Patents by Inventor Zhongchun Wang

Zhongchun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200243824
    Abstract: Coatings for components of electrochemical cells (e.g., layers for protecting electrodes) are generally described. Associated compounds, articles, systems, and methods are also generally described.
    Type: Application
    Filed: June 19, 2017
    Publication date: July 30, 2020
    Applicant: Sion Power Corporation
    Inventors: Zhongchun Wang, Hui Du, Chariclea Scordilis-Kelley, Tracy Earl Kelley
  • Publication number: 20200174335
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In various embodiments, a counter electrode is fabricated to include a base anodically coloring material and one or more additives.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: Zhongchun Wang, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20200166817
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20200124933
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20200119292
    Abstract: A display panel being bendable around a bending axis to form a bendable portion, includes a support film, a display module disposed on a side of the support film. An outer edge of the display module is distant from an outer edge along the first direction of the support film, to form a step portion between the outer edge of the display module and the outer edge of the support film. A polarizing layer and a touch layer are disposed on the other side, facing away the support film, of the display module. An outer edge of the polarizing layer and an outer edge of the touch layer are distant from the outer edge of the display module to form a step portion between the outer edge of the polarizing layer, the outer edge of the touch layer and the outer edge of the display module.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 16, 2020
    Applicant: EverDisplay Optronics (Shanghai) Limited
    Inventors: Jiajia LI, Run LIN, Xinyuan WEI, Xun LAO, Zhongchun WANG
  • Patent number: 10599001
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In various embodiments, a counter electrode is fabricated to include a base anodically coloring material and one or more additives.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: March 24, 2020
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10591797
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: March 17, 2020
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20200050072
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10551711
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 4, 2020
    Assignee: View, Inc.
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20190348672
    Abstract: Articles and methods involving protected electrode structures are generally provided. In some embodiments, a protected electrode structure includes an electrode comprising an alkali metal and a protective structure directly adjacent the electrode. In some embodiments, the protective structure comprises elemental carbon and intercalated ions. In some embodiments, the protective structure is a composite protective structure. The composite structure may comprise an alloy comprising an alkali metal, an oxide of an alkali metal, and/or a fluoride salt of an alkali metal.
    Type: Application
    Filed: December 22, 2017
    Publication date: November 14, 2019
    Applicants: Sion Power Corporation, BASF SE
    Inventors: Zhongchun Wang, Hui Du, Chariclea Scordilis-Kelley, Tracy Earl Kelley, Marina Safont-Sempere, Holger Schneider, Thomas Weiss
  • Patent number: 10088729
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 2, 2018
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 9904137
    Abstract: A precursor solution adapted to provide a metal oxide film, includes: (a) at least one additive selected from a viscosity enhancer, a base, an acid and a wetting agent; (b) structural promoter ions selected from Mn, Ni, Co, Ir, Ru, Cr, Mo, W, Ta, Nb, V, Mo, Zr, V and Ti ions; and (c) at least one solvent. A method for preparing a metal oxide film includes: (a) providing a substrate; and (b) depositing on the substrate the precursor solution of the invention. Metal oxides films, electrochromic devices containing the films and methods for making them are also disclosed.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: February 27, 2018
    Assignee: Clearist, Inc.
    Inventors: Zhongchun Wang, Nelson R. Holcomb, Paul Phong Nguyen
  • Publication number: 20180052374
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20170329200
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In various embodiments, a counter electrode is fabricated to include a base anodically coloring material and one or more additives.
    Type: Application
    Filed: June 2, 2017
    Publication date: November 16, 2017
    Inventors: Zhongchun Wang, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 9759975
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In various embodiments, a counter electrode is fabricated to include a base anodically coloring material and one or more additives.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 12, 2017
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 9720298
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: August 1, 2017
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20170184937
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 9664974
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: May 30, 2017
    Assignee: View, Inc.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20170075182
    Abstract: An electrochromic device is disclosed which has a plurality of layers, including at least one planarizing layer having an upper surface roughness which is less than or equal to half of the upper surface roughness of an underlying layer in contact with a lower surface of the at least one planarizing layer, wherein at least valleys of the underlying layer are filled by the lower surface of the at least one planarizing layer. A method for fabricating the electrochromic device is also disclosed.
    Type: Application
    Filed: November 23, 2016
    Publication date: March 16, 2017
    Inventors: Paul P. NGUYEN, Zhongchun WANG, Nelson R. HOLCOMB
  • Patent number: 9477129
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: October 25, 2016
    Assignee: View, Inc.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki