Patents by Inventor Zhongwei Chen

Zhongwei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200388464
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
    Type: Application
    Filed: May 4, 2020
    Publication date: December 10, 2020
    Inventors: Weiming REN, Shuai LI, Xuedong LIU, Zhongwei CHEN
  • Patent number: 10811222
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 20, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Patent number: 10784077
    Abstract: Systems and methods for implementing charged particle flooding in a charged particle beam apparatus are disclosed. According to certain embodiments, a charged particle beam system includes a charged particle source and a controller which controls the charged particle beam system to emit a charged particle beam in a first mode where the beam is defocused and a second mode where the beam is focused on a surface of a sample.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: September 22, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Frank Nan Zhang, Zhongwei Chen, Yixiang Wang, Ying Crystal Shen
  • Patent number: 10784071
    Abstract: Electron emitters and methods of fabricating the electron emitters are disclosed. According to certain embodiments, an electron emitter includes a tip with a planar region having a diameter in a range of approximately (0.05-10) micrometers. The electron emitter tip is configured to release field emission electrons. The electron emitter further includes a work-function-lowering material coated on the tip.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: September 22, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Juying Dou, Zheng Fan, Tzu-Yi Kuo, Zhongwei Chen
  • Publication number: 20200286707
    Abstract: A charged particle beam apparatus includes a beamlet forming unit configured to form and scan an array of beamlets on a sample. A first portion of the array of beamlets is focused onto a focus plane, and a second portion of the array of beamlets has at least one beamlet with a defocusing level with respect to the focus plane. The charged particle beam apparatus also includes a detector configured to detect an image of the sample formed by the array of beamlets, and a processor configured to estimate a level of separation between the focus plane and the sample based on the detected image and then reduce the level of separation based on the estimated level.
    Type: Application
    Filed: March 19, 2020
    Publication date: September 10, 2020
    Inventors: Martinus Gerardus, Maria, Johannes MAASSEN, Peter Paul HEMPENIUS, Weiming REN, Zhongwei CHEN
  • Publication number: 20200286705
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Application
    Filed: February 24, 2020
    Publication date: September 10, 2020
    Inventors: Xuedong LIU, Weiming REN, Shuai LI, Zhongwei CHEN
  • Publication number: 20200266023
    Abstract: Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 20, 2020
    Inventors: Xuedong LIU, Qingpo XI, Youfei JIANG, Weiming REN, Xuerang HU, Zhongwei CHEN
  • Publication number: 20200262713
    Abstract: Provided herein is a method of preparing carbon-graphene-lead composite particles, comprising the steps of forming a dispersion of lead particles, graphene particles and cellulose in an aqueous solution, spray drying the dispersion to aggregate the lead particles, graphene particles and cellulose to form cellulose-graphene-lead composite particles, and heating the cellulose-graphene-lead composite particles, to carbonize the cellulose to result in the formation of the carbon-graphene-lead composite particles.
    Type: Application
    Filed: October 2, 2018
    Publication date: August 20, 2020
    Inventors: Zhongwei CHEN, Zhiyu MAO
  • Patent number: 10749171
    Abstract: A method for preparing an electrode for use in lithium batteries and the resulting electrodes are described The method comprises coating a slurry of silicon, sulfur doped graphene and polyacrylonitrile on a current collector followed by sluggish heat treatment.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: August 18, 2020
    Inventors: Zhongwei Chen, Aiping Yu, Fathy Mohamed Hassan
  • Publication number: 20200251305
    Abstract: The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput.
    Type: Application
    Filed: March 9, 2020
    Publication date: August 6, 2020
    Inventors: Zhongwei CHEN, Jack JAU, Weiming REN
  • Publication number: 20200243299
    Abstract: Disclosed herein an apparatus and a method for detecting buried features using backscattered particles. In an example, the apparatus comprises a source of charged particles; a stage; optics configured to direct a beam of the charged particles to a sample supported on the stage; a signal detector configured to detect backscattered particles of the charged particles in the beam from the sample; wherein the signal detector has angular resolution. In an example, the methods comprises obtaining an image of backscattered particles from a region of a sample; determining existence or location of a buried feature based on the image.
    Type: Application
    Filed: September 21, 2018
    Publication date: July 30, 2020
    Inventors: Joe WANG, Chia Wen LIN, Zhongwei CHEN, Chang-chun YEH
  • Publication number: 20200152412
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Application
    Filed: August 26, 2019
    Publication date: May 14, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhongwei CHEN
  • Publication number: 20200152421
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 14, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Shuai Li, Weiming Ren, Xuedong Liu, Juying Dou, Xuerang Hu, Zhongwei Chen
  • Patent number: 10643820
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: May 5, 2020
    Assignee: HERMES MICROVISION INC.
    Inventors: Weiming Ren, Shuai Li, Xuedong Liu, Zhongwei Chen
  • Patent number: 10586681
    Abstract: The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: March 10, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Zhongwei Chen, Jack Jau, Weiming Ren
  • Patent number: 10573487
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: February 25, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Weiming Ren, Shuai Li, Zhongwei Chen
  • Publication number: 20200027694
    Abstract: Systems and methods are provided for charged particle detection. The detection system can comprise a signal processing circuit configured to generate a set of intensity gradients based on electron intensity data received from a plurality of electron sensing elements. The detection system can further comprise a beam spot processing module configured to determine, based on the set of intensity gradients, at least one boundary of a beam spot; and determine, based on the at least one boundary, that a first set of electron sensing elements of the plurality of electron sensing elements is within the beam spot. The beam spot processing module can further be configured to determine an intensity value of the beam spot based on the electron intensity data received from the first set of electron sensing elements and also generate an image of a wafer based on the intensity value.
    Type: Application
    Filed: February 1, 2018
    Publication date: January 23, 2020
    Inventors: Yongxin WANG, Weiming REN, Zhonghua DONG, Zhongwei CHEN
  • Patent number: 10541110
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 21, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Shuai Li, Weiming Ren, Xuedong Liu, Juying Dou, Xuerang Hu, Zhongwei Chen
  • Publication number: 20190279842
    Abstract: A multi-beam apparatus for observing a sample with oblique illumination is proposed. In the apparatus, a new source-conversion unit changes a single electron source into a slant virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample with oblique illumination, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means not only forms the slant virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots. The apparatus can provide dark-field images and/or bright-field images of the sample.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 12, 2019
    Inventors: Weiming REN, Shuai LI, Xuedong LIU, Zhongwei CHEN, Jack JAU
  • Patent number: 10395886
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 27, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen