CROSS-REFERENCE TO RELATED APPLICATION This application claims priority benefit of U.S. Provisional Application Ser. No. 61/174,890 filed on May 1, 2009 and U.S. Provisional Application Ser. No. 61/239,420 filed Sep. 2, 2009, each of which is incorporated herein by reference in its entirety.
TECHNICAL FIELD The present disclosure relates to molecular diagnostic assays that provide information concerning prognosis and prediction of response to chemotherapy in colorectal cancer patients. The present disclosure also provides methods of identifying genes that co-express with one or more biomarker genes.
INTRODUCTION Colorectal cancer is the third most common malignant neoplasm worldwide, and the second leading cause of cancer-related mortality in the United States and the European Union. It is estimated that there will be approximately 150,000 new cases diagnosed each year in the United States, with about 65% of these being diagnosed as stage II/III colorectal cancer, as discussed below.
Clinical diagnosis of colorectal cancer generally involves evaluating the progression status of the cancer using standard classification criteria. Two classification systems have been widely used in colorectal cancer, the modified Duke's (or Astler-Coller) staging systems and more recently TNM staging as developed by the American Joint Committee on Cancer. Estimates of recurrence risk and treatment decisions in colorectal cancer are currently based primarily on tumor stage.
A series of trials carried out during the 1980's demonstrated that postoperative adjuvant therapy with fluorouracil (“5-FU”) and levamisole or leucovorin (“LV”) led to a significant survival benefit for colon cancer patients. However, the benefits of adjuvant therapy are not enjoyed equally by all patients. For example, adjuvant 5-FU/LV chemotherapy has been shown to benefit a relatively small (˜3%) but statistically significant subset of patients with stage II colon cancer, while the addition of oxaliplatin significantly improved overall DFS with no survival benefit seen in with stage II disease. (See, R. Gray et al., Lancet 370:2020-29 (2007), T. Andre, et al., N Engl J Med (2004), J. Kuebler, et al, J Clin Oncol (2007).) Moreover, significant neurotoxicity and GI toxicity is common and toxic deaths (0.5% in published studies) are well documented in other randomized trials.
These results underline the importance of identifying prognostic and predictive tests which better define for individual patients their likelihood of recurrence and/or magnitude of benefit that they can expect from adjuvant chemotherapy. Under current guidelines, many patients who would be cured by surgery are unnecessarily given adjuvant therapy, while other patients who would benefit from such therapy do not receive it.
SUMMARY Algorithm-based molecular assays that involve measurement of expression levels of prognostic and/or predictive genes, or co-expressed genes thereof, from a biological sample obtained from a cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of recurrence of colorectal cancer (Recurrence Score or RS) and/or the likelihood of a beneficial response to chemotherapy (Treatment Score or TS) for the patient are provided herein. Methods of analysis of gene expression values of prognostic and/or predictive genes, as well as methods of identifying gene cliques, i.e. genes that co-express with a validated biomarker and exhibit correlation of expression with the validated biomarker, and thus may be substituted for that biomarker in an assay, are also provided. One skilled in the art would recognize that such substitutions may impact the algorithm, for example the risk profile and weighting of the gene groups may need to be adjusted.
In exemplary embodiments, expression levels of a gene from gene subsets comprising a stromal group and a cell cycle group may be used to calculate a Recurrence Score (RS). The stromal group includes at least one of the following: BGN, FAP, INHBA, or a gene that that co-expresses with BGN, FAP, or INHBA. The cell cycle group includes at least one of the following: MYBL2, Ki-67, cMYC, MAD2L1, or a gene that co-expresses with MYBL2, Ki-67, cMYC, or MAD2L1. In other exemplary embodiments, the stromal gene is BGN and the cell cycle gene is Ki-67.
In exemplary embodiments, gene expression levels of one or more genes from additional gene subsets may be measured and used to calculate the RS, including a cell signaling group, and angiogenesis group, and/or an apoptosis group. The cell signaling group includes GADD45B and genes that co-express with GADD45B. The apoptosis group includes BIK and genes that co-express with BIK. The angiogenesis group includes EFNB2 and genes that co-express with EFNB2. The calculation may be performed on a computer programmed to execute the RS algorithm.
In exemplary embodiments, the method can further include measuring expression levels of predictive genes in a tumor sample obtained from the patient; and calculating a Treatment Score (TS) for the patient using measured gene expression levels, wherein the TS is calculated by assigning the measured expression levels to gene subsets of a TS algorithm, wherein the gene subsets comprise at least one gene each from an MSI group, an apoptosis group, and a stromal group. Calculation of the TS may be performed on a computer programmed to execute the TS algorithm. In exemplary embodiments, a benefit score for the patient based on the RS and the TS may be calculated. In exemplary embodiments, the MSI group can include AXIN2 and genes that co-express with AXIN2. In exemplary embodiments, the apoptosis group can include BIK and genes that co-express with BIK. In exemplary embodiments, the stromal group can include EFNB2 and genes that co-express with EFNB2. In exemplary embodiments, the gene subsets can further include a transcription factor group, where, e.g., the transcription factor group comprises RUNX1 and genes that co-express with RUNX1. In exemplary embodiments, the gene subsets can further include a cell cycle group, where, e.g., the cell cycle group includes MAD2L1 and HSPE1, and genes that co-express with MAD2L1 and HSPE1. In exemplary embodiments, the at least one gene from the gene subsets may be replaced by a substitute gene from the group consisting of RANBP2, BUB1, TOP2A, C20_ORF1, CENPF, STK15, AURKB, HIF1A, UBE2C, and MSH2, and genes that co-express with RANBP2, BUB1, TOP2A, C20_ORF1, CENPF, STK15, AURKB, HIF1A, UBE2C, and MSH2.
In exemplary embodiments, the expression level for each gene subset may be weighted according to a contribution of the gene subset to risk of recurrence and/or response to chemotherapy.
The present disclosure provides methods to analyze gene expression taking into account variability of expression of certain gene subsets within particular regions of the tumor. In exemplary embodiments, this method may be incorporated into a RS algorithm. For example, the gene expression levels for the stromal group may be calculated as a ratio of stromal gene expression values per stroma unit area of a colorectal tumor. Similarly, gene expression levels for the cell cycle group may be calculated as a ratio of cell cycle expression values per epithelial unit area of the colorectal tumor.
The present disclosure provides methods to estimate likelihood of colon cancer recurrence based on analysis of measurements of the surface area of the tumor-associated stroma in a colon tumor sample obtained from a patient. In exemplary embodiments, this method may be incorporated into a RS algorithm.
The present disclosure provides methods to use a threshold value for expression values used in an algorithm-based gene expression analysis, which methods involve measuring an expression level of a gene in a tissue section obtained from a patient; and comparing the measured expression level to a threshold value for said gene; wherein if the threshold value is less than the expression level of said gene, the expression value is used in an expression algorithm, and wherein if the expression level of said gene is greater than or equal to the threshold value, the expression level is used in an expression algorithm.
In exemplary embodiments, the threshold value is based on a Ct value. The threshold value can be, for example, one or more from those listed in Table 3.
The present disclosure provides gene expression analysis methods to identify a gene that is co-expressed with a target gene which methods involve normalizing microarray gene expression data for cancer tumor samples based on array probes; calculating a correlation coefficient based on gene expression levels for every unique pair of array probes; determining significant probe pairs, wherein significant probe pairs are a target gene probe and an array probe with a correlation co-efficient greater than a significant threshold value; mapping the target gene to its corresponding target gene probe, selecting a candidate probe set, wherein each candidate probe is part of a significant probe pair; and identifying a gene associated with each candidate probe; wherein said gene associated with each candidate probe is a co-expressed gene.
The present disclosure also provides methods of assessing gene expression, the method comprising measuring a normalized expression level of a gene in a cancer tumor sample obtained from a patient calculating a ratio of normalized expression of the gene to a tissue unit area in the colorectal sample, wherein the tissue unit area is a tumor-associated stroma unit area or a tumor epithelial unit area; and calculating a recurrence score (RS) or a treatment score (TS) for the patient using the ratio. In related embodiments, the gene is a stromal group gene. In related embodiments, the tissue unit area is a tumor-associated stroma unit area. In further related embodiments, the gene is a cell cycle group gene. In related embodiments, the tissue unit area is a tumor epithelial unit area unit area.
The present disclosure provides methods of determining a prognosis for a cancer patient, comprising measuring a stromal area of a tumor sample obtained from the cancer patient to obtain a Stromal Risk Score, wherein increased stromal area of the tumor sample is positively correlated with an increased risk of recurrence of cancer for said cancer patient, and generating a report based on the Stromal Risk Score. In related embodiments, the tumor sample is a colorectal cancer tumor.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a set of graphs providing hazard ratio estimates and 95% confidence intervals for gene expression from univariate Cox PH regression models of recurrence-free interval (RFI) in NSABP C-01/02 patients and CCF patients for the 65 genes that were significantly related to RFI in both studies.
FIG. 2 is a series of graphs providing hazard ratio estimates and 95% confidence intervals for gene expression from univariate Cox PH regression models of RFI in C-01/02/04/06 and CCF patients for 48 gene significantly related to RFI in both surgery only and surgery plus FU-based chemotherapy.
FIG. 3a is a graph illustrating Kaplan-Meier estimates of recurrence-free interval Stage II patients treated with surgery only, by tertile of recurrence score.
FIG. 3b is a graph illustrating Kaplan-Meier estimates of recurrence-free interval Stage III patients treated with surgery only, by tertile of recurrence score.
FIG. 4a provides a graph and a table illustrating a risk profile and recurrence scores (RS) for recurrence in Stage II colon cancer patients.
FIG. 4b provides a graph and a table illustrating a risk profile and recurrence scores (RS) for recurrence in Stage III colon cancer, surgery only patients.
FIG. 5 is a graph providing a chemotherapy benefit plot for Stage II patients.
FIG. 6 provides a collection of graphs illustrating thresholding analysis for BGN, FAP and INHBA.
FIG. 7 provides a collection of graphs illustrating thresholding analysis for cMYC, Ki-67 and MYBL2.
FIG. 8 provides a collection of graphs illustrating thresholding analysis for GADD45B.
FIG. 9 provides a collection of graphs illustrating thresholding analysis for EFNB2, RUNX1 and BIK.
FIG. 10 provides a collection of graphs illustrating thresholding analysis for MAD2L1, HSPE1 and AXIN2.
FIG. 11 is a schematic illustrating seeding of gene cliques.
FIG. 12 is a Kaplan Meier curve demonstrating group risk from the QUASAR Stage II colon cancer patients treated with surgery alone.
FIG. 13 is a risk profile plot (by Kaplan Meier curve) for risk of recurrence at five years and recurrence scores.
FIG. 14 is a graph showing stromal group score (SGS) and cell cycle group score (CCGS) in tumor-associated stroma and tumor luminal areas.
FIG. 15 is a graph showing results of analysis of stromal group score in tumor-associated stroma in six patients.
FIG. 16 is a graph showing results of analysis of variability of stromal group and cell cycle group scores, GADD45B, and RS between tumor sections taken from 11 patient blocks.
FIG. 17 is a graph showing the range of performance for multi-gene recurrence score models across all colon cancer studies
FIG. 18: Performance of two gene model including a Stromal group gene (BGN) and Cell cycle group gene (Ki-67)
FIG. 19: Performance of three gene model including a Stromal group gene (BGN), a Cell cycle group gene (Ki-67) and an Apoptosis group gene (BIK)
FIG. 20: Comparative performance of ten-gene prognostic model (RS2) vs. seven-gene prognostic model (RS) in surgery-alone patients from the QUASAR study
FIG. 21 is a variability plot for natural logarithm of stroma area for 444 colon cancer patients.
FIG. 22 is a Kaplan-Meier plot for stage II colon cancer patients stratified by stroma risk group.
FIG. 23 is a Kaplan-Meier plot for stage III colon cancer patients stratified by stroma risk group.
FIG. 24 provides Kaplan-Meier estimates for stage II colon cancer patients stratified by stroma risk group and recurrence score risk group.
FIG. 25 provides Kaplan-Meier survival curves for stage III colon cancer patients stratified by stroma risk group and recurrence score risk group.
FIG. 26 is a graph showing the effects of diluting RNA concentration on (non-normalized) gene expression (Ct) measurements of Ki-67.
DETAILED DESCRIPTION Definitions
Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.
One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described herein. For purposes of the invention, the following terms are defined below.
The terms “tumor” and “lesion” as used herein, refer to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer in the present disclosure include cancer of the gastrointestinal tract, such as invasive colorectal cancer or Dukes B (stage II) or Dukes C (stage III) colorectal cancer.
The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.
As used herein, the terms “colon cancer” and “colorectal cancer” are used interchangeably and in the broadest sense and refer to (1) all stages and all forms of cancer arising from epithelial cells of the large intestine and/or rectum and/or (2) all stages and all forms of cancer affecting the lining of the large intestine and/or rectum. In the staging systems used for classification of colorectal cancer, the colon and rectum are treated as one organ.
According to the tumor, node, metastasis (TNM) staging system of the American Joint Committee on Cancer (AJCC) (Greene et al. (eds.), AJCC Cancer Staging Manual. 6th Ed. New York, N.Y.: Springer; 2002), the various stages of colorectal cancer are defined as follows:
Tumor: T1: tumor invades submucosal T2: tumor invades muscularis propria; T3: tumor invades through the muscularis propria into the subserose, or into the pericolic or perirectal tissues; T4: tumor directly invades other organs or structures, and/or perforates.
Node: NO: no regional lymph node metastasis; N1: metastasis in 1 to 3 regional lymph nodes; N2: metastasis in 4 or more regional lymph nodes.
Metastasis: M0: mp distant metastasis; M1: distant metastasis present.
Stage groupings: Stage I: T1 NO MO; T2 NO MO; Stage II: T3 NO MO; T4 NO MO; Stage III: any T, N1-2; MO; Stage IV: any T, any N, M1.
According to the Modified Duke Staging System, the various stages of colorectal cancer are defined as follows:
Stage A: the tumor penetrates into the mucosa of the bowel wall but not further. Stage B: tumor penetrates into and through the muscularis propria of the bowel wall; Stage C: tumor penetrates into but not through muscularis propria of the bowel wall, there is pathologic evidence of colorectal cancer in the lymph nodes; or tumor penetrates into and through the muscularis propria of the bowel wall, there is pathologic evidence of cancer in the lymph nodes; Stage D: tumor has spread beyond the confines of the lymph nodes, into other organs, such as the liver, lung or bone.
Prognostic factors are those variables related to the natural history of colorectal cancer, which influence the recurrence rates and outcome of patients once they have developed colorectal cancer. Clinical parameters that have been associated with a worse prognosis include, for example, lymph node involvement, and high grade tumors. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.
The term “prognosis” is used herein to refer to the prediction of the likelihood that a cancer patient will have a cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as colon cancer.
The term “prognostic gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with a likelihood of cancer recurrence in a cancer patient treated with the standard of care. A gene may be both a prognostic and predictive gene, depending on the correlation of the gene expression level with the corresponding endpoint. For example, using a Cox proportional hazards model, if a gene is only prognostic, its hazard ratio (HR) does not change when measured in patients treated with the standard of care or in patients treated with a new intervention.
The term “prediction” is used herein to refer to the likelihood that a cancer patient will have a particular clinical response to treatment, whether positive (“beneficial response”) or negative, following surgical removal of the primary tumor. For example, treatment could include chemotherapy.
The predictive methods of the present invention can be used clinically to make treatment decisions by choosing the most appropriate treatment modalities for any particular patient. The predictive methods of the present disclosure are valuable tools in predicting if a patient is likely to respond favorably (“beneficial response”) to a treatment regimen, such as chemotherapy, surgical intervention, or both. Prediction may include prognostic factors.
The terms “predictive gene” and “response indicator gene” are used interchangeably herein to refer to a gene, the expression level of which is correlated, positively or negatively, with likelihood of beneficial response to treatment with chemotherapy. A gene may be both a prognostic and predictive gene, and vice versa, depending on the correlation of the gene expression level with the corresponding endpoint (e.g., likelihood of survival without recurrence, likelihood of beneficial response to chemotherapy). A predictive gene can be identified using a Cox proportional hazards model to study the interaction effect between gene expression levels from patients treated with treatment A compared to patients who did not receive treatment A (but may have received standard of care, e.g. treatment B). The hazard ratio (HR) for a predictive gene will change when measured in untreated/standard of care patients versus patients treated with treatment A.
As used herein, the term “expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.
The term “gene product” or “expression product” are used herein to refer to the RNA transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.
The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA.
Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.
The terms “correlated” and “associated” are used interchangeably herein to refer to a strength of association between two measurements (or measured entities). The disclosure provides genes and gene subsets, the expression levels of which are associated with a particular outcome measure, such as for example between the expression level of a gene and the likelihood of beneficial response to treatment with a drug or microsatellite instability (MSI) phenotype status. For example, the increased expression level of a gene may be positively correlated (positively associated) with an increased likelihood of good clinical outcome for the patient, such as an increased likelihood of long-term survival without recurrence of the cancer and/or beneficial response to a chemotherapy, and the like. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a low hazard ratio. In another example, the increased expression level of a gene may be negatively correlated (negatively associated) with an increased likelihood of good clinical outcome for the patient. In that case, for example, the patient may have a decreased likelihood of long-term survival without recurrence of the cancer and/or beneficial response to a chemotherapy, and the like. Such a negative correlation indicates that the patient likely has a poor prognosis or will respond poorly to a chemotherapy, and this may be demonstrated statistically in various ways, e.g., a high hazard ratio. “Correlated” is also used herein to refer to a strength of association between the expression levels of two different genes, such that expression level of a first gene can be substituted with an expression level of a second gene in a given algorithm in view of their correlation of expression. Such “correlated expression” of two genes that are substitutable in an algorithm usually gene expression levels that are positively correlated with one another, e.g., if increased expression of a first gene is positively correlated with an outcome (e.g., increased likelihood of good clinical outcome), then the second gene that is co-expressed and exhibits correlated expression with the first gene is also positively correlated with the same outcome.
A “positive clinical outcome” and “beneficial response” can be assessed using any endpoint indicating a benefit to the patient, including, without limitation, (1) inhibition, to some extent, of tumor growth, including slowing down and complete growth arrest; (2) reduction in the number of tumor cells; (3) reduction in tumor size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of tumor cell infiltration into adjacent peripheral organs and/or tissues; (5) inhibition of metastasis; (6) enhancement of anti-tumor immune response, possibly resulting in regression or rejection of the tumor; (7) relief, to some extent, of one or more symptoms associated with the tumor; (8) increase in the length of survival following treatment; and/or (9) decreased mortality at a given point of time following treatment. Positive clinical response may also be expressed in terms of various measures of clinical outcome. Positive clinical outcome can also be considered in the context of an individual's outcome relative to an outcome of a population of patients having a comparable clinical diagnosis, and can be assessed using various endpoints such as an increase in the duration of Recurrence-Free interval (RFI), an increase in the time of survival as compared to Overall Survival (OS) in a population, an increase in the time of Disease-Free Survival (DFS), an increase in the duration of Distant Recurrence-Free Interval (DRFI), and the like. An increase in the likelihood of positive clinical response corresponds to a decrease in the likelihood of cancer recurrence.
The term “risk classification” means a level of risk (or likelihood) that a subject will experience a particular clinical outcome. A subject may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.
The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 3 years, more preferably for at least 5 years.
The term “Recurrence-Free Interval (RFI)” is used herein to refer to the time (in years) from randomization to first colon cancer recurrence or death due to recurrence of colorectal cancer.
The term “Overall Survival (OS)” is used herein to refer to the time (in years) from randomization to death from any cause.
The term “Disease-Free Survival (DFS)” is used herein to refer to the time (in years) from randomization to first colon cancer recurrence or death from any cause.
The term “Distant Recurrence-Free Interval (DRFI)” is used herein to refer to the time (in years) from surgery to the first anatomically distant cancer recurrence.
The calculation of the measures listed above in practice may vary from study to study depending on the definition of events to be either censored or not considered.
The term “tumor-associated stroma unit area” (or “sua”) is used herein to refer to a measurement of the tumor-associated stroma area surrounding a tumor. Stroma is the framework or matrix of an organ providing support to the epithelia which includes components such as blood vessels, connective tissues and lymphoid cells. In the colon, tumor-associated stroma is interposed between normal stroma, epithelia, smooth muscle and malignant epithelial cells.
The term “tumor epithelial unit area” (or “cua”) is used herein to refer to a measurement of the epithelial area of a tumor which comprises cancerous (e.g., malignant) epithelial cells. In the colon, the tumor associated epithelia cells are glandular in form, genomically clonal and are referred to as the adenocarcinoma.
The term “stromal area” as used herein, refers to the surface area of colon tumor-associated stroma in a biological sample obtained from a patient sample. The stromal area may be measured by any suitable method, such as by micrometer, or standard or digital microscopic assessment of a Hematoxylin and Eosin (H&E) section.
The term “Stromal Risk,” as used herein, refers to an estimate of recurrence risk of a patient with colon cancer based on stromal area. The amount of stromal area in a colon cancer tumor obtained from a patient is associated with the risk of recurrence of colon cancer for that patient. The greater the amount of stromal area present, the greater the risk of colon cancer recurrence. This estimate may be, for example, provided in the form of a Stromal Risk Score or Group that reflects the likelihood that a colon cancer patient will have a recurrence, such as a numeric range, descriptive categories (low, intermediate, high), etc.
The term “microarray” refers to an ordered arrangement of hybridizable array elements, e.g. oligonucleotide or polynucleotide probes, on a substrate.
The term “polynucleotide,” when used in singular or plural, generally refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons, are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.
The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNArDNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
As used herein, the term “expression level” as applied to a gene refers to the level of the expression product of a gene, e.g. the normalized value determined for the RNA expression product of a gene or for the polypeptide expression level of a gene.
The term “Ct” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.
The terms “threshold” or “thresholding” refer to a procedure used to account for non-linear relationships between gene expression measurements and clinical response as well as to further reduce variation in reported patient scores. When thresholding is applied, all measurements below or above a threshold are set to that threshold value. Non-linear relationship between gene expression and outcome could be examined using smoothers or cubic splines to model gene expression in Cox PH regression on recurrence free interval or logistic regression on recurrence status. Variation in reported patient scores could be examined as a function of variability in gene expression at the limit of quantitation and/or detection for a particular gene.
As used herein, the term “amplicon,” refers to pieces of DNA that have been synthesized using amplification techniquest, such as polymerase chain reactions (PCR) and ligase chain reactions.
“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to re-anneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide, followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.
“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.
As used herein, the term “exon” refers to any segment of an interrupted gene that is represented in the mature RNA product. As used herein, the term “intron” refers to any segment of DNA that is transcribed but removed from within the transcript by splicing together the exons on either side of it. “Intronic RNA” refers to mRNA derived from an intronic region of DNA. Operationally, exonic sequences occur in the mRNA sequence of a gene as defined by Ref. SEQ ID numbers. Operationally, intron sequences are the intervening sequences within the genomic DNA of a gene.
The term “co-expressed”, as used herein, refers to a statistical correlation between the expression level of one gene and the expression level of another gene. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using a graph theory. An analysis of co-expression may be calculated using normalized expression data.
A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.
To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.
A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.
As used herein, the term “surgery” applies to surgical methods undertaken for removal of cancerous tissue, including resection, laparotomy, colectomy (with or without lymphadenectomy), ablative therapy, endoscopic removal, excision, dissection, and tumor biopsy/removal. The tumor tissue or sections used for gene expression analysis may have been obtained from any of these methods.
As used herein, “graph theory” refers to a field of study in Computer Science and Mathematics in which situations are represented by a diagram containing a set of points and lines connecting some of those points. The diagram is referred to as a “graph”, and the points and lines referred to as “vertices” and “edges” of the graph. In terms of gene co-expression analysis, a gene (or its equivalent identifier, e.g. an array probe) may be represented as a node or vertex in the graph. If the measures of similarity (e.g., correlation coefficient, mutual information, alternating conditional expectation) between two genes is higher than a significant threshold, the two genes are said to be co-expressed and an edge will be drawn in the graph. When co-expressed edges for all possible gene pairs for a given study have been drawn, all maximal cliques are computed. The resulting maximal clique is defined as a gene clique. A gene clique is a computed co-expressed gene group that meets predefined criteria.
As used herein, the terms “gene clique” and “clique” refer to a subgraph of a graph in which every vertex is connected by an edge to every other vertex of the subgraph.
As used herein, a “maximal clique” is a clique in which no other vertex can be added and still be a clique.
Reference to “markers for prediction of response” with reference to 5-fluorouracil (5-FU), and like expressions, encompass within their meaning response to treatment comprising 5-FU as monotherapy, or in combination with other agents, or as prodrugs, or together with local therapies such as surgery and radiation, or as adjuvant or neoadjuvant chemotherapy, or as part of a multimodal approach to the treatment of neoplastic disease.
As used herein, the terms “5-FU-based therapy”, “5-FU based treatment”, and “5-FU therapy” are used interchangeably to refer to encompass administration of 5-FU or a prodrug thereof and further encompasses administration of 5-FU combination or 5-FU combination therapy.
“5-FU combination” or “5-FU combination therapy” refers to a combination of 5-FU and another agent. A number of agents have been combined with 5-FU to enhance the cytotoxic activity through biochemical modulation. Addition of exogenous folate in the form of 5-formyl-tetrahydrofolate (leucovorin) sustains inhibition of thymidylate synthase. Methotrexate, by inhibiting purine synthesis and increasing cellular pools of certain substrates for reactivity with 5-FU, enhances the activation of 5-FU. The combination of cisplatin and 5-FU increases the antitumor activity of 5-FU. Oxaliplatin is commonly used with 5-FU and leucovorin for treating colorectal cancer, and it may inhibit catabolism of 5-FU, perhaps by inhibiting dihydropyrimidine dehydrogenase (the enzyme that is responsible for the catabolism of 5-FU), and may also inhibit expression of thymidylate synthase. The combination of 5-FU and irinotecan, a topoisomerase-1 inhibitor, is a treatment that combines 5-FU with an agent that has a different mechanism of action. Eniluracil, which is an inactivator of dihydropyrimidine dehydrogenase, leads to another strategy for improving the efficacy of 5-FU.
“5-FU prodrug” refers to drugs that, following administration to a patient, provide for activity of 5-FU. A number of 5-FU prodrugs have been developed. For example, capecitabine (N4-pentoxycarbonyl-5′-deoxy-5-fluorcytidine) is an orally administered agent that is approved by the FDA for certain treatments including colorectal cancer. Another fluoropyrimidine that acts as a prodrug for 5-FU is florafur.
Algorithm-Based Methods and Gene Subsets
The present disclosure provides an algorithm-based molecular diagnostic assay for determining an expected clinical outcome (prognostic) and/or the likelihood that a patient with cancer will have a clinically beneficial response to chemotherapy (predictive). For example, the expression levels of the prognostic genes may be used to calculate a likelihood of colorectal cancer recurrence. The expression levels of the predictive genes, and in some cases the predictive and prognostic genes, may be used to calculate the likelihood that a patient with colorectal cancer will have a clinically beneficial response to chemotherapy. The cancer can be, for example, Stage II and/or Stage III colorectal cancer. The chemotherapy can be, for example, a 5-FU-based chemotherapy.
The present disclosure provides methods to classify a tumor based on the likelihood of cancer recurrence for a patient. The likelihood of recurrence is calculated based on expression levels of prognostic genes from particular gene subsets, wherein gene subsets include at least one gene each from a stromal group and a cell cycle group. Prognostic gene subsets may also include at least one gene from a cell signaling group, an apoptosis group, and/or a transcription factor group.
The present disclosure provides methods of classifying a tumor according to the likelihood that a patient with cancer will have a beneficial response to chemotherapy based on expression levels of predictive genes. The likelihood of a beneficial response is calculated based on expression levels of predictive genes from particular gene subsets, wherein the gene subsets include at least one gene from each of a stromal group, an apoptosis group, and a MSI group. Predictive gene subsets can also include at least one gene from a transcription factor group and/or a cell cycle group.
The gene subset identified herein as the “stromal group” includes genes that are synthesized predominantly by stromal cells and are involved in stromal response and genes that co-express with stromal group genes. “Stromal cells” are defined herein as connective tissue cells that make up the support structure of biological tissues. Stromal cells include fibroblasts, immune cells, pericytes, endothelial cells, and inflammatory cells. “Stromal response” refers to a desmoplastic response of the host tissues at the site of a primary tumor or invasion. See, e.g., E. Rubin, J. Farber, Pathology, 985-986 (2nd Ed. 1994). The stromal group includes, for example, BGN, FAP, INHBA, and genes that are co-expressed with BGN, FAP, or INHBA, wherein a gene is said to be co-expressed with a stromal gene when the expression level of the gene exhibits a Pearson correlation coefficient greater than or equal to 0.6. For example, the stromal group includes the genes and/or gene cliques shown in Tables 4, 5 and 6 (provided in specification just prior to claims). The combination of genes used from within the stromal group can vary with the method of analysis for which expression is to be evaluated. For example, the stromal group for classifying a tumor according to the likelihood of colorectal cancer recurrence includes BGN, FAP and INHBA. The gene subset herein identified as the “cell cycle group” includes genes that are involved with cell cycle functions and genes that co-express with cell cycle group genes. “Cell cycle functions” are defined herein as cell proliferation and cell cycle control, e.g. checkpoint/G1 to S phase transition. The cell cycle group thus includes genes that (1) are involved in biological pathways associated with cell cycle functions; and (2) co-express with Ki-67, cMYC, MYBL2, MAD2L1, or HSPE1, with a Pearson correlation coefficient greater than or equal to 0.4. Exemplary co-expressed genes and/or gene cliques for Ki-67, cMYC, MYBL2, MAD2L1, and HSPE1 are provided in Tables 5 and 6. The combination of genes used from within the cell cycle group can vary with the method of analysis for which expression is to be evaluated. For example, the cell cycle group for classifying a tumor according to the likelihood of colorectal cancer recurrence includes Ki-67, cMYC, MYBL2, MAD2L1, and HSPE1. The cell cycle group for classifying a tumor according to likelihood that a patient will have a beneficial response to chemotherapy includes MAD2L1 and HSPE1.
This specification discloses data demonstrating that genes associated with the stroma of a tumor are associated with an increased risk of recurrence, whereas cell cycle genes are correlated with a decreased risk of recurrence. In addition, the present disclosure provides prognostic and predictive methods that take into account the observation that expression levels for certain genes vary with respect to the regions of a tumor.
Specifically, the present disclosure provides evidence that there are higher expression levels of (1) the stromal genes in the tumor-associated stroma; and (2) the cell cycle genes in the luminal part of the tumor. The ratios of expression levels to tumor region areas vary from patient to patient. This ratio of expression between tumor-associated stroma and the luminal part of the tumor can be exploited in the prognostic and predictive methods disclosed herein.
In exemplary embodiments, expression values of stromal genes may be calculated using stromal gene expression per stroma unit area, and expression values of cell cycle genes may be calculated using cell cycle gene expression per epithelial unit area. Thus, the area of the tumor-associated stroma and the area of the tumor-luminal regions may be taken into account by the prognostic and predictive algorithms in order to increase reproducibility and accuracy of RFI prediction and prediction of response to therapy, respectively. One skilled in the art would recognize that there are many conventional methods available to capture percent stroma and percent epithelia. For example, such ratios could be obtained by examining the H&E slide immediately adjacent to the tissue sections to be analyzed. This could be performed by either a pathologist (to get a gross measurement) or by digital image analysis (to obtain a more precise measurement).
In addition, the present disclosure provides evidence that measurement of the stroma area has prognostic value to colon cancer patients. Specifically, the stromal surface area of the tumor-associate stromal region of a tumor is positively correlated with increase risk of recurrence. This risk of recurrence may be reported in the form of a Stromal Risk score, or combined with risk information obtained from other sources, such as a Recurrence Score
The gene subset herein identified as the “angiogenesis group” includes genes that regulate new blood capillary formation or that otherwise participate in “wound healing.” The angiogenesis group includes genes that (1) are involved in biological pathways associated with wound healing functions; and (2) co-express with EFNB2 with a Peason correlation coefficient greater than or equal to 0.6.
The gene subset defined herein as the “apoptosis group” includes genes which are involved in apoptosis functions and genes that co-express with apoptosis group genes. “Apoptosis functions” are defined herein as a series of cellular signaling intended to positively or negatively induce apoptosis, or programmed cell death. The apoptosis group includes BIK and genes that co-express with BIK with a Pearson correlation coefficient greater than or equal to 0.6. The gene subset defined herein as the “cell signaling group” includes genes which are involved with signaling pathways impacting cell growth and apoptosis and genes that co-express with cell signaling group genes. The cell signaling group includes GADD45B and genes that co-express with GADD45B, with a Pearson correlation coefficient greater than or equal to 0.6. Exemplary genes that co-express with GADD45B are provided in Tables 4 and 5. Table 4 provides genes for which expression is highly correlated with validated prognostic and/or predictive genes (by rank and Pearson co-expression co-efficient). Table 5 provides the results of identification of genes through gene module/clique analysis of validated gene biomarkers.
The gene subset herein defined as the “transcription factor group” includes genes which are involved with transcription factor functions and genes that co-express with transcription factor group genes. “Transcription factor functions” are defined herein as the binding of specific DNA sequences to facilitate the transcription of DNA to RNA, either alone or as part of a complex. The transcription factor group includes RUNX1 and genes that co-express with RUNX1 with a Pearson correlation coefficient greater than or equal to 0.6. Exemplary co-expressed genes and/or gene cliques encompassed by the transcription factor group are provided in Tables 5 and 6.
The gene subset defined herein as the “MSI group” includes genes which are known to have a statistically significant correlation with microsatellite instability high (MSI-H) status and genes that co-express with MSI group genes. Practice guidelines indicate that MSI-H histology is one factor to consider in making cancer screening recommendations for colorectal cancer patients. (See, e.g., NCCN Practice Guidelines in Oncology, v.2.2008.) The MSI group includes AXIN2 and genes that are (1) significantly associated with MSI-H status; or (2) co-express with AXIN2 with a correlation coefficient greater than or equal to 0.4. Exemplary co-expressed genes and/or gene cliques encompassed by the MSI group are provided in Table 5.
The present disclosure also provides methods to determine a threshold expression level for a particular gene. A threshold expression level may be calculated for a prognostic or predictive gene. A threshold expression level for a gene may be based on a normalized expression level. In one example, a Ct threshold expression level may be calculated by assessing functional forms using logistic regression.
The disclosure further provides methods to determine genes that co-express with particular target genes identified by quantitative RT-PCR (qRT-PCR), e.g. validated biomarkers relevant to a particular type of cancer. The co-expressed genes are themselves useful biomarkers. The co-expressed genes may be substituted for the prognostic or predictive gene marker with which they co-express. The methods can include identifying gene cliques from microarray data, normalizing the microarray data, computing a pairwise Spearman correlation matrix for the array probes, filtering out significant co-expressed probes across different studies, building a graph, mapping the probe to genes, and generating a gene clique report. For example, the expression levels of one or more genes of a prognostic and/or predictive gene clique may be used to calculate the likelihood that a patient with colorectal cancer will experience a recurrence and/or respond to chemotherapy. A “prognostic gene clique”, as used herein, refers to a gene clique that includes a prognostic gene. A “predictive gene clique”, as used herein, refers to a gene clique that includes a predictive gene.
Various technological approaches for determination of expression levels of the disclosed genes are set forth in this specification, including, without limitation, RT-PCR, microarrays, high-throughput sequencing, serial analysis of gene expression (SAGE) and Digital Gene Expression (DGE), which will be discussed in detail below. In particular aspects, the expression level of each gene may be determined in relation to various features of the expression products of the gene including exons, introns, protein epitopes and protein activity. One or more of the prognostic and/or predictive genes, or their expression products, may be analyzed for microsatellite instability (MSI) status.
The expression levels of prognostic and/or predictive genes may be measured in tumor tissue. For example, the tumor tissue is obtained upon surgical removal or resection of the tumor, or by tumor biopsy. The expression level of prognostic and/or predictive genes may also be measured in tumor cells recovered from sites distant from the tumor, for example circulating tumor cells, body fluid (e.g., urine, blood, blood fraction, etc.).
The expression product that is assayed can be, for example, RNA or a polypeptide. The expression product may be fragmented. For example, the assay may use primers that are complementary to target sequences of an expression product and could thus measure full transcripts as well as those fragmented expression products containing the target sequence. Further information is provided in Tables A and B (inserted in specification prior to claims).
The RNA expression product may be assayed directly or by detection of a cDNA product resulting from a PCR-based amplification method, e.g., quantitative reverse transcription polymerase chain reaction (qRT-PCR). (See e.g., U.S. Pub. No. US2006-0008809A1.) Polypeptide expression product may be assayed using immunohistochemistry (IHC). Further, both RNA and polypeptide expression products may also be is assayed using microarrays.
Clinical Utility
The algorithm-based assay and associated information provided by the practice of the methods disclosed herein facilitates physicians in making more well-informed treatment decisions, and to customize the treatment of colorectal cancer to the needs of individual patients, thereby maximizing the benefit of treatment and minimizing the exposure of patients to unnecessary treatments which may provide little or no significant benefits and often carry serious risks due to toxic side-effects.
Multi-analyte gene expression tests can be used measure the expression level of one or more genes involved in each of several relevant physiologic processes or component cellular characteristics.
The algorithm used to calculate such a score in a method disclosed herein may group the expression level values of genes. The grouping of genes may be performed at least in part based on knowledge of the contribution of the genes according to physiologic functions or component cellular characteristics, such as in the groups discussed above. The formation of groups, in addition, can facilitate the mathematical weighting of the contribution of various expression levels to the recurrence and/or treatment scores. The weighting of a gene group representing a physiological process or component cellular characteristic can reflect the contribution of that process or characteristic to the pathology of the cancer and clinical outcome. Accordingly, the present disclosure provides subsets of the prognostic and predictive genes identified herein for use in the methods disclosed herein.
Based on the determination of a recurrence and/or treatment score, patients can be partitioned into subgroups (e.g., tertiles or quartiles) based on a selected value(s) of the recurrence and/or treatment score(s), where all patients with values in a given range can be classified as belonging to a particular risk group or treatment benefit group. Thus, the values chosen will define subgroups of patients with respectively greater or lesser risk and/or greater or lesser benefit.
The utility of a gene marker in predicting colorectal cancer outcome and/or response to chemotherapy may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a selected marker gene may be substituted for, or used in addition to, a test marker. Due to the co-expression of such genes, substitution of expression level values should have little impact on the overall prognostic and/or predictive utility of the test. The closely similar expression patterns of two genes may result from involvement of both genes in the same process and/or being under common regulatory control in colon tumor cells. The present disclosure thus contemplates the use of such co-expressed genes or gene sets as substitutes for, or in addition to, prognostic and/or predictive methods of the present disclosure.
The present methods can provide for identification of colorectal cancer patients are likely to recur after surgery, and who will benefit from adjuvant chemotherapy. Such methods can be used alone or in combination with other clinical methods for patient stratification, e.g., using pathologic (tumor grade and histology) or molecular markers (e.g., levels of expression of genes such as thymidine synthase, thymidine phosphorylase (TP), dihydropyrimidine dehydrogenase (DPD), or microsatellite instability (MSI) status).
The algorithm-based molecular assay and associated information provided by the methods disclosed herein for predicting the clinical outcome in Stage II and/or Stage III cancers of the colon and/or rectum have utility in many areas, including in the development and appropriate use of drugs to treat Stage II and/or Stage III cancers of the colon and/or rectum, to stratify cancer patients for inclusion in (or exclusion from) clinical studies, to assist patients and physicians in making treatment decisions, provide economic benefits by targeting treatment based on personalized genomic profile, and the like. For example, the recurrence score may be used on samples collected from patients in a clinical trial and the results of the test used in conjunction with patient outcomes in order to determine whether subgroups of patients are more or less likely to show a response to a new drug than the whole group or other subgroups. Further, such methods can be used to identify from clinical data subsets of patients who can benefit from therapy. Additionally, a patient is more likely to be included in a clinical trial if the results of the test indicate a higher likelihood that the patient will have a poor clinical outcome if treated with surgery alone and a patient is less likely to be included in a clinical trial if the results of the test indicate a lower likelihood that the patient will have a poor clinical outcome if treated with surgery alone.
Staging of rectal tumors can be carried out based on similar criteria as for colon tumor staging, although there are some differences resulting, for example, from differences in the arrangement of the draining lymph nodes. As a result, Stage II/III rectal tumors bear a reasonable correlation to Stage II/III colon tumors as to their state of progression. As noted above, the rate of local recurrence and other aspects of prognosis differ between rectal cancer and colon cancer, and these differences may arise from difficulties in accomplishing total resection of rectal tumors. Nevertheless, there is no compelling evidence that there is a difference between colon cancer and rectal cancer as to the molecular characteristics of the respective tumors. Tests able to predict chemotherapy treatment benefit for rectal cancer patients have utility similar in nature as described for colon cancer tests and the same markers might well have utility in both cancer types.
Tests that identify patients more likely to be those that fail to respond to standard-of-care are useful in drug development, for example in identifying patients for inclusion in clinical trials testing the efficacy of alternative drugs. For example, 30-35% of Stage III colon cancer patients fail to survive five years when treated with fluorouracil-based chemotherapy after surgical resection of tumor. Preferential inclusion of these patients in a clinical trial for a new Stage III colon cancer treatment could substantially improve the efficiency and reduce the costs of such a clinical trial.
Methods of Assaying Expression Levels of a Gene Product
The methods and compositions of the present disclosure will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Exemplary techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).
Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. Exemplary methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription PCT (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Antibodies may be employed that can recognize sequence-specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).
Reverse Transcriptase PCR (RT-PCR)
Typically, mRNA is isolated from a test sample. The starting material is typically total RNA isolated from a human tumor, usually from a primary tumor. Optionally, normal tissues from the same patient can be used as an internal control. mRNA can be extracted from a tissue sample, e.g., from a sample that is fresh, frozen (e.g. fresh frozen), or paraffin-embedded and fixed (e.g. formalin-fixed).
General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using a purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.
The sample containing the RNA is then subjected to reverse transcription to produce cDNA from the RNA template, followed by exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.
PCR-based methods use a thermostable DNA-dependent DNA polymerase, such as a Taq DNA polymerase. For example, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction product. A third oligonucleotide, or probe, can be designed to facilitate detection of a nucleotide sequence of the amplicon located between the hybridization sites the two PCR primers. The probe can be detectably labeled, e.g., with a reporter dye, and can further be provided with both a fluorescent dye, and a quencher fluorescent dye, as in a Taqman® probe configuration. Where a Taqman® probe is used, during the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.
TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7700™ Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the 5′ nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7700™ Sequence Detection System™. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 384-well format on a thermocycler. The RT-PCR may be performed in triplicate wells with an equivalent of 2 ng RNA input per 10 μL-reaction volume. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.
5′-Nuclease assay data are initially expressed as a threshold cycle (“Ct”). Fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The threshold cycle (Ct) is generally described as the point when the fluorescent signal is first recorded as statistically significant.
To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard gene (also referred to as a reference gene) is expressed at a constant level among cancerous and non-cancerous tissue of the same origin (i.e., a level that is not significantly different among normal and cancerous tissues), and is not significantly unaffected by the experimental treatment (i.e., does not exhibit a significant difference in expression level in the relevant tissue as a result of exposure to chemotherapy). For example, reference genes useful in the methods disclosed herein should not exhibit significantly different expression levels in cancerous colon as compared to normal colon tissue. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-actin. Exemplary reference genes used for normalization comprise one or more of the following genes: ATP5E, GPX1, PGK1, UBB, and VDAC2. Gene expression measurements can be normalized relative to the mean of one or more (e.g., 2, 3, 4, 5, or more) reference genes. Reference-normalized expression measurements can range from 0 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.
Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).
The steps of a representative protocol for use in the methods of the present disclosure use fixed, paraffin-embedded tissues as the RNA source. mRNA isolation, purification, primer extension and amplification can be preformed according to methods available in the art. (see, e.g., Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA depleted from the RNA-containing sample. After analysis of the RNA concentration, RNA is reverse transcribed using gene specific primers followed by RT-PCR to provide for cDNA amplification products.
Design of Intron-Based PCR Primers and Probes
PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Primer/probe design can be performed using publicly available software, such as the DNA BLAT software developed by Kent, W. J., Genome Res. 12(4):656-64 (2002), or by the BLAST software including its variations.
Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Rrawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, N.J., pp 365-386).
Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.
For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, C W. et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. Primerselect: Primer and probe design. Methods MoI. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.
Tables A and B provide further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.
MassARRAY® System
In MassARRAY-based methods, such as the exemplary method developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivation of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).
Other PCR-Based Methods
Further PCR-based techniques that can find use in the methods disclosed herein include, for example, BeadArray® technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression® (BADGE), using the commercially available LuminexlOO LabMAP® system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003).
Microarrays
Expression levels of a gene of interest can also be assessed using the microarray technique. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are arrayed on a substrate. The arrayed sequences are then contacted under conditions suitable for specific hybridization with detectably labeled cDNA generated from mRNA of a test sample. As in the RT-PCR method, the source of mRNA typically is total RNA isolated from a tumor sample, and optionally from normal tissue of the same patient as an internal control or cell lines. mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.
For example, PCR amplified inserts of cDNA clones of a gene to be assayed are applied to a substrate in a dense array. Usually at least 10,000 nucleotide sequences are applied to the substrate. For example, the microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After washing under stringent conditions to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance.
With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pair wise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et at, Proc. Natl. Acad. ScL USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip® technology, or Incyte's microarray technology.
Serial Analysis of Gene Expression (SAGE)
Serial analysis of gene expression (SAGE) is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript. Then, many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g. Velculescu et al., Science 270:484-487 (1995); and Velculescu et al., Cell 88:243-51 (1997).
Gene Expression Analysis by Nucleic Acid Sequencing
Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the mRNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).
Isolating RNA from Body Fluids
Methods of isolating RNA for expression analysis from blood, plasma and serum (See for example, Tsui N B et al. (2002) 48, 1647-53 and references cited therein) and from urine (See for example, Boom R et al. (1990) J Clin Microbiol. 28, 495-503 and reference cited therein) have been described.
Immunohistochemistry
Immunohistochemistry methods are also suitable for detecting the expression levels of genes and applied to the method disclosed herein. Antibodies (e.g., monoclonal antibodies) that specifically bind a gene product of a gene of interest can be used in such methods. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten’ labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody can be used in conjunction with a labeled secondary antibody specific for the primary antibody Immunohistochemistry protocols and kits are well known in the art and are commercially available.
Proteomics
The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics.
General Description of the mRNA Isolation, Purification and Amplification
The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are provided in various published journal articles. (See, e.g., T. E. Godfrey et al., J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001), M. Cronin, et al., Am J Pathol 164:35-42 (2004)). Briefly, a representative process starts with cutting a tissue sample section (e.g. about 10 μm thick sections of a paraffin-embedded tumor tissue sample). The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair is performed if desired. The sample can then be subjected to analysis, e.g., by reverse transcribed using gene specific promoters followed by RT-PCR.
Statistical Analysis of Gene Expression Levels in Identification of Marker Genes for Use in Prognostic and/or Predictive Methods
One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between an outcome of interest (e.g., likelihood of survival, likelihood of response to chemotherapy) and expression levels of a marker gene as described here. This relationship can be presented as a continuous recurrence score (RS), or patients may stratified into risk groups (e.g., low, intermediate, high). For example, a Cox proportional hazards regression model may fit to a particular clinical endpoint (e.g., RFI, DFS, OS). One assumption of the Cox proportional hazards regression model is the proportional hazards assumption, i.e. the assumption that effect parameters multiply the underlying hazard. Assessments of model adequacy may be performed including, but not limited to, examination of the cumulative sum of martingale residuals. One skilled in the art would recognize that there are numerous statistical methods that may be used (e.g., Royston and Parmer (2002), smoothing spline, etc.) to fit a flexible parametric model using the hazard scale and the Weibull distribution with natural spline smoothing of the log cumulative hazards function, with effects for treatment (chemotherapy or observation) and RS allowed to be time-dependent. (See, P. Royston, M. Parmer, Statistics in Medicine 21(15:2175-2197 (2002).) The relationship between recurrence risk and (1) recurrence risk groups; and (2) clinical/pathologic covariates (e.g., number of nodes examined, pathological T stage, tumor grade, MSI status, lymphatic or vascular invasion, etc.) may also be tested for significance.
Many statistical methods may be used to determine if there is a significant interaction between expression levels of predictive genes and beneficial response to treatment (“treatment benefit”). For example, this relationship can be presented as a continuous treatment score (TS), or patients may stratified into benefit groups (e.g., low, intermediate, high). The interaction studied may vary, e.g. standard of care vs. new treatment, or surgery alone vs. surgery followed by chemotherapy. For example, a Cox proportional hazards regression could be used to model the follow-up data, i.e. censoring time to recurrence at a certain time (e.g., 3 years) after randomization for patients who have not experienced a recurrence before that time, to determine if the TS is associated with the magnitude of chemotherapy benefit. One might use the likelihood ratio test to compare the reduced model with RS, TS and the treatment main effect, with the full model that includes RS, TS, the treatment main effect, and the interaction of treatment and TS. A pre-determined p-value cut-off (e.g., p<0.05) may be used to determine significance.
Alternatively, the method of Royston and Parmer (2002) can be used to fit a flexible parametric model using the hazard scale and the Weibull distribution with natural spline smoothing of the log cumulative hazards function, with effects for treatment (chemotherapy or observation), RS, TS and the interaction of TS with treatment, allowing the effects of RS, TS and TS interaction with treatment to be time dependent. To assess relative chemotherapy benefit across the benefit groups, pre-specified cut-points for the RS and TS may be used to define low, intermediate, and high chemotherapy benefit groups. The relationship between treatment and (1) benefit groups; and (2) clinical/pathologic covariates may also be tested for significance. For example, one skilled in the art could identify significant trends in absolute chemotherapy benefit for recurrence at 3 years across the low, intermediate, and high chemotherapy benefit groups for surgery alone or surgery followed by chemotherapy groups. An absolute benefit of at least 3-6% in the high chemotherapy benefit group would be considered clinically significant.
In an exemplary embodiment, power calculations were carried for the Cox proportional hazards model with a single non-binary covariate using the method proposed by F. Hsieh and P. Lavori, Control Clin Trials 21:552-560 (2000) as implemented in PASS 2008.
Coexpression Analysis
The present disclosure provides genes that co-express with particular prognostic and/or predictive gene that has been identified as having a significant correlation to recurrence and/or treatment benefit. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for disease progression and response to treatment. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the prognostic and/or predictive gene with which they are co-expressed.
One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).) In general, a correlation coefficient of equal to or greater than 0.3 is considered to be statistically significant in a sample size of at least 20. (See, e.g., G. Norman, D. Streiner, Biostatistics: The Bare Essentials, 137-138 (3rd Ed. 2007).)
General Description of Exemplary Embodiments
This disclosure provides a method to determine a patient's likelihood of experiencing a cancer recurrence by assaying expression levels of certain prognostic genes from a tumor sample obtained from the patient. Such methods involve use of gene subsets that are created based on similar functions of gene products. For example, prognostic methods disclosed herein involve assaying expression levels of gene subsets that include at least one gene each from each of a stromal group and a cell cycle group, and calculating a recurrence score (RS) for the patient by weighting the expression levels of each of the gene subsets by their respective contributions to cancer recurrence. The weighting may be different for each gene subset, and may be either positive or negative. For example, the stromal group score could be weighted by multiplying by a factor of 0.15, the cell cycle group score by a factor of −0.3, the cell signaling group score by a factor of 0.15, and so on. Gene subsets in such prognostic methods can further include at least one gene from a cell signaling group, apoptosis group, or transcription factor group.
For example, the weights assigned to each gene subset in the exemplary embodiments is set forth below:
RS1=Ws×Stromal Group Score+Wz×Angiogenesis Group Score−Wcc×Cell Cycle Group Score+Wcs×Cell Signaling Group Score−Wa×Apoptosis Group Score
Where:
-
- Stromal Group Score=(SG1+ . . . SGn)/n (SG=Stromal gene normalized expression level (NEL))
- Cell Cycle Group Score=(CCG1+ . . . CCGn)/n (CCG=Cell cycle gene NEL)
- Cell Signaling Group Score=(CSG1+ . . . CSGn) (CSG=Cell signaling gene NEL)
- Apoptosis Group Score=(AG1+ . . . AGn)/n (AG=Apoptosis gene)
- Angiogenesis Group Score=(AgG1+ . . . AgGn)/n (AgG=Angiogenesis gene)
- Wx=weighting factor for each gene subset
Alternatively, the genes within each gene subset may be weighted individually. Assuming standardized expression, the weights assigned to each gene subset in the exemplary embodiment is set forth below:
Stromal Group Score2=+BGN score+FAP score+INHBA score
Cell Cycle Group Score2=−2[Ki-67 score+MAD2L1 score+0.75(cMYC score)+0.25(MYBL2 score)]
Apoptosis Group Score2=−2(BIK score)
Cell Signaling Group Score2=+0.33(GADD45B score)
Angiogenesis Group Score2=+EFNB2 score
To translate the RS2 model into non-standardized expression, the weights may be divided by gene standard deviation. For example, assuming non-standardized expression, the weights assigned to each gene subset in the exemplary embodiment is set forth below:
Stromal Group Scorens=+1.06(BGN score)+1.38(FAP score)+1.14(INHBA score)
Angiogenesis Group Scorens=+1.34(EFNB2)
Cell Signaling Group Scorens=+0.44GADD45B
Cell Cycle Group Scorens=−2[1.85(Ki-67 score)+1.32(MAD2L1+0.83(cMYC score)+0.45(MYBL2 score)]
Apoptosis Group Scorens=−2(BIK score)
In exemplary embodiments, RS is calculated using expression levels of one or more of BGN, FAP, INHBA, EFNB2, MYBL2, Ki-67, cMYC, MAD2L1, HSPE1, GADD45B, BIK, and RUNX1. The disclosure provides substitute prognostic genes, the expression levels of which may similarly be used to calculate RS. These substitute predictive genes include genes that co-express with BGN, FAP, INHBA, EFNB2, MYBL2, Ki-67, cMYC, MAD2L1, HSPE1, GADD45B, BIK, or RUNX1
The RSu (recurrence score unscaled) may be rescaled, for example to be between 0 and 100. More particularly, the RSu may be rescaled as follows:
The RS may be used to determine a recurrence risk group for each patient. For example, recurrence scores may be divided into three risk classification groups using predefined cut-points. The cut-points between the low, intermediate, and high recurrence risk groups may be defined, for example, as in Table 1.
TABLE 1
Recurrence Risk Stratification
Recurrence Risk Group Recurrence Score
Low risk of recurrence Less than 30
Intermediate risk of Greater than or equal to 30
recurrence and less than 41
High risk of recurrence Greater than or equal to 41
The RS may be rounded to the nearest integer before the cut-points defining recurrence risk groups are applied.
The disclosure also provides methods to determine the likelihood that a patient with colorectal cancer will have a beneficial response to chemotherapy including assaying expression levels of predictive genes, where the expression levels are used in an algorithm based on gene subsets that include at least one gene each from a growth factor receptor group, an apoptosis group, and a MSI group, and calculating a treatment score (TS) for the patient by weighting the expression levels of each of the gene subsets by their respective contributions to response to chemotherapy. The weighting may be different for each gene subset, and may be either positive or negative. For example, the stromal group could be weighted by multiplying by a factor of −0.3, the transcription factor by a factor of −0.04, the apoptosis group by a factor of 0.3, the cell cycle group by a factor of 0.1, and the MSI group by a factor of 0.1. The gene subsets may additionally comprise at least one gene from a transcription factor group and/or a cell cycle group.
In the exemplary embodiments, the weights assigned to each gene subset is set forth below:
TS=−Ws×Stromal Group Score−Wtf×Transcription Factor Group Score+Wa×Apoptosis Group Score+Wcc×Cell Cycle Group Score+Wmsi×MSI Group Score
-
- Where:
- Stromal Group Score=(SG1+ . . . SGn) (SG=stromal gene normalized expression level (NEL))
- Transcription Factor Group Score=(TFG1+ . . . TFGn) (TFG=transcription factor gene NEL)
- Apoptosis Group Score=(AG1+ . . . AGn) (AG=apoptosis gene NEL)
- Cell Cycle Group Score=(CCG1+ . . . CCGn) (CCG=cell cycle gene NEL)
- MSI Group Score=(MG1+ . . . MGn) (MG=MSI gene NEL)
- Wx=weighting factor for each gene subset
In exemplary embodiments, TS is calculated using expression levels for AXIN2, BIK, EFNB2, HSPE1, MAD2L1, and RUNX1.
The disclosure provides other predictive genes, the expression levels of which may similarly be used to calculate a TS. These substitute predictive genes include RANBP2, BUB1, TOP2A, C20_ORF1, CENPF, STK15, AURKB, HIF1A, UBE2C, and MSH2, and gene that co-express with said substitute predictive genes with a Pearson correlation co-efficient of at least 0.60.
The TSu (Treatment Score unsealed) may be rescaled, for example it may be rescaled to be between 0 and 100. More particularly, TSu may be rescaled as follows:
In addition, the TS may be used to determine a “benefit score” for each patient. For example, the patient may be classified as one who is expected to have a low, medium, or high benefit from chemotherapy. In a particular example, the RS, TS, and predefined cut-points can be used to determine a benefit score for each patient. The low, intermediate, and high benefit scores or groups may be defined as in Table 2.
TABLE 2
Beneficial Response to Chemotherapy Stratification
X = 0.859exp[1.839×RSu +3.526−1.781×TSu]−
Benefit Group 0.859exp[1.839×RSu]
Low Benefit X less than 2%
Intermediate Benefit X greater than or equal to 2% and
less than 6%
High Benefit X greater than or equal to 6%
Data Aggregation
The expression data may be aggregated. The purpose of data aggregation is to combine information across replicate qRT-PCR wells for individual genes. For example, during qRT-PCR, triplicate wells may be run for each gene and sample. Valid triplicate wells for each gene may be aggregated into a single weighted average Ct value. The resulting weighted average Ct effectively down weights the influence of outlier observations. The data aggregation module may include the following steps for each gene and sample:
-
- (1) Retrieve calculated Ct values and status data.
- (2) Aggregate plate level statistics and record module version, date and time of processing.
- (3) Aggregate Ct values for each gene and store statistics using all wells (valid and invalid).
- (4) Compute gene validity based on the number of valid wells.
- (5) Compute the weighted average of the valid wells for each gene.
Normalization of Expression Levels
The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to store the sample. Other sources of systematic variation are attributable to laboratory processing conditions.
Assays can provide for normalization by incorporating the expression of certain normalizing genes, which genes do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes include housekeeping genes such as PGK1 and UBB. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (CT) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in colorectal cancer as compared to non-cancerous colorectal tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.
Unless noted otherwise, normalized expression levels for each mRNA/tested tumor/patient will be expressed as a percentage of the expression level measured in the reference set. A reference set of a sufficiently high number (e.g. 40) of tumors yields a distribution of normalized levels of each mRNA species. The level measured in a particular tumor sample to be analyzed falls at some percentile within this range, which can be determined by methods well known in the art.
In exemplary embodiments, one or more of the following genes are used as references by which the expression data is normalized: ATP5E, GPX1, PGK1, UBB, and VDAC2. The calibrated weighted average Ct measurements for each of the prognostic and predictive genes may be normalized relative to the mean of five or more reference genes.
Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.
Bridging Expression Measurements and Calibration
An oligonucleotide set represents a forward primer, reverse primer, and probe that are used to build a primer and probe (P3) pool and gene specific primer (GSP) pool. Systematic differences in RT-PCR cycle threshold (Ct) measurements can result between different oligonucleotide sets due to inherent variations oligonucleotide syntheses. For example, differences in oligonucleotide sets may exist between development, production (used for validation), and future production nucleotide sets. Thus, use of statistical calibration procedures to adjust for systematic differences in oligonucleotide sets resulting in translation in the gene coefficients used in calculating RS and TS may be desirable. For example, for each of the genes assayed for use in an algorithm, one may use a scatterplot of Ct measurements for production oligonucleotide sets versus Ct measurements from a corresponding sample used in different oligonucleotide set to create linear regression model that treats the effect of lot-to-lot differences as a random effect. Examination of such a plot will reveal that the variance of Ct measurements increases exponentially as a function of the mean Ct. The random effects linear regression model can be evaluated with log-linear variance, to obtain a linear calibration equation. A calculated mean squared error (MSE) for the scores can be compared to the MSE if no calibration scheme is used at all.
As another example, a latent variable measurement of Ct (e.g. first principle component) may be derived from various oligonucleotide sets. The latent variable is a reasonable measure of the “true” underlying Ct measurement. Similar to the method described above, a linear regression model may be fit to the sample pairs treating the effects of differences as a random effect, and the weighted average Ct value adjusted to a calibrated Ct.
Centering and Data Compression/Scaling
Systematic differences in the distribution of patient RS and TS due to analytical or sample differences may exist between early development, clinical validation and commercial samples. A constant centering tuning parameter may be used in the algorithm to account for such difference.
Data compression is a procedure used to reduce the variability in observed normalized Ct values beyond the limit of quantitation (LOQ) of the assay. Specifically, for each of the colon cancer assay genes, variance in Ct measurements increase exponentially as the normalized Ct for a gene extends beyond the LOQ of the assay. To reduce such variation, normalized Ct values for each gene may be compressed towards the LOQ of the assay. Additionally, normalized Ct values may be resealed. For example, normalized Ct values of the prognostic, predictive, and reference genes may be resealed to a range of 0 to 15, where a one-unit increase generally reflects a 2-fold increase in RNA quantity.
Threshold Values
The present invention describes a method to determine a threshold value for expression of a cancer-related gene, comprising measuring an expression level of a gene, or its expression product, in a tumor section obtained from a cancer patient, normalizing the expression level to obtain a normalized expression level, calculating a threshold value for the normalized expression level, and determining a score based on the likelihood of recurrence or clinically beneficial response to treatment, wherein if the normalized expression level is less than the threshold value, the threshold value is used to determine the score, and wherein if the normalized expression level is greater or equal to the threshold value, the normalized expression level is used to determine the score.
For example, a threshold value for each cancer-related gene may be determined through examination of the functional form of relationship between gene expression and outcome. Examples of such analyses are presented for Cox PH regression on recurrence free interval where gene expression is modeled using natural splines and for logistic regression on recurrence status where gene expression is modeled using lowess smoother.—(See, e.g., FIGS. 6-10.)
Thresholded Ct values for each prognostic, predictive, and reference genes can be used to calculate RS and TS. Exemplary thresholded Ct values for the 18-gene assay described herein are set forth in Table 3.
TABLE 3
Gene expression panel and threshold values
Accession Accession Thres-
Gene Number Threshold Gene Number hold
ATP5E NM_006886 None MYBL2 NM_002466 6
GPX1 NM_000581 None Ki-67 NM_002417 6
PGK1 NM_000291 None GADD45B NM_015675 4.5
UBB NM_018955 None EFNB2 NM_004093 4
VDAC2 NM_003375 None RUNX1 NM_001754 4.5
BGN NM_001711 None BIK NM_001197 4.5
FAP NM_004460 6 MAD2L1 NM_002358 3
INHBA NM_002192 None HSPE1 NM_002157 None
cMYC NM_002467 None AXIN2 NM_004655 None
Thresholded Ct values for each gene are calculated according to the formula:
It will be appreciated by one of ordinary skill in the art that a purpose of thresholding is to address non-linear functional forms for gene expression measurements. However, it will be readily appreciated that other nonlinear transforms other than thresholding can be used to accomplish the same effect.
Building Gene Cliques from Validated Biomarkers
This disclosure contemplates using co-expressed genes and/or gene cliques, identified with respect to prognostic and/or predictive genes, as substitutes for, or for analysis with, the prognostic and/or predictive genes disclosed herein. One method disclosed to analyze gene cliques that co-express with a target gene (i.e., a gene of interest) involves normalizing microarray gene expression data for cancer tumor samples based on array probes, calculating a correlation coefficient (e.g., using Spearman or Pearson correlation coefficients) based on gene expression levels for every unique pair of array probes, determining significant probe pairs, wherein significant probe pairs are a target gene probe and an array probe with a correlation co-efficient greater than a significant threshold value (e.g., a Spearman correlation co-efficient ≥0.5), mapping the target gene to its corresponding target gene probe, selecting a candidate probe set, wherein each candidate probe is part of a significant probe pair, and identifying an official gene symbol for each candidate probe (e.g., Entrez Gene Symbol). For example, Table 6 lists the gene cliques associated with FAP, INHBA, Ki-67, HSPE1, MAD2L1, and RUNX1.
Kits of the Invention
The materials for use in the methods of the present invention are suited for preparation of kits produced in accordance with well known procedures. The present disclosure thus provides kits comprising agents, which may include gene-specific or gene-selective probes and/or primers, for quantitating the expression of the disclosed genes for predicting prognostic outcome or response to treatment. Such kits may optionally contain reagents for the extraction of RNA from tumor samples, in particular fixed paraffin-embedded tissue samples and/or reagents for RNA amplification. In addition, the kits may optionally comprise the reagent(s) with an identifying description or label or instructions relating to their use in the methods of the present invention. The kits may comprise containers (including microliter plates suitable for use in an automated implementation of the method), each with one or more of the various reagents (typically in concentrated form) utilized in the methods, including, for example, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more probes and primers of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). Mathematical algorithms used to estimate or quantify prognostic or predictive information are also properly potential components of kits.
Reports
The methods of this invention, when practiced for commercial diagnostic purposes, generally produce a report or summary of information obtained from the herein-described methods. For example, a report may include information concerning expression levels of prognostic and/or predictive genes, a prediction of the predicted clinical outcome or response to chemotherapy for a particular patient, or gene cliques or thresholds. The methods and reports of this invention can further include storing the report in a database. The method can create a record in a database for the subject and populate the record with data. The report may be a paper report, an auditory report, or an electronic record. The report may be displayed and/or stored on a computing device (e.g., handheld device, desktop computer, smart device, website, etc.). It is contemplated that the report is provided to a physician and/or the patient. The receiving of the report can further include establishing a network connection to a server computer that includes the data and report and requesting the data and report from the server computer.
Computer Program
The values from the assays described above, such as expression data, recurrence score, treatment score and/or benefit score, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, thresholding, and conversion of values from assays to a score and/or graphical depiction of likelihood of recurrence/response to chemotherapy, gene co-expression or clique analysis, and the like). The computer program product has stored therein a computer program for performing the calculation.
The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates a RS, TS, risk or benefit group classification, gene co-expression analysis, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.
All aspects of the present invention may also be practiced such that a limited number of additional genes that are co-expressed with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a prognostic or predictive test in addition to and/or in place of disclosed genes.
Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.
EXAMPLE 1 Gene Expression Analysis for Colon Cancer Recurrence Methods and Materials:
Patients and Samples
Tumor tissue samples were from two cohorts of patients with stage II or stage III colon cancer treated with surgery alone form the basis for this report. Further details concerning the NSABP protocols C-01, C-02, C-03, and C-04 are available in C. Allegra, J Clin Oncology 21(2):241-250 (2003) and related U.S. application Ser. Nos. 11/653,102 and 12/075,813, the contents of which are incorporated herein by reference.
The first cohort pooled available patient samples from NSABP protocols C-01 or C-02 in which patients were randomly assigned to receive either colon resection alone or resection+bacillus Calmette-Guerin (“BCG”) immunotherapy. The second cohort (CCF) included stage II and stage III colon cancer patients treated with surgery alone at CCF between the years 1981 and 2000. None of the patients in either group received adjuvant chemotherapy. In both cohorts, gene expression measurements were obtained from archived, formalin-fixed, paraffin-embedded (FPE) colon tumor tissue.
Differential Expression Data:
The final number of evaluable FPE blocks was 270 in the NSABP cohort and 765 in the CCF cohort (n=1035). The primary reasons for exclusion were failure to meet minimum RNA yield (10% of samples in NSABP and 8% in CCF) and failure to meet quality control criteria for RT-qPCR (7% in NSABP and 2% in CCF).
The primary analysis in both studies investigated the relationship between the expression of 761 genes and RFI. This analysis identified sixty-five genes were found to be nominally significant in both studies. (See FIG. 1.) The high level of agreement was observed between the univariate hazard ratios for 63 (97%) of 65 genes significantly related to RFI in both studies. Of the genes found to be significantly related to RFI in either study, the majority were also related to both DFS and OS within the same study.
In both cohorts, the relationship between the expression of each gene and RFI was investigated, controlling for study and baseline characteristics. Any of the baseline clinical characteristics or study design attributes that had at least a modest association (p<0.2) with RFI were included in the multivariate analysis. Sixty-one (43%) of the 143 genes significant in univariate analyses in the NSABP cohort were statistically significant after controlling for nodal status, tumor location, tumor grade, mucinous tumor type, study protocol (C-01 vs. C-02), treatment assignment (BCG vs. none), and year of surgery. Eighty-eight (74%) of the 119 genes significant in univariate analysis in the CCF cohort retained significance after adjustment for age, nodal status, number of lymph nodes examined, tumor grade, mucinous tumor type, fixative, surgery year and T stage. There was agreement between the multivariate hazard ratios for the 65 genes significantly related to RFI in both studies. The hazard ratios were concordant for 63 of 65 genes. The consistency of hazard ratio estimates from the uni- and multivariate Cox regression analyses indicates that expression levels of these genes provide prognostic information which is relatively independent of traditional clinical predictors.
These 65 genes represent pathways that would be expected to be important in colon cancer recurrence. To identify genes that were co-expressed and therefore possibly members of the same functional gene family, hierarchical cluster analysis and forest plots were created using the genes that were significantly related to RFI in that study (not shown) as well as for the genes significantly related to RFI in both studies. Cluster analysis identified that the majority (48) of the prognostic genes fell into two relatively distinct gene groups: a stromal gene group (containing several subgroups) and a cell cycle gene group. The stromal group contained genes which, when highly expressed, were associated with a worse outcome and increased likelihood of recurrence, such as BGN, FAP, INHBA, and EFNB2. The cell cycle group contained genes which, when highly expressed, were associated with a better outcome and decreased likelihood of recurrence, such as cMYC, MYBL2, Ki-67, MAD2L1, and HSPE1.
EXAMPLE 2 Gene Expression Analysis for Prognostic and Predictive Genes A study was conducted to assay gene expression levels in tumor samples obtained from patients with stage II or III colon cancer treated with surgery and 5FU/LV and perform analysis across four independent studies to identify genes that quantitate both the individual risk of recurrence in patients treated with surgery alone (prognosis) and the individual treatment benefit of 5-FU/LV adjuvant chemotherapy (prediction). Further information about these studies can be found in related U.S. application Ser. Nos. 11/653,102 and 12/075,813, the contents of which are incorporated herein by reference.
Methods and Materials
Patients and Samples
Tissue samples were obtained from two cohorts of patients with stage II or stage III colon cancer treated with surgery and 5FU/LV. The first cohort included available patient samples from the 5FU/LV arm of NSABP Study C-04 in which patients were randomly assigned to receive either 5FU/LV, 5FU+levamisole or 5FU/LV+levamisole. (See, N. Wolmark, et al., J Clin Oncol 17:3553-3559 (1999). The second cohort included available patient samples from the 5FU/LV arm of NSABP Study C-06 in which patients were randomly assigned to receive 5FU/LV or oral uracil/tegafur plus leucovorin. (See, B. Lembersky, et al., J Clin Oncol 24:2059-2064 (2006). The 5FU/LV regimen was the same in both studies. In both cohorts, gene expression measurements were obtained from archived, formalin-fixed, paraffin-embedded (FPE) colon tumor tissue.
Based on treatment assignment and eligibility in the original NSABP studies, 691 C-04 patients and 792 C-06 patients qualified for this study. Available formalin-fixed paraffin-embedded (FPE) blocks for patients enrolled in C-04 (n=360) and C-06 (n=573) were assayed. After applying pre-specified exclusion criteria, the final number of evaluable patients was 308 in the C-04 cohort and 508 in the C-06 cohort. The primary reasons for exclusion were failure to satisfy pathology requirements (8.6% in C-04 and 1.7% in C-06) and failure to meet clinical eligibility criteria (1.7% in C-04 and 7.5% in C-06).
Analysis Methods
The primary analysis in both studies investigated the relationship between the expression of each gene and RFI. This analysis identified 143 (19%) of the 761 genes as being significantly related to RFI in the C-04 cohort compared to 169 (45%) of the 375 genes in the C-06 cohort. Seventy-five genes were found to be nominally significant in both studies. The hazard ratios were concordant (i.e. in similar direction) for 73 (97%) of these 75 genes. Of the genes found to be significantly related to RFI in either study, the majority were also related to both DFS and OS within the same study. Seventy-one (50%) of 143 genes significantly associated with RFI in univariate analyses in the C-04 study were statistically significant after controlling for nodal status and age. One hundred thirty-seven (81%) of the 169 genes significant in univariate analyses in the C-06 study were statistically significant after controlling for nodal involvement and mucinous tumor type. A high level of agreement between the univariate and multivariate hazard ratios for genes significantly related to RFI in both studies was observed.
