Patents by Inventor Zhigang Lin

Zhigang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11053135
    Abstract: Producing CoxFe100-x, where x is an integer from 20 to 95, nanoparticles by: (a) providing a first aqueous hydroxide solution; (b) preparing a second aqueous solution containing iron ions and cobalt ions; and (c) depositing measured volumes of the second aqueous solution into the first aqueous solution whereby coprecipitation yields CoFe alloy nanoparticles, wherein step (c) occurs in an essentially oxygen-free environment. The nanoparticles are annealed at ambient temperatures to yield soft nanoparticles with targeted particle size, saturation magnetization and coercivity. The chemical composition, crystal structure and homogeneity are controlled at the atomic level. The CoFe magnetic nanoparticles have Ms of 200-235 emu/g, (Hc) coercivity of 18 to 36 Oe and size range of 5-40 nm.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: July 6, 2021
    Assignee: Aegis Technology Inc.
    Inventors: Qi Chen, Zhigang Lin
  • Publication number: 20210159144
    Abstract: A high performance, lead free, Ag paste thermal interface material (TIM) for die attachment and substrate bonding in electronic packaging includes: (i) multiscale silver particles, (ii) metal-coated carbon nanotubes (CNTs), (iii) a polymer, and (iv) a liquid carrier. The multiscale silver particles and metal-coated carbon nanotubes, which function as hybrid filler components, are uniformly dispersed within the TIM composition. The sintered TIM exhibits high density, high mechanical strength, and high thermal conductivity. The components of the liquid carrier including the solvent, binder, surfactants, and thinner are completely evaporated or burned off during sintering. Sintering of the TIM can be conducted at a relatively low temperature, without or with very low (<0.1 MPa) pressure, in open air and without vacuum or inert gas protection. The TIM can be utilized in substrate bonding not only on conventional metal-plated surfaces but also bare Cu substrate surfaces.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Inventors: Zhigang Lin, Chunhu Tan, Shuyi Chen
  • Publication number: 20210102063
    Abstract: Ceramic-polymer film includes a polymer matrix, plasticizers, a lithium salt, and a ceramic nanoparticle, LLZO: AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0 to 0.85. The nanoparticles have diameters that range from 20 to 2000 nm and the film has an ionic conductivity of greater than 1×10?4 S/cm (?20° C. to 10° C.) and larger than 1×10?3 S/cm (?20° C.). Using a combination of selected plasticizers to tune the ionic transport temperature dependence enables the battery based on the ceramic-polymer film to be operable in a wide temperature window (?40° C. to 90° C.). Large size nanocomposite film (area ?8 cm×6 cm) can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. This large size film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical pouch cell and further assembled into battery packs.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 8, 2021
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng, Shuyi Chen, Kevin Zanjani
  • Publication number: 20200365302
    Abstract: High-pressure gas atomization (HPGA) process produces high-quality metal powder and alloy materials including soft magnetic materials. HPGA includes: (a) melting a metal to form a liquid metal; (b) forming a continuous stream of the metal liquid; and (c) directing high-pressure inert gas into the continuous stream of liquid metal to generate droplets of the liquid metal, whereby the droplets solidify to form particles that exhibit soft magnetic properties. The high-pressure inert gas quenches or cools the liquid metal at speeds of up to 5×105° C. per second. The soft magnetic alloy powder is spherical-shaped with particle sizes of between 1 ?m and 5 ?m and comprises a mixture of amorphous and microcrystalline phases with a narrow size distribution. These features facilitate consolidation into various products including near-net shape magnets. Annealing yields nanocrystal phases including a-CoFe or a-Fe phase that is embedded in amorphous matrix.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Inventors: Qi Chen, Zhigang Lin
  • Publication number: 20200361784
    Abstract: Producing CoxFe100-x, where x is an integer from 20 to 95, nanoparticles by: (a) providing a first aqueous hydroxide solution; (b) preparing a second aqueous solution containing iron ions and cobalt ions; and (c) depositing measured volumes of the second aqueous solution into the first aqueous solution whereby coprecipitation yields CoFe alloy nanoparticles, wherein step (c) occurs in an essentially oxygen-free environment. The nanoparticles are annealed at ambient temperatures to yield soft nanoparticles with targeted particle size, saturation magnetization and coercivity. The chemical composition, crystal structure and homogeneity are controlled at the atomic level. The CoFe magnetic nanoparticles have Ms of 200-235 emu/g, (Hc) coercivity of 18 to 36 Oe and size range of 5-40 nm.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 19, 2020
    Inventors: Qi Chen, Zhigang Lin
  • Publication number: 20200335814
    Abstract: A ceramic-polymer film includes a polymer matrix; a plasticizer; a lithium salt; and AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0.01 to 1 (LLZO), wherein the LLZO are nanoparticles with diameters that range from 20 to 2000 nm and wherein the film has an ionic conductivity of greater than 1×10?3 S/cm at room temperature. The nanocomposite film can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. The film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical cells and batteries. The LLZO serves as a barrier to dendrite growth.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Inventors: Zhigang Lin, Chunhu Tan, Chao Yi
  • Publication number: 20200273620
    Abstract: Spherical ceramic-glass nanocomposite dielectrics made from ceramics and glasses that are separately pre-milled by mechanical ball milling using selected ball-to-powder weight ratios and combined to form a mixture that is ball milled. A stable liquid suspension of the milled mixture including an added dispersant such as polyacrylic acid to improve uniformity is spray dried through a nozzle and recovered product is annealed. The novel dielectrics have a microstructure where ceramic primary particles are uniformly distributed and fully embedded in a glass matrix. The dielectrics have a mean particle size of about 1-20 um and a sphericity of about 0.8 or higher which are suitable for fabricating multilayer ceramic capacitors for high temperature applications. The novel dielectrics afford decreased sintering temperature, enhanced breakdown strength, lower dielectric lose tangent, and lower costs.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: Zhigang Lin, Chunhu Tan
  • Patent number: 9852045
    Abstract: Embodiments for debugging program code are provided. In response to a debug comparison request, (i) a first set of debugging operations are initiated on a first portion of program code selected from an original version of a program, and (ii) a second set of debugging operations are initiated on a second portion of program code selected from a revised version of the program. The second portion of program code corresponds to the first portion of program code. Execution of the first and second portions of program code is synchronized. The first and second set of debugging operations are stopped in response to determine that at least one of a first and a second stop condition exists based, at least in part, on a comparison of the results from executing one or more lines of corresponding code from the first and second portions of program code.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: December 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Peng Chang, Chun Ling Li, ZhiGang Lin, Nan Shi, Xiao Feng Zhang
  • Publication number: 20170217900
    Abstract: Provided is a method of preparing 3-fluoroalkyl-1-substituted pyrazol-4-carboxylic acid by air oxidation. The methoduses 3-fluoroalkyl-1-substituted pyrazol-4-formaldehyde as raw material for reaction in a neutral or alkaline condition under the action of a catalyst and with air as an oxidizing agent, to obtain 3-fluoroalkyl-1-substituted pyrazol-4-carboxylic acid. The method employs a mild, safe and clean reaction, and is suitable for industrial mass production.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 3, 2017
    Inventors: Zhigang LIN, Yueheng JIANG, Tong CAI
  • Publication number: 20170103010
    Abstract: Embodiments for debugging program code are provided. In response to a debug comparison request, (i) a first set of debugging operations are initiated on a first portion of program code that is selected from an original version of a program, and (ii) a second set of debugging operations are initiated on a second portion of program code that is selected from a revised version of the program. The second portion of program code corresponds to the first portion of program code. Execution of the first and second portions of program code is synchronized. The first and second set of debugging operations are stopped in response to determine that at least one of a first and a second stop condition exists based, at least in part, on a comparison of the results from executing one or more lines of corresponding code from the first and second portions of program code.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 13, 2017
    Inventors: Peng Chang, Chun Ling Li, ZhiGang Lin, Nan Shi, Xiao Feng Zhang
  • Patent number: 9018393
    Abstract: A method for preparing 2-(N-substituted)-amino-benzimidazole derivatives is provided, which comprises the following steps: (1) reacting a compound of 2-(N-protecting group)-O-aryl diamine with a compound of N-phenoxycarbonyl monosubstituted amine to obtain a compound of 2-(N-protecting group)-amino aryl urea; (2) in a suitable organic solvent, performing dehydrating cyclization reaction of the compound of 2-(N-protecting group)-amino aryl urea in the presence of an organic base and dichloro triphenylphosphine prepared by triphenylphosphine oxide with oxalyl chloride or diphosgene or triphosgene, or dibromo triphenylphosphine prepared by triphenylphosphine oxide with bromine, to produce a compound of 1-protecting group-2-(N-substituted)-amino-benzimidazole; (3) deprotecting the resulting compound of 1-protecting group-2-(N-substituted)-amino-benzimidazole to obtain the compound 2-(N-substituted)-amino-benzimidazole.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 28, 2015
    Assignee: ABA Chemicals Corporation
    Inventors: Yueheng Jiang, Tong Cai, Limin Que, Zhigang Lin
  • Patent number: 8940929
    Abstract: Disclosed is a preparation method of high-optical purity N2-[1-(S)-ethoxycarbonyl-3-phenylpropyl]-N6-trifluoroacetyl-L-lysine. The method includes: adding crude N2-[1-(S)-ethoxycarbonyl-3-phenylpropyl]-N6-trifluoroacetyl-L-lysine to one or more organic solvents, and then reacting with an organic acid to form a salt, which is precipitated, thereby achieving the purpose of separation and purification; next, adding the obtained solid or mother concentrate into deionized water, and then adding an inorganic base or an organic base for basification, so as to adjust the pH value, removing the organic acid, filtering, washing and drying, to obtain the high-optical purity N2-[1-(S)-ethoxycarbonyl-3-phenylpropyl]-N6-trifluoroacetyl-L-lysine, where the molar ratio of 1S-isomer to 1R-isomer is equal to or greater than 99:1.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 27, 2015
    Assignee: ABA Chemicals Corporation
    Inventors: Limin Que, Yueheng Jiang, Zhigang Lin, Tong Cai
  • Publication number: 20140295069
    Abstract: Objects of the present invention include creating cathode materials that have high energy density and are cost-effective, environmentally benign, and are able to be charged and discharged at high rates for a large number of cycles over a period of years. One embodiment is a battery material comprised of a doped nanocomposite. The doped nanocomposite may be comprised of Li—Co—PO4; C; and at least one X, where said X is a metal for substituting or doping into LiCoPO4. In certain embodiments, the doped nanocomposite may be LiCoMnPO4/C. Another embodiment of the present invention is a method of creating a battery material comprising the steps of high energy ball milling particles to create complex particles, and sintering said complex particles to create a nanocomposite. The high energy ball milling may dope and composite the particles to create the complex particles.
