies, LLC
    Inventors: Yueqi Liu, Liyu Li, Chenxi Sun, Richard O. Winter, Zhenguo Yang
  • Publication number: 20190349399
    Abstract: A character string classification method, a character string classification system, a character string classification device, and a computer readable storage medium are provided. The method includes: acquiring a to-be-classified character string, inputting the to-be-classified character string to a feature extractor to obtain a feature vector of the to-be-classified character string, and inputting the feature vector to a classifier to obtain a classification result of the to-be-classified character string. With the character string classification method, only the features of the character string itself are used in the character string classification process. That is, the to-be-classified character string is directly inputted to the feature extractor to obtain the feature vector, and the classifier classifies the to-be-classified character string based on the feature vector, thereby eliminating requirement for other information associated with the character string.
    Type: Application
    Filed: January 17, 2018
    Publication date: November 14, 2019
    Applicant: GUANGDONG UNIVERSITY OF TECHNOLOGY
    Inventors: Wenyin LIU, Zhenguo YANG, Huaping YUAN, Xu CHEN, Yukun LI
  • Patent number: 10462740
    Abstract: A method for method for waking up one of a plurality of radio communications modules (RCMs) of a first station includes receiving a wake-up configuration from a second station, placing the plurality of RCMs into a sleeping mode, receiving a wake-up signal from the second station on an auxiliary low-power radio receiver of the first station, determining a first RCM of the plurality of RCMs to wake up in accordance with the wake-up configuration, and waking up the first RCM from the sleeping mode to communicate with the second station.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: October 29, 2019
    Assignee: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Yunsong Yang, Zhigang Rong, Zhenguo Du
  • Publication number: 20190208502
    Abstract: A method includes: determining, by an access point based on remaining quantities of electricity and/or location information of all stations in at least one station group in a basic service set, an identifier of a type-1 station in each of the at least one station group and available time window information that corresponds to each type-1 station, and generating a notification message including relay enabling information of the at least one station group, relay enabling information of each station group includes identifiers of at least two type-1 stations in the station group and the available time window information of each type-1 station; and broadcasting, by the access point, the notification message in the basic service set.
    Type: Application
    Filed: June 30, 2016
    Publication date: July 4, 2019
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Zhenguo Du, Yunsong Yang
  • Patent number: 10313098
    Abstract: Methods, systems, and machine-readable storage mediums for clock synchronizing among detectors in a clock synchronizing configuration are provided. An example clock synchronizing method includes: providing a clock of a preset frequency in each of N modules to be synchronized, coupling every two adjacent modules of the modules by a transmission line of the same length, N being an odd number, selecting two different modules from the modules as two reference modules respectively, controlling each of the reference modules to transmit a synchronizing signal to the other modules, determining a clock error between every two modules having the same transmission distance from the reference module according to a moment of the synchronizing signal reaching each of the other modules, selecting a calibrating module from the modules, and implementing clock synchronization between each of the modules and the calibrating module according to the respective clock errors associated with the two reference modules.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: June 4, 2019
    Assignee: Shenyang Neusoft Medical Systems Co., Ltd.
    Inventors: Gai Cui, Long Yang, Jun Zhang, Peng Ning, Zhenguo Zhang
  • Patent number: 9960443
    Abstract: Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: May 1, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Wei Wang, Liyu Li, Zhenguo Yang, Zimin Nie
  • Patent number: 9819039
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: November 14, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Patent number: 9406960
    Abstract: Improved lithium-sulfur energy storage systems can utilizes LixSy as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising LixSy. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 2, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Jie Xiao, Jiguang Zhang, Gordon L. Graff, Jun Liu, Wei Wang, Jianming Zheng, Wu Xu, Yuyan Shao, Zhenguo Yang
  • Patent number: 9368824
    Abstract: Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S2? and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: June 14, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Guanguang Xia, Zhenguo Yang, Liyu Li, Soowhan Kim, Jun Liu, Gordon L Graff
  • Publication number: 20150380757
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Application
    Filed: July 31, 2015
    Publication date: December 31, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Patent number: 9130218
    Abstract: Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: September 8, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wei Wang, Wu Xu, Liyu Li, Zhenguo Yang
  • Patent number: 9123931
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: September 1, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Patent number: 9077011
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: July 7, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Patent number: 9070942
    Abstract: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: June 30, 2015
    Assignees: Battelle Memorial Institute, The Trustees of Princeton University
    Inventors: Jun Liu, Ilhan A. Aksay, Daiwon Choi, Donghai Wang, Zhenguo Yang
  • Patent number: 9023529
    Abstract: A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Zhenguo Yang, Wei Wang, Daiwon Choi, Zimin Nie
  • Patent number: 9017867
    Abstract: Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: April 28, 2015
    Assignees: Battelle Memorial Institute, The Trustees of Princeton University
    Inventors: Jun Liu, Ilhan A. Aksay, Daiwon Choi, Rong Kou, Zimin Nie, Donghai Wang, Zhenguo Yang
  • Patent number: 8999574
    Abstract: A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: April 7, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, John P. Lemmon, Zhenguo Yang, Yuliang Cao, Xiaolin Li
  • Patent number: 8835046
    Abstract: Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 16, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Daiwon Choi, Rong Kou, Zimin Nie, Donghai Wang, Zhenguo Yang
  • Publication number: 20140234536
    Abstract: Modifications to the surface of an electrode and/or the surfaces of the electrode material can improve battery performance. For example, the modifications can improve the capacity, rate capability and long cycle stability of the electrode and/or may minimize undesirable catalytic effects. In one instance, metal-ion batteries can have an anode that is coated, at least in part, with a metal fluoride protection layer. The protection layer is preferably less than 100 nm in thickness. The anode material is fabricated according to methods that result in improved anode performance.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Battelle Memorial Institute
    Inventors: Wu Xu, Wei Wang, Zhenguo Yang, Jiguang Zhang, Daiwon Choi
  • Publication number: 20140234753
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia