Patents by Inventor Zhichao Lu

Zhichao Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10702858
    Abstract: Some embodiments of the invention include inventive catalysts (e.g., compounds of Formula (I) or (Ia)). Other embodiments include compositions comprising the inventive catalysts. Some embodiments include methods of using the inventive catalysts (e.g., in hydrofluorination of an organic compound). Further embodiments include methods for making the inventive catalysts. Additional embodiments of the invention are also discussed herein.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: July 7, 2020
    Assignee: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Bo Xu, Zhichao Lu, Gerald B. Hammond
  • Publication number: 20200176046
    Abstract: Dual-precision analog memory cells and arrays are provided. In some embodiments, a memory cell, comprises a non-volatile memory element having an input terminal and at least one output terminal; and a volatile memory element having a plurality of input terminals and an output terminal, wherein the output terminal of the volatile memory element is coupled to the input terminal of the non-volatile memory element, and wherein the volatile memory element comprises: a first transistor coupled between a first supply and a common node, and a second transistor coupled between a second supply and the common node; wherein the common node is coupled to the output terminal of the volatile memory element; and wherein gates of the first and second transistors are coupled to respective ones of the plurality of input terminals of the volatile memory element.
    Type: Application
    Filed: November 24, 2019
    Publication date: June 4, 2020
    Inventors: Zhichao LU, Liang ZHAO
  • Publication number: 20190392898
    Abstract: A method and related apparatus for using an indication of RRAM cell resistance to determine a write condition are disclosed. A cell characteristic of an RRAM cell is determined to a finer resolution than a data read value. A write condition is selected for the RRAM cell, based on the cell characteristic. The RRAM cell is written to, using the selected write condition.
    Type: Application
    Filed: September 21, 2017
    Publication date: December 26, 2019
    Inventors: Brent HAUKNESS, Zhichao LU
  • Publication number: 20190392897
    Abstract: The embodiments herein describe technologies of initializing resistive memory devices (e.g., non-volatile and volatile memory devices). In one method, a first voltage is applied across a resistance change material of a memory cell to form an initial filament and multiple cycles are performed to condition the initial filament. Each of the multiple cycles includes: applying a second voltage with a first polarity across the resistance change material; and applying a third voltage with a second polarity across the resistance change material.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 26, 2019
    Inventors: Zhichao LU, Brent HAUKNESS, Gary BRONNER
  • Publication number: 20190371399
    Abstract: Disclosed is a resistive random access memory (RRAM) circuit and related method to limit current, or ramp voltage, applied to a source line or bitline of an RRAM array. The RRAM array has one or more source lines and one or more bitlines. A control circuit sets an RRAM cell to a low resistance state in a set operation, and resets the RRAM cell to a high resistance state in a reset operation. A voltage applied to a bitline or source line is ramped during a first time interval, held to a maximum voltage value during a second interval, and ceased after the second time interval.
    Type: Application
    Filed: December 19, 2017
    Publication date: December 5, 2019
    Inventors: Brent HAUKNESS, Zhichao LU
  • Publication number: 20190288037
    Abstract: Disclosed is a resistive random access memory (RRAM). The RRAM includes a bottom electrode made of tungsten and a switching layer made of hafnium oxide disposed above the bottom electrode, wherein the switching layer includes a switchable filament. The RRAM further includes a resistive layer disposed above the switching layer and a bit line disposed above the resistive layer, wherein the resistive layer extends laterally to connect two or more memory cells along the bit line.
    Type: Application
    Filed: November 13, 2017
    Publication date: September 19, 2019
    Inventors: Zhichao LU, Brent Steven HAUKNESS
  • Publication number: 20190288195
    Abstract: Disclosed is a resistive random access memory (RRAM). The RRAM includes a bottom electrode made of tungsten and a switching layer made of hafnium oxide disposed above the bottom electrode, wherein the switching layer includes a filament and one or more lateral regions including a doping material that are between a top region and a bottom region of the switching layer. The RRAM further includes a top electrode disposed above the switching layer.
