Patents by Inventor Zhenguo Yang

Zhenguo Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100178586
    Abstract: The present invention provides a material and a method for its creation and use wherein a reactive element, preferably a rare earth element, is included in an oxide coating material. The inclusion of this material modifies the growth and structure of the scale beneath the coating on metal substrate and improves the scale adherence to the metal substrate.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Inventors: Zhenguo Yang, Jeffry W. Stevenson, Guan-Guang Xia
  • Publication number: 20100081057
    Abstract: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.
    Type: Application
    Filed: July 27, 2009
    Publication date: April 1, 2010
    Inventors: Jun Liu, Ilhan A. Aksay, Daiwon Choi, Donghai Wang, Zhenguo Yang
  • Patent number: 6843406
    Abstract: A method of joining metal and metal, or metal and ceramic parts, wherein a first metal part is selected and then processed to form a bond coat that will effectively bond to a sealing material which in turn bonds to a second metal or ceramic part without degrading under the operating conditions of electrochemical devices. Preferred first metal parts include alumina forming alloys from the group consisting of ferritic stainless steels (such as Fecralloys), austinetic stainless steels, and superalloys, and chromia forming alloys formed of ferritic stainless steels. In the case of chromia forming ferritic stainless steels, this bond coat consists of a thin layer of alumina formed on the surface, with a diffusion layer between the first metal part and this thin layer. The bond coat provides a good bonding surface for a sealing layer of glass, braze or combinations thereof, while at the same time the diffusion layer provides a durable bond between the thin alumina layer and the first metal part.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 18, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Zhenguo Yang, Christopher Andrew Coyle, Suresh Baskaran, Lawrence Andrew Chick
  • Patent number: 6793875
    Abstract: A method for the synthesis of method for the manufacture of carbide cermet powders, comprises high energy ball milling a mixture of precursor powders and a carbon source, followed by annealing the milled powder mixture. The precursor powders are selected from materials suitable for the formation of cermets, for example silicon, titanium, thorium, hafnium, vanadium, chromium, tungsten, tantalum, niobium, and zirconium-containing materials. The precursors further include a source of carbon. Tungsten cobalt carbide powders produced by this method are submicron-sized (0.2 to 0.4 microns) with internal nanograins (10 to 40 nanometers in diameter).
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: September 21, 2004
    Assignee: The University of Connecticut
    Inventors: Leon L. Shaw, Ruiming Ren, Zhenguo Yang
  • Publication number: 20040060967
    Abstract: A method of joining metal and metal, or metal and ceramic parts, wherein a first metal part is selected and then processed to form a bond coat that will effectively bond to a sealing material which in turn bonds to a second metal or ceramic part without degrading under the operating conditions of electrochemical devices. Preferred first metal parts include alumina forming alloys from the group consisting of ferritic stainless steels (such as Fecralloys), austinetic stainless steels, and superalloys, and chromia forming alloys formed of ferritic stainless steels. In the case of chromia forming ferritic stainless steels, this bond coat consists of a thin layer of alumina formed on the surface, with a diffusion layer between the first metal part and this thin layer. The bond coat provides a good bonding surface for a sealing layer of glass, braze or combinations thereof, while at the same time the diffusion layer provides a durable bond between the thin alumina layer and the first metal part.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Inventors: Zhenguo Yang, Christopher Andrew Coyle, Suresh Baskaran, Lawrence Andrew Chick
  • Patent number: 6214309
    Abstract: A method for the synthesis of micron- and submicron-sized, nanostructured metal carbide powders, comprising high energy milling of metal oxide and carbon precursors followed by annealing of the as-milled powders. The annealing is preferably carried out under a flow of inert gas or subatmospheric pressure to drive the reaction to completion in one to two hours. The powders thus synthesized comprise high purity particles having a narrow particle size range.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: April 10, 2001
    Assignee: University of Connecticut
    Inventors: Leon L. Shaw, Ruiming Ren, Zhenguo Yang