    Type: Application
    Filed: May 13, 2014
    Publication date: October 2, 2014
    Applicant: Aegis Technology Inc.
    Inventors: Zhigang Lin, Chunhu Tan
  • Publication number: 20130345436
    Abstract: A method for preparing 2-(N-substituted)-amino-benzimidazole derivatives is provided, which comprises the following steps: (1) reacting a compound of 2-(N-protecting group)-O-aryl diamine with a compound of N-phenoxycarbonyl monosubstituted amine to obtain a compound of 2-(N-protecting group)-amino aryl urea; (2) in a suitable organic solvent, performing dehydrating cyclization reaction of the compound of 2-(N-protecting group)-amino aryl urea in the presence of an organic base and dichloro triphenylphosphine prepared by triphenylphosphine oxide with oxalyl chloride or diphosgene or triphosgene, or dibromo triphenylphosphine prepared by triphenylphosphine oxide with bromine, to produce a compound of 1-protecting group-2-(N-substituted)-amino-benzimidazole; (3) deprotecting the resulting compound of 1-protecting group-2-(N-substituted)-amino-benzimidazole to obtain the compound 2-(N-substituted)-amino-benzimidazole.
    Type: Application
    Filed: January 26, 2011
    Publication date: December 26, 2013
    Applicant: ABA CHEMICALS CORPORATION
    Inventors: Yueheng Jiang, Tong Cai, Limin Que, Zhigang Lin
  • Patent number: 8511535
    Abstract: A superior braze material, along with a method of producing the braze material and a method of sealing, joining or bonding materials through brazing is disclosed. The braze material is based on a metal oxide-noble metal mixture, typically Ag—CuO, with the addition of a small amount of metal oxide and/or metal such as TiO2, Al2O3, YSZ, Al, and Pd that will further improve wettability and joint strength. Braze filer materials, typically either in the form of paste or thin foil, may be prepared by a high-energy cryogenic ball milling process. This process allows the braze material to form at a finer size, thereby allowing more evenly dispersed braze particles in the resultant braze layer between on the surface of the ceramic substrate and metallic parts.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: August 20, 2013
    Assignee: Aegis Technology Inc.
    Inventors: Quan Yang, Chunhu Tan, Zhigang Lin
  • Publication number: 20130193194
    Abstract: A superior braze material, along with a method of producing the braze material and a method of sealing, joining or bonding materials through brazing is disclosed. The braze material is based on a metal oxide-noble metal mixture, typically Ag—CuO, with the addition of a small amount of metal oxide and/or metal such as TiO2, Al2O3, YSZ, Al, and Pd that will further improve wettability and joint strength. Braze filer materials, typically either in the form of paste or thin foil, may be prepared by a high-energy cryogenic ball milling process. This process allows the braze material to form at a finer size, thereby allowing more evenly dispersed braze particles in the resultant braze layer between on the surface of the ceramic substrate and metallic parts.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 1, 2013
    Applicant: Aegis Technology Inc.
    Inventors: Quan Yang, Chunhu Tan, Zhigang Lin
  • Patent number: D688520
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 27, 2013
    Inventor: Zhigang Lin
  • Patent number: D708919
    Type: Grant
    Filed: July 29, 2012
    Date of Patent: July 15, 2014
    Inventor: Zhigang Lin
  • Patent number: D766029
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: September 13, 2016
    Assignee: Ningbo Tianqi Molding Co., Ltd.
    Inventor: Zhigang Lin
  • Patent number: D776482
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: January 17, 2017
    Assignee: Ningbo Tianqi Molding Co., Ltd.
    Inventor: Zhigang Lin