    Type: Application
    Filed: November 13, 2017
    Publication date: September 19, 2019
    Inventors: Zhichao LU, Gary Bela BRONNER
  • Publication number: 20190176134
    Abstract: Some embodiments of the invention include inventive catalysts (e.g., compounds of Formula (I) or (Ia)). Other embodiments include compositions comprising the inventive catalysts. Some embodiments include methods of using the inventive catalysts (e.g., in hydrofluorination of an organic compound). Further embodiments include methods for making the inventive catalysts. Additional embodiments of the invention are also discussed herein.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 13, 2019
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Bo Xu, Zhichao Lu, Gerald B. Hammond
  • Publication number: 20180166120
    Abstract: Memory devices, controllers and associated methods are disclosed. In one embodiment, a memory device is disclosed. The memory device includes storage cells that are each formed with a metal-oxide-semiconductor (MOS) transistor having a floating body. Data is stored as charge in the floating body. A transfer interface receives a read command to access data stored in a first group of the storage cells. Sensing circuitry detects the data stored in the first group of storage cells. The transfer interface selectively performs a writeback operation of the sensed data associated with the read command.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 14, 2018
    Inventors: Frederick A. Ware, John Eric Linstadt, Zhichao Lu, Kenneth Lee Wright
  • Patent number: 8787072
    Abstract: Memory cell structures and biasing schemes are provided. Certain embodiments pertain to a modified floating-body gate cell, which can provide improved retention times. In one embodiment, a gated diode is used to drive the gate of a second transistor structure of a cell. In another embodiment, a body-tied-source (BTS) field effect transistor is used to drive the gate of the second transistor structure of a cell.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 22, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jerry G. Fossum, Zhichao Lu
  • Patent number: 8391059
    Abstract: Multi-gate metal-oxide-semiconductor (MOS) transistors and methods of operating such multi-gate MOS transistors are disclosed. In one embodiment, the multi-gate MOS transistor comprises a first gate associated with a first body factor and comprising a first gate electrode for applying a first gate voltage, and a second gate associated with a second body factor greater than or equal to the first body factor and comprising a second gate electrode for applying a second gate voltage. The multi-gate MOS transistor further comprises a body of semiconductor material between the first dielectric layer and the second dielectric layer, where the semiconductor body comprises a first channel region located close to the first dielectric layer and a second channel region located close to the second dielectric layer. The multi-gate MOS transistor still further comprises a source region and a drain region each having a conductivity type different from a conductivity type of the body.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: March 5, 2013
    Assignee: IMEC
    Inventors: Zhichao Lu, Nadine Collaert, Marc Aoulaiche, Malgorzata Jurczak
  • Publication number: 20110317486
    Abstract: Multi-gate metal-oxide-semiconductor (MOS) transistors and methods of operating such multi-gate MOS transistors are disclosed. In one embodiment, the multi-gate MOS transistor comprises a first gate associated with a first body factor and comprising a first gate electrode for applying a first gate voltage, and a second gate associated with a second body factor greater than or equal to the first body factor and comprising a second gate electrode for applying a second gate voltage. The multi-gate MOS transistor further comprises a body of semiconductor material between the first dielectric layer and the second dielectric layer, where the semiconductor body comprises a first channel region located close to the first dielectric layer and a second channel region located close to the second dielectric layer. The multi-gate MOS transistor still further comprises a source region and a drain region each having a conductivity type different from a conductivity type of the body.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 29, 2011
    Applicant: IMEC
    Inventors: Zhichao Lu, Nadine Collaert, Marc Aoulaiche, Malgorzata Jurczak
  • Patent number: 8048191
    Abstract: The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt % and the content of powder B is 4-50 wt %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: November 1, 2011
    Assignees: Advanced Technology & Material Co., Ltd., Central Iron & Steel Research Institute
    Inventors: Zhichao Lu, Deren Li, Shaoxiong Zhou, Caowei Lu, Feng Guo, Jianliang Li, Jun Wang, Tongchun Zhao, Liang Zhang
  • Publication number: 20110222337
    Abstract: Memory cell structures and biasing schemes are provided. Certain embodiments pertain to a modified floating-body gate cell, which can provide improved retention times. In one embodiment, a gated diode is used to drive the gate of a second transistor structure of a cell. In another embodiment, a body-tied-source (BTS) field effect transistor is used to drive the gate of the second transistor structure of a cell.