To identify prognostic genes across the four colon development studies, the focus was on the genes which significantly and consistently associated with RFI in both surgery only (C-01/C-02 and CCF studies described in Example 1) and surgery+5FU/LV-treated (C-04 and C-06) patients since prognostic genes are expected to have a similar relationship (i.e. similar direction and magnitude of the HR's) with outcome when measured in patients treated with the standard of care or in patients treated with a new intervention. A total of 48 (13%) of 375 genes studied in all four development studies were significantly (p<0.05) associated with RFI in both surgery only studies and at least one surgery+5FU/LV study. Due to type II error considerations, genes were not required to be significant in all four studies. The univariate hazard ratios and associated confidence intervals for the 48 genes in each of the four colon development studies are presented in FIG. 2. Cluster analysis identified two relatively distinct gene groups among the 48 prognostic genes: a stromal activation gene group (containing several subgroups) and a cell cycle gene group. The stromal group contained genes which, when highly expressed, were associated with a worse outcome and increased likelihood of recurrence, such as BGN, FAP, INHBA, and EFNB2. The cell cycle group contained genes which, when highly expressed, were associated with a better outcome and decreased likelihood of recurrence, such as cMYC, MYBL2, Ki-67, MAD2L1, and HSPE1.
In contrast to prognostic genes, the predictive genes are expected to exhibit a different relationship with outcome (i.e. different HR's) in patients treated with surgery only as compared to patients treated with surgery+5FU/LV. To identify predictive genes, multivariate Cox proportional hazards models were examined, including main effects of gene and treatment and an interaction of gene and treatment for each of the 375 genes pooling the data across the four colon development studies. A total of 66 (18%) of 375 genes studied in all four development studies had an interaction of gene expression and treatment significant at 0.10 level. Only 4 of these 66 genes had significant association with RFI in the two independent surgery alone studies and at least one of the surgery+5 FU/LV study (i.e. were included in the set of 48 prognostic genes), indicating that a small minority of predictive genes are both prognostic and predictive. Fifty-nine of the 66 genes were not associated with RFI in both surgery only studies, indicating that the majority of predictive genes are not also prognostic genes.
These 66 genes represent pathways that would be expected to be important in response to chemotherapy. Cluster analysis identified two relatively distinct gene groups among 66 potentially predictive genes. One group contains a large number of cell cycle related genes such as centromere and spindle associated proteins (CENPA, KIFC1, KIF22, STK15, MAD2L1, AURKB), checkpoint regulation (CDC2, BUB1), and a DNA topoisomerase (TOP2A). The second group contains genes which represent several different biological pathways, including a tight group of stromal activation genes (BGN, SPARC, COL1A1, CDH11, MMP2, and TIMP1), and genes associated with apoptosis (BIK), 5FU metabolism (UPP), and B-catenin/wnt signaling (AXIN2, LEF). It is of note that the two mismatch repair genes (MSH2 and MSH3) and several hypoxia/stress response genes (NR4A1, RhoB, HIF1A, CREBBP, PKR2, EPAS1) were also associated with response to 5-FU/LV chemotherapy.
Preliminary prognostic models were built using subsets of the 48 prognostic genes. The results from a representative model containing 10 prognostic genes are shown in FIGS. 3a and 3b for stage II and stage III patients, respectively, treated with surgery only (C-01/C-02 and CCF cohorts). Patients were divided into three equally sized groups based on the calculated Recurrence Score. This model separated the 628 Stage II patients into groups with low, intermediate and high risk of recurrence: the lowest tertile had a 5% (95% CI 3%, 9%) risk of recurrence at 3 years vs. 14% (10%, 20%) and 22% (16%, 28%), respectively, for the middle and highest tertiles. (See, FIG. 4a.) For 395 Stage III patients, the two lowest tertiles had 26% (19%, 35%) and 26% (19%, 34%) risk of recurrence at 3 years vs. a 47% (39%, 56%) risk for the highest tertile. (See FIG. 4b.) For comparison, the overall 3-year risks of recurrence of Stage II and Stage III patients were 13% and 33%, respectively. When bootstrap was applied, the average Kaplan-Meier estimates (and associated 95% confidence intervals) of recurrence rates at 3 years for stage II patients were 5% (2%, 9%), 12% (8%, 17%) and 22% (18%, 27%) for the 1st, 2nd and 3rd tertile, respectively. For stage III patients, the corresponding estimates were 23% (16%, 30%), 28% (19%, 37%) and 48% (40%, 56%), respectively.
EXAMPLE 3 Validation of Algorithm-Based Molecular Diagnostic Assay After the 65 prognostic and 66 predictive gene candidates were identified, the genes were examined further for consistency in association between gene expression and RFI (prognosis) and differential relationship between with RFI in treated vs. untreated patients (prediction) across the four colon development studies using univariate and multivariate Cox proportional hazards models. Representation of the relevant biologic pathways, distribution of gene expression, functional form of the relationship between gene expression, and RFI and analytical performance of individual genes were also taken into account.
Forest plots for the predictive genes (after thresholding) were reviewed and genes were identified that (1) displayed predictive effects either in both Stage II and Stage III colorectal cancer, or in Stage III only; (2) had significant (e.g., p<0.10) gene by treatment interaction in a model of gene (n=9) or median Ct<4 (n=2); and (3) had significant (p<0.10) gene by treatment interaction after RSu and TRT were forced into the model. Genes with consistent univariate hazard ratios (HRs) were preferred. In addition, forest plots for the predictive genes were examined qualitatively and genes displaying predictive effects either in both Stage II and Stage III colorectal cancer, or in Stage III only were identified. Through this analysis the following additional 10 predictive gene candidates were identified (in addition to the 6 predictive genes in the final algorithm): RANBP2, BUB1, TOP2A, C20_ORF1, CENPF, STK15, AURKB, HIF1A, UBE2C, and MSH2. Based on these results, multi-gene models were designed and analyzed across all four studies. Those analyses, together with a methodical evaluation of analytical performance of each candidate gene, led to the design of a multi-gene RT-PCR-based clinical assay to predict recurrence risk and treatment benefit from 5FU/LV. The genes represent biological categories that are important in colon cancer: stromal group (BGN, FAP, INHBA, EFNB2), cell cycle group (Ki-67, MYBL2, cMYC, MAD2L1, HSPE1), cell signaling (GADD45B), apoptosis group (BIK), transcription factor group (RUNX1), and MSI group (AXIN2), as well as 5 reference genes (ATP5E, GPX1, PGK1, UBB, VDAC2) for normalization of gene expression.
Methods and Materials
Patients and Samples
The developed algorithm may be validated using samples obtained from the QUASAR study. The QUASAR Collaborative Group trial is the largest reported single randomized study of observation versus adjuvant chemotherapy in patients with resected stage II colon cancer. (See, Lancet 370:2020-2029 (2007).) In that study, patients with resected stage II and III colon and rectal cancer were assigned by treating physicians to one of two arms of the study based on either a “clear” or “uncertain” indication for adjuvant therapy. In the “clear” arm, all patients (n=4320) received adjuvant 5-FU/leucovorin (LV) chemotherapy with or without levamisole. In the “uncertain” arm, patients (n=3239) were randomized to either observation (n=1617) or adjuvant 5-FU/LV chemotherapy (n=1622). As expected, the “clear” arm enrolled primarily stage III patients (70%), and the “uncertain” arm enrolled a high proportion of stage II patients (91% stage II, 71% colon cancer).
These results from QUASAR demonstrate that adjuvant 5-FU/LV treatment benefits a small but significant subset of stage II colon cancer patients. (See, e.g., FIG. 5.) Nevertheless, the physician managing stage II colon cancer still faces considerable challenges, including the fact that the majority of such patients are cured with surgery alone and that adjuvant 5-FU/LV chemotherapy carries potential toxicities of leucopenia, stomatitis, and diarrhea. Clearly, the decision to administer adjuvant 5-FU/LV chemotherapy would be greatly aided by the ability to identify reliably: 1) patients who are likely to be cured with surgery alone and 2) patients who are at substantial risk of recurrence following surgery and have a significant likelihood of clinical benefit with adjuvant treatment. With regard to the latter, it is worth emphasizing that the clinically relevant information for patients and oncologists includes not only the magnitude of the baseline risk of recurrence but also the magnitude of potential benefit (i.e. the absolute clinical benefit) associated with adjuvant 5-FU/LV treatment.
The validation study entailed the use of a pre-specified RT-PCR-based 18-gene clinical assay (see genes listed in Table 3) applied to archival paraffin-embedded tumor tissue specimens from colon cancer patients studied in QUASAR. The study considered the relationship between (1) a continuous RS and recurrence risk in patients randomized to surgery alone, and compared to that of patients randomized to surgery followed by adjuvant 5-FU/LV chemotherapy (controlling for simultaneous prognostic effects of clinical and pathological covariates); and (2) a continuous TS and chemotherapy benefit in patients randomized to surgery alone or surgery followed by adjuvant 5-FU/LV chemotherapy. The study compared the risk of recurrence between the high and low recurrence risk groups based on pre-specified cut-points for RS. A two-fold higher recurrence risk at 3 years in the high recurrence risk group compared to the low recurrence risk group was considered clinically significant. Alternative clinical endpoints, including RFI, DFS and OS, were considered. The study also looked for a significant (1) trend in absolute chemotherapy benefit for recurrence at 3 years across the low, intermediate, and high chemotherapy benefit groups; (2) interaction between the continuous TS and treatment relative to alternative clinical endpoints, including RFI, OS and DFS; (3) interaction between MMR status and treatment after controlling for the prognostic effects of the continuous RS and prognostic covariates.
Fixed paraffin-embedded colon tumor tissue from approximately 1,500 patients from QUASAR with stage II colon cancer. The RNA was extracted from the tumor tissue and RT-PCR analysis was conducted to determine expression levels of 13 cancer-related and 5 reference genes (Table 3). A prospectively-defined algorithm was used to calculate a RS and TS for each patient. Patients were classified into low, intermediate, and high recurrence risk groups using the RS and pre-specified cut-points (Table 1). Similarly, patients were classified into low, intermediate, and high chemotherapy benefit groups based on the combination of the RS and TS and on pre-specified cut-points (Table 2). These cut-points define the boundaries between low and intermediate benefit groups and between intermediate and high benefit groups.
The specimens were also assessed by pathology to determine: tumor type, tumor grade, presence of lymphatic and/or vascular invasion, number of nodes examined, depth of invasion (pathologic T stage), MMR status, and other QC metrics. This information was used to determine whether there was a significant relationship between risk of recurrence and individual and pathologic covariates.
Expression levels of 13 cancer-related genes used in the calculation of the RS and TS were reported as values from the RT-PCR assay. Gene expression measurements were normalized relative to the mean of five reference genes (ATP5E, GPX1, PGK1, UBB, VDAC2). For each cancer-related gene, a cycle threshold (CT) measurement was obtained by RT-PCR, and then normalized relative to a set of five reference genes. Reference-normalized expression measurements typically range from 0 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.
Analysis Methods:
Unless otherwise stated, all significance tests were conducted at the 0.05 significance level, and two-sided p-values and confidence intervals will be reported. To preserve the overall family-wise error rate for testing the primary objectives at the 0.05 significance level, the analysis applied conditional fixed sequential testing. A Cox proportional hazards regression model was fit to the clinical endpoint RFI for the patients who were randomized to surgery alone and a likelihood ratio test used to determine if the RS is significantly associated with the risk of recurrence (i.e. if the hazard ratio associated with the RS is significantly different from 1).
A Cox proportional hazards regression was used to model the first 3 years of follow-up data, that is, censoring time to recurrence at 3 years after randomization for patients who have not experienced a recurrence before that time, to determine if the TS is associated with the magnitude of chemotherapy benefit. The likelihood ratio test was used to compare the reduced model with RS, TS and the treatment main effect, with the full model that includes RS, TS, the treatment main effect, and the interaction of treatment and TS. In addition, we will use the method of Royston and Parmar (2002) to fit a flexible parametric model to RFI using all available follow-up data. The method will model the hazard of recurrence using the Weibull distribution with natural spline smoothing of the log cumulative hazards function, with effects for treatment (chemotherapy or observation), RS, TS and the interaction of TS with treatment, allowing the effects of treatment, RS, TS and TS interaction with treatment to be time dependent. The predicted effect of chemotherapy as a function of TS will be estimated at follow-up times of 2, 3, and 5 years.
Power calculations were carried for the Cox proportional hazards model with a single non-binary covariate using the method proposed by Hsieh and Lavori (2000) as implemented in PASS 2008. One skilled in the art would recognize that power at alpha 0.01-0.05 alpha would be sufficient to control for type I error.
For example, a test comparing a reduced Cox proportional hazards regression model of gene expression and treatment to a full model containing gene expression, treatment and interaction of gene expression and treatment indicated an association of chemotherapy benefit and expression of RUNX1 (p=0.030, Interaction HR=0.59, HR 95% CI (0.37, 0.95) and FAP (p=0.065, Interaction HR=0.66, HR 95% CI (0.42, 1.03).
The association of gene expression and recurrence risk in surgery alone patients was examined for the 13 cancer-related genes. Multivariate Cox proportional hazards regression model allows estimation of recurrence risk adjusted for a specific distribution of clinical covariates. Recurrence risk estimates were produced from this multivariate model, adjusting for distribution of clinical covariates, differences in distribution in various study populations (if any), and baseline survival.
Table 8 presents the results of the univariate Cox proportional hazards regression models of gene expression on RFI. FIG. 12 demonstrates the group risk (by Kaplan Meier curve) for Stage II colon cancer patients following surgery based on risk of recurrence at three years and recurrence score (including stromal and cell cycle group genes). FIG. 13 demonstrates the risk profile plot (by Kaplan Meier curve) for risk of recurrence at five years (QUASAR—surgery only) and recurrence score (including stromal, cell cycle, and (for RS2) apoptosis genes).
In addition, the analyses combining the results from the four colon development studies and the QUASAR validation study were carried out to assess the performance of the 13 cancer-related genes across more than 3000 patients. Two different analysis methods were applied to combine the results across studies: (1) meta-analysis treating inter-study variation as random using the method of Paule and Mandel (1982) as implemented by DerSimonian and Kacker (2007); and (2) Cox proportional hazards regression model stratified by study, stage and treatment. Table 9 presents the results of these analyses. As can be observed, all but AXIN were shown to be associated with risk of recurrence in colon cancer (i.e. 95% CI did not include 1). (See, e.g., R. Paule, J. Mandel, Journal of Research of the National Bureau of Standards 87:377-385 (1982); R. der Simonian and R. Kacker, Cotemp. Clin Trials 28:105-144 (2007), both incorporated herein by reference.)
EXAMPLE 4 Alternative Algorithm-Based Assay Further analysis of data from the studies outlined in the Examples above suggested that incorporating additional genes into the Recurrence Score gene panel may yield improved performance. For example, BIK and EFNB2 were significantly associated with recurrence risk in both surgery alone and 5FU-treated patients. Statistical modeling was conducted to explore the strength of association between several multi-gene modules and recurrence of colon cancer. Table 10 and FIGS. 17-19 demonstrate comparative prognostic performance of selected multi-gene models.
Table 10: Multi-gene models based on standardized gene expression.
TABLE 10
SCORE
STD LR Genes
N Variable N HR Chisq Est StdHR LRChisq LRPVal
1 BGN 3137 1.57 140.2 0.09 1.09 1.13 0.29
FAP −0.09 0.91 1.93 0.16
INHBA 0.10 1.11 2.29 0.13
EFNB2 0.19 1.22 26.02 3.4E−07
GADD45B 0.02 1.02 0.16 0.69
Ki-67 −0.13 0.88 6.37 0.01
MAD2L1 −0.13 0.88 6.35 0.01
BIK −0.15 0.86 12.91 3.3E−04
cMYC −0.13 0.88 9.10 0.003
MYBL2 −0.02 0.98 0.25 6.2E−01
2 BGN + INHBA + FAP + 3137 1.52 120.7 0.07 1.23 19.85 8.4E−06
EFNB2
GADD45B −0.02 0.98 0.13 0.72
Ki-67 + MAD2L1 + −0.13 0.77 39.19 3.8E−10
BIK
cMYC −0.10 0.91 5.50 0.02
MYBL21 −0.01 0.99 0.10 0.75
3 BGN + INHBA + FAP + 3137 1.51 118.9 0.06 1.22 25.61 4.2E−07
EFNB2 +
⅓ GADD45B
Ki-67 + MAD2L1 + −0.12 0.74 54.97 1.2E−13
BIK + ¾cMYC +
½ MYBL2
4 BGN + INHBA + FAP + 3137 1.51 119.6 0.06 1.21 24.60 7.1E−07
EFNB2 + ⅓
GADD45B
Ki-67 + MAD2L1 + −0.13 0.74 55.61 8.8E−14
BIK + ½cMYC +
½ MYBL2
Based on the statistical modeling, it was determined that a multi-gene model using BGN and Ki-67, or BGN, Ki-67 and BIK, can provide minimal prognostic information to colon cancer patients. See FIG. 18-19. However, a model consisting of ten prognostic genes (BGN, FAP, INHBA, EFNB2, GADD45B, Ki-67, MAD2L1, BIK, cMYC, MYBL2), plus reference genes (“RS2”), provided a highly accurate assessment of risk of recurrence in colon cancer. See FIG. 20.
EXAMPLE 5 Identifying Co-Expressed Genes and Gene Cliques Gene cliques that co-express with the validated prognostic and predictive genes are set forth in Tables 4-6. These gene cliques were identified using the method described herein.
Materials and Methods:
Microarray data for colon tumor samples may be obtained internally, or derived from a public database, such as Gene Expression Omnibus (GEO). Microarray data was normalized and a pairwise Spearman correlation matrix computed for all array probes. Significant co-expressed probes across different studies was filtered out, and a graph built to compute probe cliques, map the probes to genes, and generate the gene cliques.
Download Colon Cancer Microarray Datasets
Five datasets from the Gene Expression Omnibus (GEO) database were used to compute the colon cliques. These datasets were identified as colon tumor expression experiments using the Affymetrix® HG-U133A microarray chip (Affimetrix Inc., Santa Clara, Calif.). Detailed information regarding the GEO database can be found at the National Center for Biotechnology Information (NCBI) website. Table 7 provides the accession number for the Geo datasets and the number of tumor samples in each dataset.
Array Data Normalization
The array data from GEO may be normalized using appropriate software, e.g. Affymetrix MAS5.0, or an open source RMA software like the bioconductor package.
If the sample array data are of MAS5.0 type, they are normalized with the following steps:
-
- 1. Expression level is changed to “10” if the value is <10.
- 2. Expression level is then log transformed.
