Patents by Inventor Zhiwei Gong

Zhiwei Gong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136238
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a first cavity at a first major surface of a first encapsulant. A first semiconductor die is affixed on the first major surface of the first encapsulant and a second semiconductor die is affixed on a bottom surface of the first cavity. A second encapsulant encapsulates the first semiconductor die, the second semiconductor die, and at least exposed portions of the first major surface of the first encapsulant. A package substrate is formed on a first major surface of the second encapsulant. The package substrate includes conductive traces interconnected to the first semiconductor die and the second semiconductor die.
    Type: Application
    Filed: October 23, 2022
    Publication date: April 25, 2024
    Inventors: Kuan-Hsiang Mao, Zhiwei Gong, Neil Thomas Tracht
  • Patent number: 11967507
    Abstract: A method of tie bar removal is provided. The method includes forming a leadframe including a tie bar and a flag. The tie bar extends from a side rail of the leadframe and has a distal portion at an angle different from a plane of the flag. A semiconductor die is attached to the flag of the leadframe. A molding compound encapsulates the semiconductor die, a portion of the leadframe, and the distal portion of the tie bar. The tie bar is separated from the molding compound with an angled cavity remaining in the molding compound.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 23, 2024
    Assignee: NXP USA, INC.
    Inventors: Richard Te Gan, Rushik Prabhudas Tank, Zhiwei Gong, Burton Jesse Carpenter, Jinmei Liu
  • Patent number: 11935809
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: March 19, 2024
    Assignee: NXP USA, INC.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Publication number: 20240088068
    Abstract: A method of forming a semiconductor device is provided. The method includes encapsulating with an encapsulant at least a portion of a semiconductor die and a package substrate, the encapsulant including an additive selectively activated by way of a laser. A first opening is formed in the encapsulant, the first opening exposing a predetermined first portion of the package substrate. The additive is activated at the sidewalls of the first opening. A second opening is formed in the encapsulant, the second opening encircling the first opening and exposing a predetermined second portion of the package substrate. The additive is activated at the sidewalls the second opening. A conductive material is plated on the additive activated portions of the encapsulant.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 14, 2024
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Leo van Gemert, Antonius Hendrikus Jozef Kamphuis, Wen Hung Huang
  • Patent number: 11847469
    Abstract: Embodiments of the invention provide an intelligent device and a method for controlling a boot screen of the intelligent device, applicable to the intelligent device supporting video hardware decompression. The method comprises steps of: completing hardware initialization operation, and storing a preset image in the first storage area, thereby enabling the image layer to display the preset image; starting a system kernel which controls the video driver module, and starting the video layer through the video driver module; reading the corresponding preset image in the first storage area, converting the preset image into video data, and writing the video data into the second storage area, thereby enabling the video layer to display the video data; and starting an application access to the system. During the whole startup process of the intelligent device, the contents displayed on a screen are all seamlessly connected, so that a phenomenon of black screen does not occur.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 19, 2023
    Inventors: Tao Dong, Lei Qian, Yingwei Long, Zhiwei Gong, Lianghu Su, Siming Chen, Luan Yuan
  • Publication number: 20230369248
    Abstract: A method of manufacturing a semiconductor device packaging panel is provided. The method includes forming a panel having an active side and a backside. The panel includes a plurality of semiconductor die encapsulated with an encapsulant. An active surface of the semiconductor die is exposed on the active side of the panel. A warpage control carrier is attached onto the backside of the panel. The warpage control carrier includes an electroactive element configured for substantially flattening the panel while a control voltage is applied to the electroactive element.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Scott M. Hayes, Michael B. Vincent, Zhiwei Gong, Richard Te Gan, Vivek Gupta
  • Patent number: 11817366
    Abstract: A semiconductor device package having a thermal dissipation feature is provided. The semiconductor device package includes a package substrate. A semiconductor die is mounted on a first surface of the package substrate. A first conductive connector is affixed to a first connector pad of the package substrate. A conformal thermal conductive layer is applied on the semiconductor die and a portion of the first surface of the package substrate. The conformal thermal conductive layer is configured and arranged as a thermal conduction path between the semiconductor die and the first conductive connector.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: November 14, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Kabir Mirpuri, Rushik P. Tank, Betty Hill-Shan Yeung
  • Patent number: 11791283
    Abstract: A method of manufacturing a semiconductor device packaging panel is provided. The method includes forming a panel having an active side and a backside. The panel includes a plurality of semiconductor die encapsulated with an encapsulant. An active surface of the semiconductor die is exposed on the active side of the panel. A warpage control carrier is attached onto the backside of the panel. The warpage control carrier includes an electroactive element configured for substantially flattening the panel while a control voltage is applied to the electroactive element.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: October 17, 2023
    Assignee: NXP USA, INC.
    Inventors: Scott M. Hayes, Michael B. Vincent, Zhiwei Gong, Richard Te Gan, Vivek Gupta
  • Patent number: 11728285
    Abstract: A method of manufacturing a carrier for semiconductor device packaging is provided. The method includes forming a carrier having a plurality of plateau regions separated by a plurality of channels. The carrier is configured and arranged to support a plurality of semiconductor die during a packaging operation. The plurality of channels is filled with a material configured to control warpage of the carrier.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 15, 2023
    Assignee: NXP USA, INC.
    Inventors: Vivek Gupta, Michael B. Vincent, Scott M. Hayes, Richard Te Gan, Zhiwei Gong
  • Publication number: 20230197645
    Abstract: Radio frequency (RF) packages containing multilevel power substrates and associated fabrication methods are disclosed. In an embodiment, the method includes producing a multilevel substrate panel by obtaining a base panel level containing prefabricated base structures and having a surface through which metallic surfaces of the prefabricated base structures are exposed. A secondary panel level is formed on the base layer to include patterned metal features embedded in a secondary dielectric body and electrically contacting the exposed metallic surfaces of the prefabricated base structures at a direct plated interface. The presingulated array of multilevel power substrates is separated into singulated multilevel power substrates each including a base substrate level formed from a singulated piece of the base panel level and a secondary substrate level formed from a singulated piece of the secondary substrate level.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Inventors: Zhiwei Gong, LI Li, Lu Li, Lakshminarayan Viswanathan, Fernando A. Santos, Burton Jesse Carpenter
  • Publication number: 20230133034
    Abstract: A device includes a package body including a central flange and an amplifier module mounted to the central flange of the surface-mount device. The amplifier module includes a module substrate mounted to the central flange. The module substrate includes a first die mount window, a first circuitry on a first surface of the module substrate, a second circuitry on the first surface of the module substrate, and a first amplifier die mounted on the central flange. The first amplifier die is at least partially disposed within the first die mount window and the first amplifier die is electrically connected to the first circuitry and the second circuitry. The first circuitry is electrically connected to a first lead of the package body and the second circuitry is electrically connected to a second lead of the package body.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 4, 2023
    Inventors: Lu LI, Li LI, Lakshminarayan VISWANATHAN, Zhiwei GONG, Fernado A. SANTOS, Elie A. Maalouf, Eduard Jan PABST
  • Publication number: 20230106555
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Publication number: 20230066652
    Abstract: A method of manufacturing a carrier for semiconductor device packaging is provided. The method includes forming a carrier having a plurality of plateau regions separated by a plurality of channels. The carrier is configured and arranged to support a plurality of semiconductor die during a packaging operation. The plurality of channels is filled with a material configured to control warpage of the carrier.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Vivek Gupta, Michael B. Vincent, Scott M. Hayes, Richard Te Gan, Zhiwei Gong
  • Patent number: 11557525
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 17, 2023
    Assignee: NXP USA, INC.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Publication number: 20220392777
    Abstract: A method of manufacturing a packaged semiconductor device is provided. The method includes placing a plurality of semiconductor die on a carrier substrate. The plurality of semiconductor die and an exposed portion of the carrier substrate are encapsulated with an encapsulant. A cooling fixture includes a plurality of nozzles and is placed over the encapsulant. The encapsulant is cooled by way of air exiting the plurality of nozzles. A property of air exiting a first nozzle of the plurality of nozzles is different from that of a second nozzle of the plurality of nozzles.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 8, 2022
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Vivek Gupta, Richard Te Gan
  • Publication number: 20220384299
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Applicant: NXP USA, Inc.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Publication number: 20220344235
    Abstract: A semiconductor device package having a thermal dissipation feature is provided. The semiconductor device package includes a package substrate. A semiconductor die is mounted on a first surface of the package substrate. A thermal conductive structure including a die pad portion is affixed to the semiconductor die. A limb portion of the thermal conductive structure extends laterally away from the die pad portion and overlaps a portion of the package substrate. A thermal conduction path is formed between the semiconductor die and a distal end of the limb portion.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 27, 2022
    Inventors: Scott M. Hayes, Michael B. Vincent, Zhiwei Gong, Rushik P. Tank, Kabir Mirpuri, Betty Hill-Shan Yeung
  • Publication number: 20220336371
    Abstract: A method of manufacturing a semiconductor device packaging panel is provided. The method includes forming a panel having an active side and a backside. The panel includes a plurality of semiconductor die encapsulated with an encapsulant. An active surface of the semiconductor die is exposed on the active side of the panel. A warpage control carrier is attached onto the backside of the panel. The warpage control carrier includes an electroactive element configured for substantially flattening the panel while a control voltage is applied to the electroactive element.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Inventors: Scott M. Hayes, Michael B. Vincent, Zhiwei Gong, Richard Te Gan, Vivek Gupta
  • Patent number: 11404288
    Abstract: A method of manufacturing a semiconductor device packaging panel is provided. The method includes forming a panel by placing a plurality of semiconductor die on a major side of a carrier substrate and encapsulating with an encapsulant the plurality semiconductor die and the major side of the carrier substrate. A plurality of warpage control features are formed with the encapsulant while encapsulating. The method further includes placing the panel onto a warpage control fixture to substantially flatten the panel. The plurality of warpage control features interlock with mating features of the warpage control fixture.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: August 2, 2022
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Vivek Gupta, Richard Te Gan
  • Publication number: 20220181230
    Abstract: A semiconductor device package having a thermal dissipation feature is provided. The semiconductor device package includes a package substrate. A semiconductor die is mounted on a first surface of the package substrate. A first conductive connector is affixed to a first connector pad of the package substrate. A conformal thermal conductive layer is applied on the semiconductor die and a portion of the first surface of the package substrate. The conformal thermal conductive layer is configured and arranged as a thermal conduction path between the semiconductor die and the first conductive connector.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Kabir Mirpuri, Rushik P. Tank, Betty Hill-Shan Yeung