Patents by Inventor Zhongchun Wang

Zhongchun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128498
    Abstract: A solid-state battery cell, a solid-state battery, and methods of making the same are disclosed. The solid-state battery cell includes a cathode current collector, a cathode on the cathode current collector, a low-impedance interface film on the cathode, a solid-state electrolyte on or over the low-impedance interface film, a lithiophilic layer on or over the solid-state electrolyte, and an anode current collector on or over the lithiophilic layer. The low-impedance interface film may include an oxide, a nitride or an oxynitride of lithium and a metal selected from aluminum, silicon and titanium, carbon, a metal oxide, fluoride, oxyfluoride or phosphate, or an alkali metal borate, and may have a thickness of 5-100 ?, for example. The lithiophilic layer may be or include a metal oxide, silicate, aluminate or fluoride, or an elemental metal or metalloid, and may have a thickness of 5 ? to 1 ?m, for example.
    Type: Application
    Filed: May 9, 2023
    Publication date: April 18, 2024
    Applicant: Ensurge Micropower ASA
    Inventors: Arvind KAMATH, Shahid PIRZADA, Zhongchun WANG, Hui YANG
  • Publication number: 20240113341
    Abstract: A cylindrical solid-state battery and methods of making the same are disclosed. The battery includes a solid-state battery cell wound, wrapped or rolled around a core or itself, first and second terminals on opposite ends of the battery, and packaging between the first and second terminals, sealing the cell therein. The cell comprises a cathode current collector (CCC), a cathode on the CCC, a solid-state electrolyte on the cathode, an anode current collector (ACC) on the electrolyte, an insulation film on the ACC with an opening therein exposing the ACC, and a conductive redistribution layer in the opening and on the insulation film and a first sidewall of the cell. One of the terminals is electrically connected to the ACC through the redistribution layer, and the other terminal is electrically connected to the cathode or CCC on the opposite end of the battery.
    Type: Application
    Filed: September 15, 2023
    Publication date: April 4, 2024
    Applicant: Ensurge Micropower ASA
    Inventors: RICHARD VAN DER LINDE, Arvind KAMATH, Khanh TRAN, Yasumasa MORITA, Zhongchun WANG, Mihalis MICHAEL
  • Publication number: 20240097208
    Abstract: Mixtures and/or layers comprising ceramic particles and a polymeric surfactant are generally described. Related articles (e.g., electrodes, separators, and/or electrochemical cells) and related methods (e.g., methods of forming them and/or methods of using them) are also described.
    Type: Application
    Filed: December 20, 2021
    Publication date: March 21, 2024
    Applicant: Sion Power Corporation
    Inventors: Zhongchun Wang, Yuriy V. Mikhaylik
  • Patent number: 11916192
    Abstract: A multilayer solid-state electrolyte, solid-state battery cells including the same, and methods of making the electrolyte and the battery cells are disclosed. The multi-layer solid-state electrolyte includes a solid bulk electrolyte layer comprising carbon-doped lithium phosphorus oxynitride (LiPON) or WO3+x (where 0?x?1), and a solid anode interface layer comprising LiPON or a metal oxide that forms a stable complex oxide with lithium oxide and conducts lithium ions when lithiated. The anode interface layer has a thickness less than that of the bulk electrolyte layer. The method of making the multi-layer solid-state electrolyte includes depositing one of the solid bulk electrolyte layer and the solid anode interface layer on an active layer of a battery cell, then depositing the other layer on the one layer. As for the solid-state electrolyte, the anode interface layer has a thickness less than that of the bulk electrolyte layer.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 27, 2024
    Assignee: Ensurge Micropower ASA
    Inventors: Zhongchun Wang, Arvind Kamath
  • Patent number: 11898233
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: February 13, 2024
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20230420731
    Abstract: A solid-state battery and methods of making the same are disclosed. The battery includes a plurality of cells and first and second terminals on opposite sides/edges of the battery. Each cell includes a cathode current collector (CCC), a cathode thereon, a solid-state electrolyte, an anode current collector (ACC), a barrier/insulation film, a via/opening in the barrier/insulation film exposing the ACC, and a conductive redistribution layer on the ACC in the via/opening, on the barrier/insulation film, and on a first sidewall of each cell. The barrier/insulation film encapsulates the CCC, the cathode, the solid-state electrolyte and the ACC. The first sidewall of each cell is on one of the sides/edges of the battery. One terminal is electrically connected to each ACC through the redistribution layer, and the other is electrically connected to each cathode or CCC.
    Type: Application
    Filed: May 18, 2023
    Publication date: December 28, 2023
    Applicant: Ensurge Micropower ASA
    Inventors: Khanh TRAN, Arvind KAMATH, Richard VAN DER LINDE, Yasumasa MORITA, Zhongchun WANG, Mihalis MICHAEL
  • Patent number: 11710828
    Abstract: Electrochemical devices that include porous layers, and associated methods, are generally described. In certain cases, the electrochemical device includes a first layer (e.g., a porous coating containing nanoparticles) between an anode and a separator, and a second layer (e.g., another porous coating containing nanoparticles) between a cathode and the separator. The first layer and/or the second layer may have a relatively high porosity, even after the application of an applied pressure to the electrochemical device. The presence of the first layer and the second layer in the electrochemical device may mitigate the occurrence of certain problematic phenomena during cycling of the electrochemical device.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: July 25, 2023
    Assignee: Sion Power Corporation
    Inventors: Zhongchun Wang, David L. Coleman, Yuriy V. Mikhaylik
  • Publication number: 20230144179
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In various embodiments, a counter electrode is fabricated to include a base anodically coloring material and one or more additives.
    Type: Application
    Filed: January 11, 2023
    Publication date: May 11, 2023
    Inventors: Zhongchun Wang, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20230099188
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 30, 2023
    Inventors: Mark R. Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy Alexander Dixon, Anshu Ajit Pradhan, Robert Tad Rozbicki
  • Publication number: 20230074776
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Application
    Filed: October 28, 2022
    Publication date: March 9, 2023
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 11592722
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In various embodiments, a counter electrode is fabricated to include a base anodically coloring material and one or more additives.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: February 28, 2023
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 11525181
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: December 13, 2022
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20220055943
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 11258021
    Abstract: A display panel being bendable around a bending axis to form a bendable portion, includes a support film, a display module disposed on a side of the support film. An outer edge of the display module is distant from an outer edge along the first direction of the support film, to form a step portion between the outer edge of the display module and the outer edge of the support film. A polarizing layer and a touch layer are disposed on the other side, facing away the support film, of the display module. An outer edge of the polarizing layer and an outer edge of the touch layer are distant from the outer edge of the display module to form a step portion between the outer edge of the polarizing layer, the outer edge of the touch layer and the outer edge of the display module.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 22, 2022
    Assignee: Everdisplay Optronics (Shanghai) Co., Ltd
    Inventors: Jiajia Li, Run Lin, Xinyuan Wei, Xun Lao, Zhongchun Wang
  • Publication number: 20210373401
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 11183690
    Abstract: Articles and methods involving protected electrode structures are generally provided. In some embodiments, a protected electrode structure includes an electrode comprising an alkali metal and a protective structure directly adjacent the electrode. In some embodiments, the protective structure comprises elemental carbon and intercalated ions. In some embodiments, the protective structure is a composite protective structure. The composite structure may comprise an alloy comprising an alkali metal, an oxide of an alkali metal, and/or a fluoride salt of an alkali metal.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 23, 2021
    Assignee: Sion Power Corporation
    Inventors: Zhongchun Wang, Hui Du, Chariclea Scordilis-Kelley, Tracy Earl Kelley, Marina Safont-Sempere, Holger Schneider, Thomas Weiss
  • Publication number: 20210320324
    Abstract: A multilayer solid-state electrolyte, solid-state battery cells including the same, and methods of making the electrolyte and the battery cells are disclosed. The multi-layer solid-state electrolyte includes a solid bulk electrolyte layer comprising carbon-doped lithium phosphorus oxynitride (LiPON) or WO3+x (where 0?x?1), and a solid anode interface layer comprising LiPON or a metal oxide that forms a stable complex oxide with lithium oxide and conducts lithium ions when lithiated. The anode interface layer has a thickness less than that of the bulk electrolyte layer. The method of making the multi-layer solid-state electrolyte includes depositing one of the solid bulk electrolyte layer and the solid anode interface layer on an active layer of a battery cell, then depositing the other layer on the one layer. As for the solid-state electrolyte, the anode interface layer has a thickness less than that of the bulk electrolyte layer.
    Type: Application
    Filed: February 25, 2021
    Publication date: October 14, 2021
    Inventors: Zhongchun WANG, Arvind KAMATH
  • Patent number: 10991925
    Abstract: Coatings for components of electrochemical cells (e.g., layers for protecting electrodes) are generally described. Associated compounds, articles, systems, and methods are also generally described.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: April 27, 2021
    Assignee: Sion Power Corporation
    Inventors: Zhongchun Wang, Hui Du, Chariclea Scordilis-Kelley, Tracy Earl Kelley
  • Publication number: 20200373578
    Abstract: Electrochemical devices that include porous layers, and associated methods, are generally described. In certain cases, the electrochemical device includes a first layer (e.g., a porous coating containing nanoparticles) between an anode and a separator, and a second layer (e.g., another porous coating containing nanoparticles) between a cathode and the separator. The first layer and/or the second layer may have a relatively high porosity, even after the application of an applied pressure to the electrochemical device. The presence of the first layer and the second layer in the electrochemical device may mitigate the occurrence of certain problematic phenomena during cycling of the electrochemical device.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Applicant: Sion Power Corporation
    Inventors: Zhongchun Wang, David L. Coleman, Yuriy V. Mikhaylik
  • Patent number: 10788722
    Abstract: An electrochromic device is disclosed which has a plurality of layers, including at least one planarizing layer having an upper surface roughness which is less than or equal to half of the upper surface roughness of an underlying layer in contact with a lower surface of the at least one planarizing layer, wherein at least valleys of the underlying layer are filled by the lower surface of the at least one planarizing layer. A method for fabricating the electrochromic device is also disclosed.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: September 29, 2020
    Assignee: CLEARIST INC.
    Inventors: Paul P. Nguyen, Zhongchun Wang, Nelson R. Holcomb