- 3. Median is computed on the log transformed values for the whole array probes.
- 4. Each probe value subtracts the median and the resulting value will be defined as normalized value
If the sample array data are of RMA type, they are normalized with the following steps:
-
- 1. Median is computed on the RMA generated values for the whole array probes.
- 2. Each probe value subtracts the median and the resulting value will be defined as normalized value
Array Probe Co-Expression Pair Generation
The Spearman's rank correlation coefficient (rs) was calculated for every unique pair of probes in the dataset (22283 probes resulting 248,254,903 unique pairs for each dataset). These pairs were then filtered by a significant threshold value T; any probe pair which has an rs>=T was considered significant. Significant correlation pairs (had Spearman correlation values above threshold) were generated for each GEO dataset. For a given seeding gene probe, if the significant pairs involving the seeding probe or its directly connected probes existed across all five GEO datasets, they were placed in a graph and used to calculate maximal cliques.
Array Probe Clique Generation
The Brön-Kerbosch algorithm was used to generate the maximal cliques from a graph of significant probe pairs generated from the above step. First, three “sets” of nodes were created. The first set, compsub, was the set to be extended or shrunk on traveling along a branch of the backtracking tree. The second set, candidates, was the set of all points that will be added to compsub. The third set, not, was the set of nodes already added to compsub. The recursive mechanism for generating cliques is as follows:
-
- 1. Selection of a candidate node.
- 2. Adding the selected candidate node to compsub.
- 3. Creating new sets candidates and not from the old sets by removing all nodes not connected to the selected candidate, keeping the old sets in tact.
- 4. Calling the extension operator to operate on the sets just formed.
- 5. Upon return, removal of the selected candidate from compsub and its addition to the old set not.
If after the extension operator, the candidates and not sets were empty, then the nodes on compsub were a clique and the mechanism starts over with a new candidate node. (See FIG. 11.)
Gene Clique Reporting
After the probe cliques had been computed, each probe in the cliques was mapped to genes as identified by Entrez Gene Symbol (Official Gene Symbol). Table 6 lists the report for the cliques associated with FAP, INHBA, Ki-67, HSPE1, MAD2L1, and RUNX1.
Certain probes have multiple mapping to Genes. They are listed as the same AffyProbeID within a SeedingGene but have multiple ambiguous map to Official Genes (listed as CliquedGene column). Certain CliquedGenes are listed as “---” in Table 6. That means the AffyProbes do not map to any current Official Genes. The weight column list out the weight as we merged cliques. It is essentially is the number of clique evidence for coexpression with the seeding gene.
EXAMPLE 6 Use of Thresholding Thresholding can be used to improve the reproducibility in recurrence score (RS) and treatment score (TS) reporting by accounting for significant losses in precision as gene expression measurements approach the limit of quantitation (LOQ) of the assay. The LOQ of an assay represents the lowest concentration of RNA at which results can reliably be reported and have been estimated for each of the 18 colon cancer genes.
As an example, FIG. 26 shows the effects of diluting RNA concentration on (non-normalized) gene expression (Ct) measurements of Ki-67. The variance in Ct measurement clearly increases as RNA concentration decreases. In fact, it may be shown that the log variance in Ct measurement is roughly proportional to the mean Ct measurement for a gene. As a consequence, the variability in RS and TS may be further reduced by truncating gene expression measurements at or near the LOQ, thereby reducing the potential for noise being introduced into RS and TS estimation.
EXAMPLE 7 Calculating Gene Expression: Tumor Region Ratios The clinical development studies in stage II/III colon cancer described above illustrated that genes which are frequently associated with stroma are correlated with increased risk of recurrence, whereas cell cycle genes are correlated with decreased risk of recurrence. This fact may account for the variability of RS/TS scores, and could be taken into account if the algorithm described herein considered the amount of stroma and luminal area, as well as localized gene expression in these regions. For example, an algorithm taking into account the ratios of stromal gene expression values per stroma area unit, and cell cycle gene expression values per epithelial area unit, would increase the precision and reproducibility of a recurrence risk prediction by decreasing heterogeneity within tumor blocks for a given patient.
A study was conducted to clarify the impact of variable tumor region areas and stromal/cell cycle gene expression on recurrence risk. RNA was extracted from different regions of colon tumors—the luminal part of the tumor and the tumor-associated stroma. FIG. 14 shows that there are higher expression levels of the stromal genes in the tumor-associated stroma and higher expression levels of the cell cycle genes in the luminal part of the tumor. It is therefore likely that the stroma is contributing significantly to the stromal group score (SG or SGS) and the epithelia is significantly contributing to the cell cycle gene score (CCG or CCGS). Given these assumptions, the area of stroma within the sample contributes to the variability of the SG (within and between blocks) and therefore the score(s). Similarly, the area of epithelia within the sample analyzed could contribute to the variability of the CCG (within and between blocks) and therefore the score(s).
Gene expression within tumor epithelia cells and stroma varies from patient to patient. For example, FIG. 15 demonstrates that some patients may have higher levels of gene expression in their tumor-associated stroma for stromal genes than do other patients. Thus, some patients can have large amounts of stroma but low activity, whereas other patients can have smaller amounts of stroma but high activity. In addition, gene expression levels for the same patient can vary depending on the location of the tumor (e.g., within and between tumor blocks). This variability can impact reproducibility of recurrence and treatment scores for a patient. For example, FIG. 16 demonstrates the variability, by tissue section of the same tumor block, of stromal group score (SG), cell cycle group score CCG), cell signaling group (CSG or GADD45B), and recurrence score (RS). This analysis was done on multiple sections from the same tumor block, and included data from 11 patients.
Therefore, taking into account the area of the tumor-associated stroma and the area of the tumor-luminal regions in calculating the RS algorithm and in calculating the TS algorithm can enhance the reproducibility of the RS and TS, respectively, thus leading to greater accuracy of recurrence risk prediction.
For example, the expression level of stromal group genes can be provided as a ratio of the expression level of one or more stromal group genes to the tumor-associated stroma unit area (“sua”) assayed. In another example, the expression level of cell cycle group genes can be provided as a ratio of the expression level of one or more cell cycle group genes to the tumor epithelial unit area (“cua”) are assayed. The RS algorithm could be modified in the following form: RS=[(SG×sua coefficient)±(CCG×sua coefficient)]+[(SG×cua coefficient)±(CCG×cua coefficient)]±(repeat analysis for other gene groups, e.g., CSG, AG, and/or TFG). Similarly, the TS algorithm could be modified in the following form: TS=[(SG×sua coefficient)±(CCG×sua coefficient)]+[(SG×cua coefficient)±(CCG×cua coefficient)]±(repeat analysis for other gene groups, e.g., AG, TFG, and/or MG.)
In addition, the following exemplary algorithm provides a method to analyze and remove variability associated with gene expression in different portions of the block. For example, for cell cycle and stromal gene expression in different portions of a tumor block one could calculate: SGSij=SGi+SBij (Stromal gene group value for subject i block j is sum of a Gene effect and a Block effect) and CCGSij=CCGi+CCBij (Cell cycle gene group value for subject i block j is sum of a Gene effect and a Block effect).
SGS and CCGS are not correlated across subjects: SGS and CCGS variability is mostly from SG and CCG, the gene expression factor, and these are not correlated.
SGS and CCGS are correlated within subjects: There is a common effect underlying CCB and SB. Calculate: SGSrij=SGSij−SGSi=SBij−SBi.
CCGSrij=CCGSij−CCGSi.=CCBij−CCBi.
Correlation between SGSrij and CCGSrij can be thought of as a within subjects correlation pooled across subjects, i.e. an average within patient correlation. An informal approach to estimating ρ in (Yij, Xij)˜N((μyi, μxi), [σy, ρyx//ρyx, σx]). Alternatively could assume Yij=αi+βXij+εij
If % Stroma correlates with the SGS within subject, it could provide a means of removing this source of variability in the RS and/or TS values.
EXAMPLE 8 Stromal Risk Analysis Methods and Materials
A study involving 444 patients from a subset of the Cleveland Clinic Foundation (CCF) cohort described in Example 1 was conducted to clarify how the amount of tumor-associated stroma (“stroma area”) in a colon cancer tumor sample impacts the recurrence risk for stage II/III colon cancer patients (“Stromal Risk”). Specifically, a subset of the CCF cohort (cohort-sampling study design) involving all 148 recurrences from the CCF cohort and a random sample of approximately twice as many (i.e., 296) non-recurrences was used, resulting in 444 patients treated by resection of the colon.
Inclusion criteria included:
-
- Either stage II or stage III colon cancer patient.
- Patient treated with colon resection (surgery) at CCF between the years of 1981 and 2000.
Exclusion criteria included:
-
- No tumor block available from initial diagnosis in the CCF archive.
- No tumor or very little tumor (<5% of the area occupied by invasive cancer cells compared to the area occupied by other epithelial elements, such as normal epithelium, or lymphatic) in block as assessed by examination of the H&E slide by the CCF and Genomic Health Pathologist.
- Patients diagnosed with stage II or stage III signet ring colon cancer (WHO classification)
- Insufficient RNA (<586 ng) for RT-PCR analysis.
- Average non-normalized CT for the 5 reference genes≥35.
The full CCF cohort included a total of 886 FPE tumor tissue blocks. Of these, 108 were excluded due to failure to satisfy pathology and/or laboratory requirements described below. An additional 13 patients were excluded after the laboratory, pathology and clinical data were merged because of failure to satisfy all study inclusion and exclusion criteria, leaving 765 evaluable patients. The initial histological assessment by a Genomic Health pathologist was to evaluate the slide for the quantity of tumor and, where necessary, mark for manual micro dissection to enrich the tumor region. In this initial pathology review 8 cases were found to have insufficient tumor tissue (<5% tumor tissue) and thus failed the initial pathology review. The samples then underwent full histology review. Grade was captured by CCF and Genomic Health pathologists and each pathology read was analyzed separately (i.e. no attempt was made to create a ‘combined’ pathology score). An additional 11 cases failed this full pathology review due to the presence of a signet ring morphology comprising greater than 50% of the invasive component, lack of sufficient invasive tumor tissue (<5% cancer cells) or tissue type other than colon. Patient and sample disposition from the CCF study are summarized in Table 11.
TABLE 11
Patient Disposition from CCF Study
Category N Patients % Patients
Patients with available blocks 886 100%
Excluded due to: 121 13.7%
Failed pathology review 18 2.0%
Insufficient RNA 73 8.2%
QC of RT-PCR (incomplete or poor 17 1.9%
data quality)
Failure to satisfy all clinical 13 1.5%
eligibility criteria*
Evaluable patients 765 86.3%
All 444 evaluable samples underwent both standard and digital pathology assessments. Using the 120-slide capacity ScanScope XT system, automated scanning of all study H&E slides were conducted at 20× scanning magnification with autopopulation of patient identification fields with barcode data using the Spectrum information management system. The 20× scanning magnification was selected because this magnification gives superior optimization of image quality and scanning speed.
Digital H&E scans were obtained from the Aperio® Digital Pathology System. Two different software systems—the Aperio® Genie Digital Pathology Image Analysis software and the Definiens® Digital Pathology Image Analysis software—were used to generate digital H&E measurements. The Definiens image analysis software, based on the Definiens Cognition Network Technology®, examines pixels in context and builds up a picture iteratively, recognizing groups of pixels as objects.
The pathologist and assistant trained the image analysis applications to detect regions of interest (e.g., mucin, tumor glands and tumor stroma) using previously captured digital images of the entire enriched tumor portion. These training slides were representative of the slides to be assessed by the Aperio system. Several variations of the two image analysis algorithms were developed for low and high grade carcinomas and mucinous carcinomas. These were developed by identification of regions of interest, and then having the programs “learn” from the training slides. The resulting algorithms were applied to the entire patient cohort, analyzing the enriched tumor portions of the patient samples. The patient samples were batched into three digital study sets (i.e., low grade, high grade and mucinous carcinomas) as determined by the GHI pathologist and all images were processed using batch processing.
Findings and Statistical Analysis
The surface area of tumor-associated stroma varies from patient to patient. For example, FIG. 21 provides a variability plot for natural logarithm of stroma area, as measured by the Aperio digital pathology system, for the 444 patients under study, stratified by recurrence-free interval status.
Statistical analyses were performed to determine if there was a significant relationship between stroma area and recurrence-free interval (RFI) Specifically, we compared the (reduced) Weighted Cox Proportional Hazards model for RFI based on the main effect for tumor stage (Stage II and Stage III), versus the (full) Weighted Cox Proportional Hazards model for RFI based on the main effects of tumor stage and stroma area as measured by the Aperio digital image analysis system. Weighted Pseudo Partial Likelihood approach was used to accommodate the use of a case-cohort sampling study design. A Wald test for the hypothesis that the hazard ratio for stroma area is 1 versus the 2-sided alternative hypothesis that the hazard ratio is not 1 was performed. The resulting Wald χ2=15.64 with 1 degree of freedom resulting in a 2-sided p-value <0.001, indicating that stroma area is prognostic of disease recurrence (beyond tumor stage alone) in colon cancer patients treated with colon resection. The resulting standardized hazard ratio for stroma area is 1.45, indicating that there is a 45% increase in the relative risk for disease recurrence for each standard deviation increase in stroma area.
TABLE 12
Proportional Hazard Regression for Recurrence-Free
Interval: Stage and Stroma Area Alone
PH Regression on RFI for Stage, Stroma Area Alone
Robust HR Wald
Variable Coef SE HR 95% CI DF ChiSq P value
Stage (III vs II) 0.66 0.19 1.94 (1.34, 2.82) 1 12.27 <.001
Standard Area - 0.37 0.09 1.45 (1.20, 1.74) 1 15.64 <.001
Stroma Area, Aperio
In addition to testing if stroma area is prognostic of disease recurrence, statistical analyses were performed to determine if stroma area provides additional prognostic information beyond both stage and Recurrence Score. Specifically, we compared the (reduced) Weighted Cox Proportional Hazards model for RFI based on the main effect for stage (Stage II and Stage III) and Recurrence Score, versus the (full) Weighted Cox Proportional Hazards model for RFI based on the main effects of tumor stage, Recurrence Score and stroma area as measured by the Aperio digital image analysis system. A Wald test for the hypothesis that the hazard ratio for stroma area is 1 versus the 2-sided alternative hypothesis that the hazard ratio is not 1 was performed. The resulting Wald ratio χ2=13.17 with 1 degree of freedom resulting in a 2-sided p-value <0.001, indicating that stroma area is prognostic of disease recurrence beyond tumor stage and Recurrence Score. The resulting standardized hazard ratio for stroma area is 1.41, indicating that there is a 41% increase in the relative risk for disease recurrence for each standard deviation increase in stroma area.
TABLE 13
Proportional Hazard Regression for Recurrence-Free Interval:
Stage, Stroma Area and Recurrence Score
PH Regression on RFI for Stage, Stroma Area Alone, and R2
Robust HR Wald
Variable Coef SE HR 95% CI DF ChiSq P value
Stage (III vs II) 0.65 0.19 1.88 (1.32, 2.81) 1 11.49 <.001
Standard Area - 0.34 0.10 1.44 (1.17, 1.70) 1 13.17 <.001
Stroma Area, Aperio
RS2/25 0.57 0.19 1.46 (1.122, 2.55) 1 9.19 0.002
Similar analyses were performed to test if stroma area provides additional prognostic information beyond both stage and RS2. Specifically, we compared the (reduced) Weighted Cox Proportional Hazards model for RFI based on the main effect for stage (Stage II and Stage III) and RS2, versus the (full) Weighted Cox Proportional Hazards model for RFI based on the main effects of tumor stage, RS2 and stroma area as measured by the Aperio digital image analysis system. A Wald test for the hypothesis that the hazard ratio for stroma area is 1 versus the 2-sided alternative hypothesis that the hazard ratio is not 1 was performed. The resulting Wald ratio χ2=14.86 with 1 degree of freedom resulting in a 2-sided p-value <0.001, indicating that stroma area is prognostic of disease recurrence beyond tumor stage and RS2. The resulting standardized hazard ratio for stroma area is 1.44, indicating that there is a 44% increase in the relative risk for disease recurrence for each standard deviation increase in stroma area.
TABLE 14
Proportional Hazard Regression for Recurrence-Free Interval:
Stage, Stroma Area and RS2
PH Regression on RFI for Stage, Stroma Area Alone, and RS2
Robust HR Wald
Variable Coef SE HR 95% CI DF ChiSq P value
Stage (III vs II) 0.63 0.19 1.88 (1.29, 2.74) 1 10.87 <.001
Standard Area - 0.36 0.09 1.44 (1.19, 1.73) 1 14.86 <.001
Stroma Area, Aperio
RS2/25 0.38 0.12 1.46 (1.15, 1.85) 1 9.79 0.002
For analysis purposes, stroma area can be stratified into low and high Stroma Risk Groups. Specifically, we define low risk (stroma score ≤0) and high risk (stroma score >0) where stroma score=(stroma area−mean)/standard deviation. Kaplan-Meier Plots for Stage II and Stage III patients stratified by Stroma Risk Group, provided in FIGS. 22 and 23 respectively, clearly show separation between risk groups (Logrank p-value <0.01). Similarly, Kaplan-Meier Plots for Stage II and Stage III patients stratified by both Stroma Risk Group and Recurrence Score Risk Group, provided in FIGS. 24 and 25 respectively, show even greater separation between risk groups (Logrank p-value <0.01).
CONCLUSION These analyses show that stroma area is independently prognostic of disease recurrence in stage II and stage III patients and that RS, stromal area, and nodal status all provide important prognostic information in stage II and III colon cancer. The discovery that it is surface area of tumor-associated stroma that is most strongly associated with risk of recurrence, rather that proportional measurements of tumor regions, was an unexpected result of this study.