    Type: Application
    Filed: December 29, 2009
    Publication date: September 15, 2011
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Jerry G. Fossum, Zhichao Lu
  • Publication number: 20100034687
    Abstract: The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt. % and the content of powder B is 4-50 wt. %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases.
    Type: Application
    Filed: October 19, 2009
    Publication date: February 11, 2010
    Inventors: Zhichao Lu, Deren Li, Shaoxiong Zhou, Caowei Lu, Feng Guo, Jianliang Li, Jun Wang, Tongchun Zhao, Liang Zhang
  • Publication number: 20100031773
    Abstract: The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt. % and the content of powder B is 4-50 wt. %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases.
    Type: Application
    Filed: October 19, 2009
    Publication date: February 11, 2010
    Inventors: Zhichao Lu, Deren Li, Shaoxiong Zhou, Caowei Lu, Feng Guo, Jianliang Li, Jun Wang, Tongchun Zhao, Liang Zhang
  • Publication number: 20090249920
    Abstract: The present invention provides an amorphous alloy powder and magnetic powder cores exhibiting excellent high frequency properties and a method for making themof. The composition of said alloy powder by atomic percentage satisfies the following formula: (Fe1-xMx)100-a-b-cPaTbDc, wherein M represents at least one element of Co and Ni; T is over three elements selected from Al, C, B and Si, D is at least one element of Sn, Cr, Mn, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd and Au; the subscripts x, a, b, and c satisfy the relationships 0.01?x?0.16, 8?a?15, 10?b?25 and 0.5?c?6. The said amorphous alloy powder is made by atomization method and a magnetic powder core comprises a molded article of mixture of the said alloy powder and an insulating material. A method of making the amorphous alloy powder core includes the steps of screening, insulating, compacting, annealing and spray painting.
    Type: Application
    Filed: May 26, 2009
    Publication date: October 8, 2009
    Inventors: Zhichao Lu, Caowei Lu, Deren Li, Ko Sun, Shaoxlong Zhou
  • Publication number: 20090232693
    Abstract: The present invention provides an amorphous alloy powder and magnetic powder cores exhibiting excellent high frequency properties and a method for making themof. The composition of said alloy powder by atomic percentage satisfies the following formula: (Fe1-xMx)100-a-b-cPaTbDc, wherein M represents at least one element of Co and Ni; T is over three elements selected from Al, C, B and Si, D is at least one element of Sn, Cr, Mn, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd and Au; the subscripts x, a, b, and c satisfy the relationships 0.01?x?0.16, 8?a?15, 10?b?25 and 0.5?c?6. The said amorphous alloy powder is made by atomization method and a magnetic powder core comprises a molded article of mixture of the said alloy powder and an insulating material. A method of making the amorphous alloy powder core includes the steps of screening, insulating, compacting, annealing and spray painting.
    Type: Application
    Filed: May 26, 2009
    Publication date: September 17, 2009
    Inventors: Zhichao Lu, Caowei Lu, Deren Li, Ko Sun, Shaoxiong Zhou
  • Publication number: 20070258842
    Abstract: The present invention provides an amorphous alloy powder and magnetic powder cores exhibiting excellent high frequency properties and a method for making themof The composition of said alloy powder by atomic percentage satisfies the following formula: (Fe1-xMx)100-a-b-cPaTbDc, wherein M represents at least one element of Co and Ni; T is over three elements selected from Al, C, B and Si, D is at least one element of Sn, Cr, Mn, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd and Au; the subscripts x, a, b, and c satisfy the relationships 0.01?x?0.16, 8?a?15, 10?b?25 and 0.5?c?6. The said amorphous alloy powder is made by atomization method and a magnetic powder core comprises a molded article of mixture of the said alloy powder and an insulating material. A method of making the amorphous alloy powder core includes the steps of screening, insulating, compacting, annealing and spray painting.
    Type: Application
    Filed: November 10, 2006
    Publication date: November 8, 2007
    Inventors: Zhichao Lu, Caowei Lu, Deren Li, Ke Sun, Shaoxiong Zhou
  • Publication number: 20070144614
    Abstract: The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt % and the content of powder B is 4-50 wt %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 28, 2007
    Inventors: Zhichao Lu, Deren Li, Shaoxiong Zhou, Caowei Lu, Feng Guo, Jianliang Li, Jun Wang, Tongchun Zhao, Liang Zhang