Patents by Inventor Zia Hossain

Zia Hossain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150263166
    Abstract: An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate and having a primary surface. The electronic device can further include first conductive structures within each of a first trench and a second trench, a gate electrode within the first trench and electrically insulated from the first conductive structure, a first insulating member disposed between the gate electrode and the first conductive structure within the first trench, and a second conductive structure within the second trench. The second conductive structure can be electrically connected to the first conductive structures and is electrically insulated from the gate electrode. The electronic device can further include a second insulating member disposed between the second conductive structure and the first conductive structure within the second trench. Processing sequences can be used that simplify formation of the features within the electronic device.
    Type: Application
    Filed: May 29, 2015
    Publication date: September 17, 2015
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Zia HOSSAIN, Gordon M. GRIVNA
  • Patent number: 9112026
    Abstract: In one embodiment, the semiconductor devices relate to using one or more super junction trenches for termination.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 18, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Zia Hossain, Juraj Vavro, Peter Moens
  • Patent number: 9070585
    Abstract: An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate and having a primary surface. The electronic device can further include first conductive structures within each of a first trench and a second trench, a gate electrode within the first trench and electrically insulated from the first conductive structure, a first insulating member disposed between the gate electrode and the first conductive structure within the first trench, and a second conductive structure within the second trench. The second conductive structure can be electrically connected to the first conductive structures and is electrically insulated from the gate electrode. The electronic device can further include a second insulating member disposed between the second conductive structure and the first conductive structure within the second trench. Processing sequences can be used that simplify formation of the features within the electronic device.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 30, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Zia Hossain, Gordon M. Grivna
  • Patent number: 9029215
    Abstract: In one embodiment, a method for forming a semiconductor device includes forming trench and a dielectric layer along surfaces of the trench. A shield electrode is formed in a lower portion of the trench and the dielectric layer is removed from upper sidewall surfaces of the trench. A gate dielectric layer is formed along the upper surfaces of the trench. Oxidation-resistant spacers are formed along the gate dielectric layer. Thereafter, an interpoly dielectric layer is formed above the shield electrode using localized oxidation. The oxidation step increases the thickness of lower portions of the gate dielectric layer. The oxidation-resistant spacers are removed before forming a gate electrode adjacent the gate dielectric layer.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Zia Hossain, Gordon M. Grivna, Duane B. Barber, Peter McGrath, Balaji Padmanabhan, Prasad Venkatraman
  • Publication number: 20150108569
    Abstract: In an embodiment, a method of forming a semiconductor may include forming a plurality of active trenches and forming a termination trench substantially surrounding an outer periphery of the plurality of active trenches. The method may also include forming at least one active trench of the plurality of active trenches having corners linking trench ends to sides of active trenches wherein each active trench of the plurality of active trenches has a first profile along the first length and a second profile at or near the trench ends; and forming a termination trench substantially surrounding an outer periphery of the plurality of active trenches and having a second profile wherein one of the first profile or the second profile includes a non-linear shape.
    Type: Application
    Filed: June 5, 2014
    Publication date: April 23, 2015
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. GRIVNA, Zia HOSSAIN, Ali SALIH
  • Publication number: 20150054068
    Abstract: In one embodiment, a vertical insulated-gate field effect transistor includes a feature embedded within a control electrode. The feature is placed within the control electrode to induce stress within predetermined regions of the transistor.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 26, 2015
    Inventors: Gordon M. Grivna, Zia Hossain, Kirk K. Huang, Balaji Padmanabhan, Francine Y. Robb, Prasad Venkatraman
  • Patent number: 8928050
    Abstract: An electronic device can include a semiconductor layer having a primary surface, and a Schottky contact comprising a metal-containing member in contact with a horizontally-oriented lightly doped region within the semiconductor layer and lying adjacent to the primary surface. In an embodiment, the metal-containing member lies within a recess in the semiconductor layer and contacts the horizontally-oriented lightly doped region along a sidewall of the recess. In other embodiment, the Schottky contact may not be formed within a recess, and a doped region may be formed within the semiconductor layer under the horizontally-oriented lightly doped region and have a conductivity type opposite the horizontally-oriented lightly doped region. The Schottky contacts can be used in conjunction with power transistors in a switching circuit, such as a high-frequency voltage regulator.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: January 6, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Prasad Venkatraman, Zia Hossain, Gordon M. Grivna
  • Patent number: 8907394
    Abstract: In one embodiment, a semiconductor device includes a multi-portion shield electrode structure formed in a drift region. The shield electrode includes a wide portion formed in proximity to a channel side of the drift region, and a narrow portion formed deeper in the drift region. The narrow portion is separated from the drift region by a thicker dielectric region, and the wide portion is separated from the drift region by a thinner dielectric region. That portion of the drift region in proximity to the wide portion can have a higher dopant concentration than other portions of the drift region.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: December 9, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Zia Hossain
  • Patent number: 8878286
    Abstract: In one embodiment, a vertical insulated-gate field effect transistor includes a feature embedded within a control electrode. The feature is placed within the control electrode to induce stress within predetermined regions of the transistor.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gordon M. Grivna, Zia Hossain, Kirk K. Huang, Balaji Padmanabhan, Francine Y. Robb, Prasad Venkatraman
  • Publication number: 20140284710
    Abstract: In one embodiment, a semiconductor device includes a multi-portion shield electrode structure formed in a drift region. The shield electrode includes a wide portion formed in proximity to a channel side of the drift region, and a narrow portion formed deeper in the drift region. The narrow portion is separated from the drift region by a thicker dielectric region, and the wide portion is separated from the drift region by a thinner dielectric region. That portion of the drift region in proximity to the wide portion can have a higher dopant concentration than other portions of the drift region.
    Type: Application
    Filed: June 3, 2014
    Publication date: September 25, 2014
    Applicant: Semiconductor Components Industries, LLC
    Inventor: Zia Hossain
  • Publication number: 20140252484
    Abstract: An electronic device can include a semiconductor layer having a primary surface, and a Schottky contact comprising a metal-containing member in contact with a horizontally-oriented lightly doped region within the semiconductor layer and lying adjacent to the primary surface. In an embodiment, the metal-containing member lies within a recess in the semiconductor layer and contacts the horizontally-oriented lightly doped region along a sidewall of the recess. In other embodiment, the Schottky contact may not be formed within a recess, and a doped region may be formed within the semiconductor layer under the horizontally-oriented lightly doped region and have a conductivity type opposite the horizontally-oriented lightly doped region. The Schottky contacts can be used in conjunction with power transistors in a switching circuit, such as a high-frequency voltage regulator.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Inventors: Gary H. Loechelt, Prasad Venkatraman, Zia Hossain, Gordon M. Grivna
  • Patent number: 8778764
    Abstract: In one embodiment, a semiconductor device includes a multi-portion shield electrode structure formed in a drift region. The shield electrode includes a wide portion formed in proximity to a channel side of the drift region, and a narrow portion formed deeper in the drift region. The narrow portion is separated from the drift region by a thicker dielectric region, and the wide portion is separated from the drift region by a thinner dielectric region. That portion of the drift region in proximity to the wide portion can have a higher dopant concentration than other portions of the drift region.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: July 15, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Zia Hossain
  • Patent number: 8748262
    Abstract: In one embodiment, a vertical power transistor is formed on a semiconductor substrate with other transistors. A portion of the semiconductor layer underlying the vertical power transistor is doped to provide a low on-resistance for the vertical power transistor.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Francine Y. Robb, Stephen P. Robb, Prasad Venkatraman, Zia Hossain
  • Publication number: 20140103421
    Abstract: In one embodiment, the semiconductor devices relate to using one or more super junction trenches for termination.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 17, 2014
    Inventors: Zia Hossain, Juraj Vavro, Peter Moens
  • Publication number: 20140015039
    Abstract: In one embodiment, a semiconductor device includes a multi-portion shield electrode structure formed in a drift region. The shield electrode includes a wide portion formed in proximity to a channel side of the drift region, and a narrow portion formed deeper in the drift region. The narrow portion is separated from the drift region by a thicker dielectric region, and the wide portion is separated from the drift region by a thinner dielectric region. That portion of the drift region in proximity to the wide portion can have a higher dopant concentration than other portions of the drift region.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Inventor: Zia Hossain
  • Publication number: 20140008395
    Abstract: Traditional hand pump dispenser found in common household cannot dispense 100% of the product it contains in the container. This invention relates to devices, systems and methods for dispensing, distributing or delivering a substance from the dispensing container. More particularly, the invention relates to a device and method for dispensing a liquid (e.g., a cleaner, disinfectant, deodorizer, moisturizer, medication, etc.) more effectively. Furthermore, the invention allows users to access the dispensing material when the hand pump cannot be primed due to the level of the fluid in the container. This new dispensing bottle will eliminate waste to almost zero.
    Type: Application
    Filed: December 26, 2012
    Publication date: January 9, 2014
    Inventors: Zia Hossain Syed, Ryan Shakir Syed
  • Publication number: 20130302958
    Abstract: In one embodiment, a method for forming a semiconductor device includes forming trench and a dielectric layer along surfaces of the trench. A shield electrode is formed in a lower portion of the trench and the dielectric layer is removed from upper sidewall surfaces of the trench. A gate dielectric layer is formed along the upper surfaces of the trench. Oxidation-resistant spacers are formed along the gate dielectric layer. Thereafter, an interpoly dielectric layer is formed above the shield electrode using localized oxidation. The oxidation step increases the thickness of lower portions of the gate dielectric layer. The oxidation-resistant spacers are removed before forming a gate electrode adjacent the gate dielectric layer.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Inventors: Zia Hossain, Gordon M. Grivna, Duane B. Barber, Peter McGrath, Balaji Padmanabhan, Prasad Venkatraman
  • Publication number: 20130248982
    Abstract: In one embodiment, a vertical insulated-gate field effect transistor includes a feature embedded within a control electrode. The feature is placed within the control electrode to induce stress within predetermined regions of the transistor.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 26, 2013
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. Grivna, Zia Hossain, Kirk K. Huang, Balaji Padmanabhan, Francine Y. Robb, Prasad Venkatraman
  • Publication number: 20130221436
    Abstract: An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate and having a primary surface. The electronic device can further include first conductive structures within each of a first trench and a second trench, a gate electrode within the first trench and electrically insulated from the first conductive structure, a first insulating member disposed between the gate electrode and the first conductive structure within the first trench, and a second conductive structure within the second trench. The second conductive structure can be electrically connected to the first conductive structures and is electrically insulated from the gate electrode. The electronic device can further include a second insulating member disposed between the second conductive structure and the first conductive structure within the second trench. Processing sequences can be used that simplify formation of the features within the electronic device.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Inventors: Zia Hossain, Gordon M. Grivna
  • Patent number: 8466513
    Abstract: In one embodiment, a vertical insulated-gate field effect transistor includes a feature embedded within a control electrode. The feature is placed within the control electrode to induce stress within predetermined regions of the transistor.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: June 18, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gordon M. Grivna, Zia Hossain, Kirk K. Huang, Balaji Padmanabhan, Francine Y. Robb, Prasad Venkatraman