Patents by Inventor Zhongwei Chen

Zhongwei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128044
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhongwei CHEN
  • Patent number: 11935720
    Abstract: A field-emission type electron source includes (i) a single-crystal tungsten rod having a sharpened terminus and (ii) a mass of ZrO formed only on a portion of the surface, or the entire surface, of the sharpened terminus. In preferred design, the single-crystal tungsten rod is placed in a gaseous medium that consists of oxygen and a non-oxygen gas. The molar ratio between oxygen and the non-oxygen gas is greater than 1:1.
    Type: Grant
    Filed: October 20, 2023
    Date of Patent: March 19, 2024
    Inventors: Dazhi Chen, Zhongwei Chen
  • Patent number: 11929232
    Abstract: Systems and methods for implementing charged particle flooding in a charged particle beam apparatus are disclosed. According to certain embodiments, a charged particle beam system includes a charged particle source and a controller which controls the charged particle beam system to emit a charged particle beam in a first mode where the beam is defocused and a second mode where the beam is focused on a surface of a sample.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: March 12, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Frank Nan Zhang, Zhongwei Chen, Yixiang Wang, Ying Crystal Shen
  • Patent number: 11887807
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: January 30, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Publication number: 20240014003
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 11, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Shuai LI, Weiming REN, Xuedong LIU, Juying DOU, Xuerang HU, Zhongwei CHEN
  • Patent number: 11854763
    Abstract: The present invention provides a backscattered electron (BSE) detector comprising two or more detection components that are electrically isolated from each other. Each of the detection components includes a single continuous top metal layer configured for directly receiving incident backscattered electrons and for backscattered electron to penetrate therethrough. The thickness of one of the top metal layers is different from the thickness of another one of the top metal layers. The BSE detector can be used in an apparatus of charged-particle beam for imaging a sample material. Signals from the detection components having top metal layers of different thicknesses can be inputted into different signal amplifier circuits to get different energy bands of BSE image.
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: December 26, 2023
    Assignee: BORRIES PTE. LTD.
    Inventors: Wei Fang, Xiaoming Chen, Daniel Tang, Liang-Fu Fan, Zhongwei Chen
  • Patent number: 11854762
    Abstract: The present invention provides a MEMS sample holder comprising an observation section. The observation section includes a first layer, a second layer, and a sample compartment between the first layer and the second layer. The sample compartment is configured for filling a liquid sample and observing the liquid sample filled therewithin. The sample compartment has one, two or more windows through which an electron beam can pass. Each of the windows is formed on two cavities including a first cavity on the first layer and a second cavity on the second layer that is opposite to the first cavity across the sample compartment.
    Type: Grant
    Filed: February 16, 2023
    Date of Patent: December 26, 2023
    Assignee: BORRIES PTE. LTD.
    Inventors: Wei Fang, Xiaoming Chen, Daniel Tang, Liang-Fu Fan, Zhongwei Chen
  • Patent number: 11848169
    Abstract: A field-emission type electron source includes (i) a single-crystal tungsten rod having a sharpened terminus and (ii) a mass of ZrO formed only on a portion of the surface, or the entire surface, of the sharpened terminus. In preferred design, the single-crystal tungsten rod is placed in a gaseous medium that consists of oxygen and a non-oxygen gas. The molar ratio between oxygen and the non-oxygen gas is greater than 1:1.
    Type: Grant
    Filed: January 21, 2023
    Date of Patent: December 19, 2023
    Inventors: Dazhi Chen, Zhongwei Chen
  • Patent number: 11837431
    Abstract: The device includes a beam source for generating an electron beam, a beam guiding tube passed through an objective lens, an objective lens for generating a magnetic field in the vicinity of the specimen to focus the particles of the particle beam on the specimen, a control electrode having a potential for providing a retarding field to the particle beam near the specimen to reduce the energy of the particle beam when the beam collides with the specimen, a deflection system including a plurality of deflection units situated along the optical axis for deflecting the particle beam to allow scanning on the specimen with large area, at least one of the deflection units located in the retarding field of the beam, the remainder of the deflection units located within the central bore of the objective lens, and a detection unit to capture secondary electron (SE) and backscattered electrons (BSE).
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 5, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Shuai Li, Zhongwei Chen
  • Publication number: 20230360877
    Abstract: Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.
    Type: Application
    Filed: May 8, 2023
    Publication date: November 9, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Xuedong LIU, Qingpo XI, Youfei JIANG, Weiming REN, Xuerang HU, Zhongwei CHEN
  • Patent number: 11798777
    Abstract: A charged particle beam apparatus includes a beamlet forming unit configured to form and scan an array of beamlets on a sample. A first portion of the array of beamlets is focused onto a focus plane, and a second portion of the array of beamlets has at least one beamlet with a defocusing level with respect to the focus plane. The charged particle beam apparatus also includes a detector configured to detect an image of the sample formed by the array of beamlets, and a processor configured to estimate a level of separation between the focus plane and the sample based on the detected image and then reduce the level of separation based on the estimated level.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: October 24, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Martinus Gerardus Maria Johannes Maassen, Peter Paul Hempenius, Weiming Ren, Zhongwei Chen
  • Patent number: 11784024
    Abstract: A multi-cell detector may include a first layer having a region of a first conductivity type and a second layer including a plurality of regions of a second conductivity type. The second layer may also include one or more regions of the first conductivity type. The plurality of regions of the second conductivity type may be partitioned from one another, preferably by the one or more regions of the first conductivity type of the second layer. The plurality of regions of the second conductivity type may be spaced apart from one or more regions of the first conductivity type in the second layer. The detector may further include an intrinsic layer between the first and second layers.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: October 10, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Joe Wang, Yongxin Wang, Zhongwei Chen, Xuerang Hu
  • Publication number: 20230282441
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Application
    Filed: January 23, 2023
    Publication date: September 7, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhongwei CHEN
  • Patent number: 11715619
    Abstract: Systems and methods are provided for charged particle detection. The detection system can comprise a signal processing circuit configured to generate a set of intensity gradients based on electron intensity data received from a plurality of electron sensing elements. The detection system can further comprise a beam spot processing module configured to determine, based on the set of intensity gradients, at least one boundary of a beam spot; and determine, based on the at least one boundary, that a first set of electron sensing elements of the plurality of electron sensing elements is within the beam spot. The beam spot processing module can further be configured to determine an intensity value of the beam spot based on the electron intensity data received from the first set of electron sensing elements and also generate an image of a wafer based on the intensity value.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: August 1, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Yongxin Wang, Weiming Ren, Zhonghua Dong, Zhongwei Chen
  • Patent number: 11705304
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: July 18, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Shuai Li, Weiming Ren, Xuedong Liu, Juying Dou, Xuerang Hu, Zhongwei Chen
  • Patent number: 11688580
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: June 27, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Weiming Ren, Shuai Li, Zhongwei Chen
  • Patent number: 11676792
    Abstract: Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: June 13, 2023
    Assignee: ASML Netherlands, B.V
    Inventors: Xuedong Liu, Qingpo Xi, Youfei Jiang, Weiming Ren, Xuerang Hu, Zhongwei Chen
  • Publication number: 20230170178
    Abstract: A rapid and automatic virus imaging and analysis system includes (i) electron optical sub-systems (EOSs), each of which has a large field of view (FOV) and is capable of instant magnification switching for rapidly scanning a virus sample; (ii) sample management sub-systems (SMSs), each of which automatically loads virus samples into one of the EOSs for virus sample scanning and then unloads the virus samples from the EOS after the virus sample scanning is completed; (iii) virus detection and classification sub-systems (VDCSs), each of which automatically detects and classifies a virus based on images from the EOS virus sample scanning; and (iv) a cloud-based collaboration sub-system for analyzing the virus sample scanning images, storing images from the EOS virus sample scanning, and storing and analyzing machine data associated with the EOSs, the SMSs, and the VDCSs.
    Type: Application
    Filed: January 24, 2023
    Publication date: June 1, 2023
    Applicant: BORRIES PTE. LTD.
    Inventors: Zhongwei Chen, Xiaoming Chen, Daniel Tang, Liang-Fu Fan
  • Patent number: 11664186
    Abstract: The present invention provides an apparatus of electron beam comprising an electron gun with a pinnacle limiting plate having at least one current-limiting aperture. The pinnacle limiting plate is located between a bottom (or lowest) anode and a top (or highest) condenser within the electron gun. A current (ampere) of the electron beam that has passed through the current-limiting aperture remains the same (unchanged) after the electron beam travels through the top condenser and an electron optical column and arrives at a sample space. Electron-electron interaction of the electron beam is thus reduced.
    Type: Grant
    Filed: August 7, 2022
    Date of Patent: May 30, 2023
    Assignee: BORRIES PTE. LTD.
    Inventors: Zhongwei Chen, Wei Fang, Xiaoming Chen, Daniel Tang, Liang-Fu Fan
  • Patent number: 11664189
    Abstract: The present invention provides an apparatus of charged-particle beam e.g. an electron microscope comprising a plasma generator for selectively cleaning BSE detector. In various embodiments, the plasma generator is located between a sample stage and a sample table having one or more openings or holes. The plasma generator generates plasma and distributes or dissipates the plasma through the openings of the sample table toward and onto surface of the BSE detector. Cleaning contaminants on the surface of the BSE detector frequently and selectively with in-situ generated plasma can prevent the detectors from performance deterioration such as losing resolution and contrast in imaging at high levels of magnification.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: May 30, 2023
    Assignee: BORRIES PTE. LTD.
    Inventors: Zhongwei Chen, Xiaoming Chen, Daniel Tang, Liang-Fu Fan