TABLE A
Gene Accession Reagt Sequence SEQ ID NO
A-Catenin NM_001903.1 FPr CGTTCCGATCCTCTATACTGCAT SEQ ID NO: 1
Probe ATGCCTACAGCACCCTGATGTCGCA SEQ ID NO: 2
RPr AGGTCCCTGTTGGCCTTATAGG SEQ ID NO: 3
ABCB1 NM_000927.2 FPr AAACACCACTGGAGCATTGA SEQ ID NO: 4
Probe CTCGCCAATGATGCTGCTCAAGTT SEQ ID NO: 5
RPr CAAGCCTGGAACCTATAGCC SEQ ID NO: 6
ABCC5 NM_005688.1 FPr TGCAGACTGTACCATGCTGA SEQ ID NO: 7
Probe CTGCACACGGTTCTAGGCTCCG SEQ ID NO: 8
RPr GGCCAGCACCATAATCCTAT SEQ ID NO: 9
ABCC6 NM_001171.2 FPr GGATGAACCTCGACCTGC SEQ ID NO: 10
Probe CCAGATAGCCTCGTCCGAGTGCTC SEQ ID NO: 11
RPr GAGCTGCACCGTCTCCAG SEQ ID NO: 12
ACP1 NM_004300.2 FPr GCTACCAAGTCCGTGCTGT SEQ ID NO: 13
Probe TGATCGACAAATGTTACCCAGACACACA SEQ ID NO: 14
RPr GAAAACTGCTTCTGCAATGG SEQ ID NO: 15
ADAM10 NM_001110.1 FPr CCCATCAACTTGTGCCAGTA SEQ ID NO: 16
Probe TGCCTACTCCACTGCACAGACCCT SEQ ID NO: 17
RPr GGTGATGGTTCGACCACTG SEQ ID NO: 18
ADAM17 NM_003183.3 FPr GAAGTGCCAGGAGGCGATTA SEQ ID NO: 19
Probe TGCTACTTGCAAAGGCGTGTCCTACTGC SEQ ID NO: 20
RPr CGGGCACTCACTGCTATTACC SEQ ID NO: 21
ADAMTS12 NM_030955.2 FPr GGAGAAGGGTGGAGTGCAG SEQ ID NO: 22
Probe CGCACAGTCAGAATCCATCTGGGT SEQ ID NO: 23
RPr CAGGGTCAGGTCTCTGGATG SEQ ID NO: 24
ADPRT NM_001618.2 FPr TTGACAACCTGCTGGACATC SEQ ID NO: 25
Probe CCCTGAGCAGACTGTAGGCCACCT SEQ ID NO: 26
RPr ATGGGATCCTTGCTGCTATC SEQ ID NO: 27
AGXT NM_000030.1 FPr CTTTTCCCTCCAGTGGCA SEQ ID NO: 28
Probe CTCCTGGAAACAGTCCACTTGGGC SEQ ID NO: 29
RPr ATTTGGAAGGCACTGGGTTT SEQ ID NO: 30
AKAP12 NM_005100.2 FPr TAGAGAGCCCCTGACAATCC SEQ ID NO: 31
Probe TGGCTCTAGCTCCTGATGAAGCCTC SEQ ID NO: 32
RPr GGTTGGTCTTGGAAAGAGGA SEQ ID NO: 33
AKT1 NM_005163.1 FPr CGCTTCTATGGCGCTGAGAT SEQ ID NO: 34
Probe CAGCCCTGGACTACCTGCACTCGG SEQ ID NO: 35
RPr TCCCGGTACACCACGTTCTT SEQ ID NO: 36
AKT2 NM_001626.2 FPr TCCTGCCACCCTTCAAACC SEQ ID NO: 37
Probe CAGGTCACGTCCGAGGTCGACACA SEQ ID NO: 38
RPr GGCGGTAAATTCATCATCGAA SEQ ID NO: 39
AKT3 NM_005465.1 FPr TTGTCTCTGCCTTGGACTATCTACA SEQ ID NO: 40
Probe TCACGGTACACAATCTTTCCGGA SEQ ID NO: 41
RPr CCAGCATTAGATTCTCCAACTTGA SEQ ID NO: 42
AL137428 AL137428.1 FPr CAAGAAGAGGCTCTACCCTGG SEQ ID NO: 43
Probe ACTGGGAATTTCCAAGGCCACCTT SEQ ID NO: 44
RPr AAATGAGCTCTGCGATCCTC SEQ ID NO: 45
ALCAM NM_001627.1 FPr GAGGAATATGGAATCCAAGGG SEQ ID NO: 46
Probe CCAGTTCCTGCCGTCTGCTCTTCT SEQ ID NO: 47
RPr GTGGCGGAGATCAAGAGG SEQ ID NO: 48
ALDH1A1 NM_000689.1 FPr GAAGGAGATAAGGAGGATGTTGACA SEQ ID NO: 49
Probe AGTGAAGGCCGCAAGACAGGCTTTTC SEQ ID NO: 50
RPr CGCCACGGAGATCCAATC SEQ ID NO: 51
ALDOA NM_000034.2 FPr GCCTGTACGTGCCAGCTC SEQ ID NO: 52
Probe TGCCAGAGCCTCAACTGTCTCTGC SEQ ID NO: 53
RPr TCATCGGAGCTTGATCTCG SEQ ID NO: 54
AMFR NM_001144.2 FPr GATGGTTCAGCTCTGCAAGGA SEQ ID NO: 55
Probe CGATTTGAATATCTTTCCTTCTCGCCCACC SEQ ID NO: 56
RPr TCGACCGTGGCTGCTCAT SEQ ID NO: 57
ANGPT2 NM_001147.1 FPr CCGTGAAAGCTGCTCTGTAA SEQ ID NO: 58
Probe AAGCTGACACAGCCCTCCCAAGTG SEQ ID NO: 59
RPr TTGCAGTGGGAAGAACAGTC SEQ ID NO: 60
ANTXR1 NM_032208.1 FPr CTCCAGGTGTACCTCCAACC SEQ ID NO: 61
Probe AGCCTTCTCCCACAGCTGCCTACA SEQ ID NO: 62
RPr GAGAAGGCTGGGAGACTCTG SEQ ID NO: 63
ANXA1 NM_000700.1 FPr GCCCCTATCCTACCTTCAATCC SEQ ID NO: 64
Probe TCCTCGGATGTCGCTGCCT SEQ ID NO: 65
RPr CCTTTAACCATTATGGCCTTATGC SEQ ID NO: 66
ANXA2 NM_004039.1 FPr CAAGACACTAAGGGCGACTACCA SEQ ID NO: 67
Probe CCACCACACAGGTACAGCAGCGCT SEQ ID NO: 68
RPr CGTGTCGGGCTTCAGTCAT SEQ ID NO: 69
ANXA5 NM_001154.2 FPr GCTCAAGCCTGGAAGATGAC SEQ ID NO: 70
Probe AGTACCCTGAAGTGTCCCCCACCA SEQ ID NO: 71
RPr AGAACCACCAACATCCGCT SEQ ID NO: 72
AP-1 (JUN NM_002228.2 FPr GACTGCAAAGATGGAAACGA SEQ ID NO: 73
official)
Probe CTATGACGATGCCCTCAACGCCTC SEQ ID NO: 74
RPr TAGCCATAAGGTCCGCTCTC SEQ ID NO: 75
APC NM_000038.1 FPr GGACAGCAGGAATGTGTTTC SEQ ID NO: 76
Probe CATTGGCTCCCCGTGACCTGTA SEQ ID NO: 77
RPr ACCCACTCGATTTGTTTCTG SEQ ID NO: 78
APEX-1 NM_001641.2 FPr GATGAAGCCTTTCGCAAGTT SEQ ID NO: 79
Probe CTTTCGGGAAGCCAGGCCCTT SEQ ID NO: 80
RPr AGGTCTCCACACAGCACAAG SEQ ID NO: 81
APG-1 NM_014278.2 FPr ACCCCGGCCTGTATATCAT SEQ ID NO: 82
Probe CCAATGGCTCGAGTTCTTGATCCC SEQ ID NO: 83
RPr CTATCTGGCTCTTTGCTGCAT SEQ ID NO: 84
APN NM_001150.1 FPr CCACCTTGGACCAAAGTAAAGC SEQ ID NO: 85
(ANPEP
official)
Probe CTCCCCAACACGCTGAAACCCG SEQ ID NO: 86
RPr TCTCAGCGTCACCTGGTAGGA SEQ ID NO: 87
APOC1 NM_001645.3 FPr GGAAACACACTGGAGGACAAG SEQ ID NO: 88
Probe TCATCAGCCGCATCAAACAGAGTG SEQ ID NO: 89
RPr CGCATCTTGGCAGAAAGTT SEQ ID NO: 90
AREG NM_001657.1 FPr TGTGAGTGAAATGCCTTCTAGTAGTGA SEQ ID NO: 91
Probe CCGTCCTCGGGAGCCGACTATGA SEQ ID NO: 92
RPr TTGTGGTTCGTTATCATACTCTTCTGA SEQ ID NO: 93
ARG NM_005158.2 FPr CGCAGTGCAGCTGAGTATCTG SEQ ID NO: 94
Probe TCGCACCAGGAAGCTGCCATTGA SEQ ID NO: 95
RPr TGCCCAGGGCTACTCTCACTT SEQ ID NO: 96
ARHF NM_019034.2 FPr ACTGGCCCACTTAGTCCTCA SEQ ID NO: 97
Probe CTCCCAACCTGCTGTCCCTCAAG SEQ ID NO: 98
RPr CTGAACTCCACAGGCTGGTA SEQ ID NO: 99
ATOH1 NM_005172.1 FPr GCAGCCACCTGCAACTTT SEQ ID NO: 100
Probe CAGGCGAGAGAGCATCCCGTCTAC SEQ ID NO: 101
RPr TCCAGGAGGGACAGCTCA SEQ ID NO: 102
ATP5A1 NM_004046.3 FPr GATGCTGCCACTCAACAACT SEQ ID NO: 103
Probe AGTTAGACGCACGCCACGACTCAA SEQ ID NO: 104
RPr TGTCCTTGCTTCAGCAACTC SEQ ID NO: 105
ATP5E NM_006886.2 FPr CCGCTTTCGCTACAGCAT SEQ ID NO: 106
Probe TCCAGCCTGTCTCCAGTAGGCCAC SEQ ID NO: 107
RPr TGGGAGTATCGGATGTAGCTG SEQ ID NO: 108
AURKB NM_004217.1 FPr AGCTGCAGAAGAGCTGCACAT SEQ ID NO: 109
Probe TGACGAGCAGCGAACAGCCACG SEQ ID NO: 110
RPr GCATCTGCCAACTCCTCCAT SEQ ID NO: 111
Axin 2 NM_004655.2 FPr GGCTATGTCTTTGCACCAGC SEQ ID NO: 112
Probe ACCAGCGCCAACGACAGTGAGATA SEQ ID NO: 113
RPr ATCCGTCAGCGCATCACT SEQ ID NO: 114
axin1 NM_003502.2 FPr CCGTGTGACAGCATCGTT SEQ ID NO: 115
Probe CGTACTACTTCTGCGGGGAACCCA SEQ ID NO: 116
RPr CTCACCAGGGTGCGGTAG SEQ ID NO: 117
B-Catenin NM_001904.1 FPr GGCTCTTGTGCGTACTGTCCTT SEQ ID NO: 118
Probe AGGCTCAGTGATGTCTTCCCTGTCACCAG SEQ ID NO: 119
RPr TCAGATGACGAAGAGCACAGATG SEQ ID NO: 120
BAD NM_032989.1 FPr GGGTCAGGTGCCTCGAGAT SEQ ID NO: 121
Probe TGGGCCCAGAGCATGTTCCAGATC SEQ ID NO: 122
RPr CTGCTCACTCGGCTCAAACTC SEQ ID NO: 123
BAG1 NM_004323.2 FPr CGTTGTCAGCACTTGGAATACAA SEQ ID NO: 124
Probe CCCAATTAACATGACCCGGCAACCAT SEQ ID NO: 125
RPr GTTCAACCTCTTCCTGTGGACTGT SEQ ID NO: 126
BAG2 NM_004282.2 FPr CTAGGGGCAAAAAGCATGA SEQ ID NO: 127
Probe TTCCATGCCAGACAGGAAAAAGCA SEQ ID NO: 128
RPr CTAAATGCCCAAGGTGACTG SEQ ID NO: 129
BAG3 NM_004281.2 FPr GAAAGTAAGCCAGGCCCAGTT SEQ ID NO: 130
Probe CAGAACTCCCTCCTGGACACATCCCAA SEQ ID NO: 131
RPr ACCTCTTTGCGGATCACTTGA SEQ ID NO: 132
Bak NM_001188.1 FPr CCATTCCCACCATTCTACCT SEQ ID NO: 133
Probe ACACCCCAGACGTCCTGGCCT SEQ ID NO: 134
RPr GGGAACATAGACCCACCAAT SEQ ID NO: 135
Bax NM_004324.1 FPr CCGCCGTGGACACAGACT SEQ ID NO: 136
Probe TGCCACTCGGAAAAAGACCTCTCGG SEQ ID NO: 137
RPr TTGCCGTCAGAAAACATGTCA SEQ ID NO: 138
BBC3 NM_014417.1 FPr CCTGGAGGGTCCTGTACAAT SEQ ID NO: 139
Probe CATCATGGGACTCCTGCCCTTACC SEQ ID NO: 140
RPr CTAATTGGGCTCCATCTCG SEQ ID NO: 141
BCAS1 NM_003657.1 FPr CCCCGAGACAACGGAGATAA SEQ ID NO: 142
Probe CTTTCCGTTGGCATCCGCAACAG SEQ ID NO: 143
RPr CTCGGGTTTGGCCTCTTTC SEQ ID NO: 144
Bcl2 NM_000633.1 FPr CAGATGGACCTAGTACCCACTGAGA SEQ ID NO: 145
Probe TTCCACGCCGAAGGACAGCGAT SEQ ID NO: 146
RPr CCTATGATTTAAGGGCATTTTTCC SEQ ID NO: 147
BCL2L10 NM_020396.2 FPr GCTGGGATGGCTTTTGTCA SEQ ID NO: 148
Probe TCTTCAGGACCCCCTTTCCACTGGC SEQ ID NO: 149
RPr GCCTGGACCAGCTGTTTTCTC SEQ ID NO: 150
BCL2L11 NM_138621.1 FPr AATTACCAAGCAGCCGAAGA SEQ ID NO: 151
Probe CCACCCACGAATGGTTATCTTACGACTG SEQ ID NO: 152
RPr CAGGCGGACAATGTAACGTA SEQ ID NO: 153
BCL2L12 NM_138639.1 FPr AACCCACCCCTGTCTTGG SEQ ID NO: 154
Probe TCCGGGTAGCTCTCAAACTCGAGG SEQ ID NO: 155
RPr CTCAGCTGACGGGAAAGG SEQ ID NO: 156
Bclx NM_001191.1 FPr CTTTTGTGGAACTCTATGGGAACA SEQ ID NO: 157
Probe TTCGGCTCTCGGCTGCTGCA SEQ ID NO: 158
RPr CAGCGGTTGAAGCGTTCCT SEQ ID NO: 159
BCRP NM_004827.1 FPr TGTACTGGCGAAGAATATTTGGTAAA SEQ ID NO: 160
Probe CAGGGCATCGATCTCTCACCCTGG SEQ ID NO: 161
RPr GCCACGTGATTCTTCCACAA SEQ ID NO: 162
BFGF NM_007083.1 FPr CCAGGAAGAATGCTTAAGATGTGA SEQ ID NO: 163
Probe TTCGCCAGGTCATTGAGATCCATCCA SEQ ID NO: 164
RPr TGGTGATGGGAGTTGTATTTTCAG SEQ ID NO: 165
BGN NM_001711.3 FPr GAGCTCCGCAAGGATGAC SEQ ID NO: 166
Probe CAAGGGTCTCCAGCACCTCTACGC SEQ ID NO: 167
RPr CTTGTTGTTCACCAGGACGA SEQ ID NO: 168
BID NM_001196.2 FPr GGACTGTGAGGTCAACAACG SEQ ID NO: 169
Probe TGTGATGCACTCATCCCTGAGGCT SEQ ID NO: 170
RPr GGAAGCCAAACACCAGTAGG SEQ ID NO: 171
BIK NM_001197.3 FPr ATTCCTATGGCTCTGCAATTGTC SEQ ID NO: 172
Probe CCGGTTAACTGTGGCCTGTGCCC SEQ ID NO: 173
RPr GGCAGGAGTGAATGGCTCTTC SEQ ID NO: 174
BIN1 NM_004305.1 FPr CCTGCAAAAGGGAACAAGAG SEQ ID NO: 175
Probe CTTCGCCTCCAGATGGCTCCC SEQ ID NO: 176
RPr CGTGGTTGACTCTGATCTCG SEQ ID NO: 177
BLMH NM_000386.2 FPr GGTTGCTGCCTCCATCAAAG SEQ ID NO: 178
Probe ACATCACAGCCAAACCACACAGCCTCT SEQ ID NO: 179
RPr CCAGCTTGCTATTGAAGTGTTTTC SEQ ID NO: 180
BMP2 NM_001200.1 FPr ATGTGGACGCTCTTTCAATG SEQ ID NO: 181
Probe ACCGCAGTCCGTCTAAGAAGCACG SEQ ID NO: 182
RPr ACCATGGTCGACCTTTAGGA SEQ ID NO: 183
BMP4 NM_001202.2 FPr GGGCTAGCCATTGAGGTG SEQ ID NO: 184
Probe CTCACCTCCATCAGACTCGGACCC SEQ ID NO: 185
RPr GCTAATCCTGACATGCTGGC SEQ ID NO: 186
BMP7 NM_001719.1 FPr TCGTGGAACATGACAAGGAATT SEQ ID NO: 187
Probe TTCCACCCACGCTACCACCATCG SEQ ID NO: 188
RPr TGGAAAGATCAAACCGGAACTC SEQ ID NO: 189
BMPR1A NM_004329.2 FPr TTGGTTCAGCGAACTATTGC SEQ ID NO: 190
Probe CAAACAGATTCAGATGGTCCGGCA SEQ ID NO: 191
RPr TCTCCATATCGGCCTTTACC SEQ ID NO: 192
BRAF NM_004333.1 FPr CCTTCCGACCAGCAGATGAA SEQ ID NO: 193
Probe CAATTTGGGCAACGAGACCGATCCT SEQ ID NO: 194
RPr TTTATATGCACATTGGGAGCTGAT SEQ ID NO: 195
BRCA1 NM_007295.1 FPr TCAGGGGGCTAGAAATCTGT SEQ ID NO: 196
Probe CTATGGGCCCTTCACCAACATGC SEQ ID NO: 197
RPr CCATTCCAGTTGATCTGTGG SEQ ID NO: 198
BRCA2 NM_000059.1 FPr AGTTCGTGCTTTGCAAGATG SEQ ID NO: 199
Probe CATTCTTCACTGCTTCATAAAGCTCTGCA SEQ ID NO: 200
RPr AAGGTAAGCTGGGTCTGCTG SEQ ID NO: 201
BRK NM_005975.1 FPr GTGCAGGAAAGGTTCACAAA SEQ ID NO: 202
Probe AGTGTCTGCGTCCAATACACGCGT SEQ ID NO: 203
RPr GCACACACGATGGAGTAAGG SEQ ID NO: 204
BTF3 NM_001207.2 FPr CAGTGATCCACTTTAACAACCCTAAAG SEQ ID NO: 205
Probe TCAGGCATCTCTGGCAGCGAACAC SEQ ID NO: 206
RPr AGCATGGCCTGTAATGGTGAA SEQ ID NO: 207
BTRC NM_033637.2 FPr GTTGGGACACAGTTGGTCTG SEQ ID NO: 208
Probe CAGTCGGCCCAGGACGGTCTACT SEQ ID NO: 209
RPr TGAAGCAGTCAGTTGTGCTG SEQ ID NO: 210
BUB1 NM_004336.1 FPr CCGAGGTTAATCCAGCACGTA SEQ ID NO: 211
Probe TGCTGGGAGCCTACACTTGGCCC SEQ ID NO: 212
RPr AAGACATGGCGCTCTCAGTTC SEQ ID NO: 213
BUB1B NM_001211.3 FPr TCAACAGAAGGCTGAACCACTAGA SEQ ID NO: 214
Probe TACAGTCCCAGCACCGACAATTCC SEQ ID NO: 215
RPr CAACAGAGTTTGCCGAGACACT SEQ ID NO: 216
BUB3 NM_004725.1 FPr CTGAAGCAGATGGTTCATCATT SEQ ID NO: 217
Probe CCTCGCTTTGTTTAACAGCCCAGG SEQ ID NO: 218
RPr GCTGATTCCCAAGAGTCTAACC SEQ ID NO: 219
c-abl NM_005157.2 FPr CCATCTCGCTGAGATACGAA SEQ ID NO: 220
Probe GGGAGGGTGTACCATTACAGGATCAACA SEQ ID NO: 221
RPr AGACGTAGAGCTTGCCATCA SEQ ID NO: 222
c-kit NM_000222.1 FPr GAGGCAACTGCTTATGGCTTAATTA SEQ ID NO: 223
Probe TTACAGCGACAGTCATGGCCGCAT SEQ ID NO: 224
RPr GGCACTCGGCTTGAGCAT SEQ ID NO: 225
c-myb NM_005375.1 FPr AACTCAGACTTGGAAATGCCTTCT SEQ ID NO: 226
(MYB
official)
Probe AACTTCCACCCCCCTCATTGGTCACA SEQ ID NO: 227
RPr CTGGTCTCTATGAAATGGTGTTGTAAC SEQ ID NO: 228
c-Src NM_005417.3 FPr TGAGGAGTGGTATTTTGGCAAGA SEQ ID NO: 229
Probe AACCGCTCTGACTCCCGTCTGGTG SEQ ID NO: 230
RPr CTCTCGGGTTCTCTGCATTGA SEQ ID NO: 231
C20 orf1 NM_012112.2 FPr TCAGCTGTGAGCTGCGGATA SEQ ID NO: 232
Probe CAGGTCCCATTGCCGGGCG SEQ ID NO: 233
RPr ACGGTCCTAGGTTTGAGGTTAAGA SEQ ID NO: 234
C20ORF126 NM_030815.2 FPr CCAGCACTGCTCGTTACTGT SEQ ID NO: 235
Probe TGGGACCTCAGACCACTGAAGGC SEQ ID NO: 236
RPr TTGACTTCACGGCAGTTCATA SEQ ID NO: 237
C8orf4 NM_020130.2 FPr CTACGAGTCAGCCCATCCAT SEQ ID NO: 238
Probe CATGGCTACCACTTCGACACAGCC SEQ ID NO: 239
RPr TGCCCACGGCTTTCTTAC SEQ ID NO: 240
CA9 NM_001216.1 FPr ATCCTAGCCCTGGTTTTTGG SEQ ID NO: 241
Probe TTTGCTGTCACCAGCGTCGC SEQ ID NO: 242
RPr CTGCCTTCTCATCTGCACAA SEQ ID NO: 243
Cad17 NM_004063.2 FPr GAAGGCCAAGAACCGAGTCA SEQ ID NO: 244
Probe TTATATTCCAGTTTAAGGCCAATCCTC SEQ ID NO: 245
RPr TCCCCAGTTAGTTCAAAAGTCACA SEQ ID NO: 246
CALD1 NM_004342.4 FPr CACTAAGGTTTGAGACAGTTCCAGAA SEQ ID NO: 247
Probe AACCCAAGCTCAAGACGCAGGACGAG SEQ ID NO: 248
RPr GCGAATTAGCCCTCTACAACTGA SEQ ID NO: 249
CAPG NM_001747.1 FPr GATTGTCACTGATGGGGAGG SEQ ID NO: 250
Probe AGGACCTGGATCATCTCAGCAGGC SEQ ID NO: 251
RPr CCTTCAGAGCAGGCTTGG SEQ ID NO: 252
CAPN1 NM_005186.2 FPr CAAGAAGCTGTACGAGCTCATCA SEQ ID NO: 253
Probe CCGCTACTCGGAGCCCGACCTG SEQ ID NO: 254
RPr GCAGCAAACGAAATTGTCAAAG SEQ ID NO: 255
CASP8 NM_033357.1 FPr CCTCGGGGATACTGTCTGAT SEQ ID NO: 256
Probe CAACAATCACAATTTTGCAAAAGCACG SEQ ID NO: 257
RPr GAAGTTTGGGCACTTTCTCC SEQ ID NO: 258
CASP9 NM_001229.2 FPr TGAATGCCGTGGATTGCA SEQ ID NO: 259
Probe CACTAGCCCTGGACCAGCCACTGCT SEQ ID NO: 260
RPr ACAGGGATCATGGGACACAAG SEQ ID NO: 261
CAT NM_001752.1 FPr ATCCATTCGATCTCACCAAGGT SEQ ID NO: 262
Probe TGGCCTCACAAGGACTACCCTCTCATCC SEQ ID NO: 263
RPr TCCGGTTTAAGACCAGTTTACCA SEQ ID NO: 264
CAV1 NM_001753.3 FPr GTGGCTCAACATTGTGTTCC SEQ ID NO: 265
Probe ATTTCAGCTGATCAGTGGGCCTCC SEQ ID NO: 266
RPr CAATGGCCTCCATTTTACAG SEQ ID NO: 267
CBL NM_005188.1 FPr TCATTCACAAACCTGGCAGT SEQ ID NO: 268
Probe TTCCGGCTGAGCTGTACTCGTCTG SEQ ID NO: 269
RPr CATACCCAATAGCCCACTGA SEQ ID NO: 270
CCL20 NM_004591.1 FPr CCATGTGCTGTACCAAGAGTTTG SEQ ID NO: 271
Probe CAGCACTGACATCAAAGCAGCCAGGA SEQ ID NO: 272
RPr CGCCGCAGAGGTGGAGTA SEQ ID NO: 273
CCL3 NM_002983.1 FPr AGCAGACAGTGGTCAGTCCTT SEQ ID NO: 274
Probe CTCTGCTGACACTCGAGCCCACAT SEQ ID NO: 275
RPr CTGCATGATTCTGAGCAGGT SEQ ID NO: 276
CCNA2 NM_001237.2 FPr CCATACCTCAAGTATTTGCCATCAG SEQ ID NO: 277
Probe ATTGCTGGAGCTGCCTTTCATTTAGCACT SEQ ID NO: 278
RPr AGCTTTGTCCCGTGACTGTGTA SEQ ID NO: 279
CCNB1 NM_031966.1 FPr TTCAGGTTGTTGCAGGAGAC SEQ ID NO: 280
Probe TGTCTCCATTATTGATCGGTTCATGCA SEQ ID NO: 281
RPr CATCTTCTTGGGCACACAAT SEQ ID NO: 282
CCNB2 NM_004701.2 FPr AGGCTTCTGCAGGAGACTCTGT SEQ ID NO: 283
Probe TCGATCCATAATGCCAACGCACATG SEQ ID NO: 284
RPr GGGAAACTGGCTGAACCTGTAA SEQ ID NO: 285
CCND1 NM_001758.1 FPr GCATGTTCGTGGCCTCTAAGA SEQ ID NO: 286
Probe AAGGAGACCATCCCCCTGACGGC SEQ ID NO: 287
RPr CGGTGTAGATGCACAGCTTCTC SEQ ID NO: 288
CCND3 NM_001760.2 FPr CCTCTGTGCTACAGATTATACCTTTGC SEQ ID NO: 289
Probe TACCCGCCATCCATGATCGCCA SEQ ID NO: 290
RPr CACTGCAGCCCCAATGCT SEQ ID NO: 291
CCNE1 NM_001238.1 FPr AAAGAAGATGATGACCGGGTTTAC SEQ ID NO: 292
Probe CAAACTCAACGTGCAAGCCTCGGA SEQ ID NO: 293
RPr GAGCCTCTGGATGGTGCAAT SEQ ID NO: 294
CCNE2 NM_057749.1 FPr GGTCACCAAGAAACATCAGTATGAA SEQ ID NO: 295
Probe CCCAGATAATACAGGTGGCCAACAATTC SEQ ID NO: 296
CT
RPr TTCAATGATAATGCAAGGACTGATC SEQ ID NO: 297
CCNE2 NM_057749var1 FPr ATGCTGTGGCTCCTTCCTAACT SEQ ID NO: 298
variant 1
Probe TACCAAGCAACCTACATGTCAAGAAAGC SEQ ID NO: 299
CC
RPr ACCCAAATTGTGATATACAAAAAGGTT SEQ ID NO: 300
CCR7 NM_001838.2 FPr GGATGACATGCACTCAGCTC SEQ ID NO: 301
Probe CTCCCATCCCAGTGGAGCCAA SEQ ID NO: 302
RPr CCTGACATTTCCCTTGTCCT SEQ ID NO: 303
CD105 NM_000118.1 FPr GCAGGTGTCAGCAAGTATGATCAG SEQ ID NO: 304
Probe CGACAGGATATTGACCACCGCCTCATT SEQ ID NO: 305
RPr TTTTTCCGCTGTGGTGATGA SEQ ID NO: 306
CD134 NM_003327.1 FPr GCCCAGTGCGGAGAACAG SEQ ID NO: 307
(TNFRSF4
official)
Probe CCAGCTTGATTCTCGTCTCTGCACTTAAGC SEQ ID NO: 308
RPr AATCACACGCACCTGGAGAAC SEQ ID NO: 309
CD18 NM_000211.1 FPr CGTCAGGACCCACCATGTCT SEQ ID NO: 310
Probe CGCGGCCGAGACATGGCTTG SEQ ID NO: 311
RPr GGTTAATTGGTGACATCCTCAAGA SEQ ID NO: 312
CD24 NM_013230.1 FPr TCCAACTAATGCCACCACCAA SEQ ID NO: 313
Probe CTGTTGACTGCAGGGCACCACCA SEQ ID NO: 314
RPr GAGAGAGTGAGACCACGAAGAGACT SEQ ID NO: 315
CD28 NM_006139.1 FPr TGTGAAAGGGAAACACCTTTG SEQ ID NO: 316
Probe CCAAGTCCCCTATTTCCCGGACCT SEQ ID NO: 317
RPr AGCACCCAAAAGGGCTTAG SEQ ID NO: 318
CD31 NM_000442.1 FPr TGTATTTCAAGACCTCTGTGCACTT SEQ ID NO: 319
Probe TTTATGAACCTGCCCTGCTCCCACA SEQ ID NO: 320
RPr TTAGCCTGAGGAATTGCTGTGTT SEQ ID NO: 321
CD34 NM_001773.1 FPr CCACTGCACACACCTCAGA SEQ ID NO: 322
Probe CTGTTCTTGGGGCCCTACACCTTG SEQ ID NO: 323
RPr CAGGAGTTTACCTGCCCCT SEQ ID NO: 324
CD3z NM_000734.1 FPr AGATGAAGTGGAAGGCGCTT SEQ ID NO: 325
Probe CACCGCGGCCATCCTGCA SEQ ID NO: 326
RPr TGCCTCTGTAATCGGCAACTG SEQ ID NO: 327
CD44E X55150 FPr ATCACCGACAGCACAGACA SEQ ID NO: 328
Probe CCCTGCTACCAATATGGACTCCAGTCA SEQ ID NO: 329
RPr ACCTGTGTTTGGATTTGCAG SEQ ID NO: 330
CD44s M59040.1 FPr GACGAAGACAGTCCCTGGAT SEQ ID NO: 331
Probe CACCGACAGCACAGACAGAATCCC SEQ ID NO: 332
RPr ACTGGGGTGGAATGTGTCTT SEQ ID NO: 333
CD44v3 AJ251595v3 FPr CACACAAAACAGAACCAGGACT SEQ ID NO: 334
Probe ACCCAGTGGAACCCAAGCCATTC SEQ ID NO: 335
RPr CTGAAGTAGCACTTCCGGATT SEQ ID NO: 336
CD44v6 AJ251595v6 FPr CTCATACCAGCCATCCAATG SEQ ID NO: 337
Probe CACCAAGCCCAGAGGACAGTTCCT SEQ ID NO: 338
RPr TTGGGTTGAAGAAATCAGTCC SEQ ID NO: 339
CD68 NM_001251.1 FPr TGGTTCCCAGCCCTGTGT SEQ ID NO: 340
Probe CTCCAAGCCCAGATTCAGATTCGAGTCA SEQ ID NO: 341
RPr CTCCTCCACCCTGGGTTGT SEQ ID NO: 342
CD80 NM_005191.2 FPr TTCAGTTGCTTTGCAGGAAG SEQ ID NO: 343
Probe TTCTGTGCCCACCATATTCCTCTAGACA SEQ ID NO: 344
RPr TTGATCAAGGTCACCAGAGC SEQ ID NO: 345
CD82 NM_002231.2 FPr GTGCAGGCTCAGGTGAAGTG SEQ ID NO: 346
Probe TCAGCTTCTACAACTGGACAGACAACGC SEQ ID NO: 347
TG
RPr GACCTCAGGGCGATTCATGA SEQ ID NO: 348
CD8A NM_171827.1 FPr AGGGTGAGGTGCTTGAGTCT SEQ ID NO: 349
Probe CCAACGGCAAGGGAACAAGTACTTCT SEQ ID NO: 350
RPr GGGCACAGTATCCCAGGTA SEQ ID NO: 351
CD9 NM_001769.1 FPr GGGCGTGGAACAGTTTATCT SEQ ID NO: 352
Probe AGACATCTGCCCCAAGAAGGACGT SEQ ID NO: 353
RPr CACGGTGAAGGTTTCGAGT SEQ ID NO: 354
CDC2 NM_001786.2 FPr GAGAGCGACGCGGTTGTT SEQ ID NO: 355
Probe TAGCTGCCGCTGCGGCCG SEQ ID NO: 356
RPr GTATGGTAGATCCCGGCTTATTATTC SEQ ID NO: 357
CDC20 NM_001255.1 FPr TGGATTGGAGTTCTGGGAATG SEQ ID NO: 358
Probe ACTGGCCGTGGCACTGGACAACA SEQ ID NO: 359
RPr GCTTGCACTCCACAGGTACACA SEQ ID NO: 360
cdc25A NM_001789.1 FPr TCTTGCTGGCTACGCCTCTT SEQ ID NO: 361
Probe TGTCCCTGTTAGACGTCCTCCGTCCATA SEQ ID NO: 362
RPr CTGCATTGTGGCACAGTTCTG SEQ ID NO: 363
CDC25B NM_021874.1 FPr AAACGAGCAGTTTGCCATCAG SEQ ID NO: 364
Probe CCTCACCGGCATAGACTGGAAGCG SEQ ID NO: 365
RPr GTTGGTGATGTTCCGAAGCA SEQ ID NO: 366
CDC25C NM_001790.2 FPr GGTGAGCAGAAGTGGCCTAT SEQ ID NO: 367
Probe CTCCCCGTCGATGCCAGAGAACT SEQ ID NO: 368
RPr CTTCAGTCTTGGCCTGTTCA SEQ ID NO: 369
CDC4 NM_018315.2 FPr GCAGTCCGCTGTGTTCAA SEQ ID NO: 370
Probe TGCTCCACTAACAACCCTCCTGCC SEQ ID NO: 371
RPr GGATCCCACACCTTTACCATAA SEQ ID NO: 372
CDC42 NM_001791.2 FPr TCCAGAGACTGCTGAAAA SEQ ID NO: 373
Probe CCCGTGACCTGAAGGCTGTCAAG SEQ ID NO: 374
RPr TGTGTAAGTGCAGAACAC SEQ ID NO: 375
CDC42BPA NM_003607.2 FPr GAGCTGAAAGACGCACACTG SEQ ID NO: 376
Probe AATTCCTGCATGGCCAGTTTCCTC SEQ ID NO: 377
RPr GCCGCTCATTGATCTCCA SEQ ID NO: 378
CDC6 NM_001254.2 FPr GCAACACTCCCCATTTACCTC SEQ ID NO: 379
Probe TTGTTCTCCACCAAAGCAAGGCAA SEQ ID NO: 380
RPr TGAGGGGGACCATTCTCTTT SEQ ID NO: 381
CDCA7 v2 NM_145810.1 FPr AAGACCGTGGATGGCTACAT SEQ ID NO: 382
Probe ATGAAGATGACCTGCCCAGAAGCC SEQ ID NO: 383
RPr AGGGTCACGGATGATCTGG SEQ ID NO: 384
CDH1 NM_004360.2 FPr TGAGTGTCCCCCGGTATCTTC SEQ ID NO: 385
Probe TGCCAATCCCGATGAAATTGGAAATTT SEQ ID NO: 386
RPr CAGCCGCTTTCAGATTTTCAT SEQ ID NO: 387
CDH11 NM_001797.2 FPr GTCGGCAGAAGCAGGACT SEQ ID NO: 388
Probe CCTTCTGCCCATAGTGATCAGCGA SEQ ID NO: 389
RPr CTACTCATGGGCGGGATG SEQ ID NO: 390
CDH3 NM_001793.3 FPr ACCCATGTACCGTCCTCG SEQ ID NO: 391
Probe CCAACCCAGATGAAATCGGCAACT SEQ ID NO: 392
RPr CCGCCTTCAGGTTCTCAAT SEQ ID NO: 393
CDK2 NM_001798.2 FPr AATGCTGCACTACGACCCTA SEQ ID NO: 394
Probe CCTTGGCCGAAATCCGCTTGT SEQ ID NO: 395
RPr TTGGTCACATCCTGGAAGAA SEQ ID NO: 396
CDX1 NM_001804.1 FPr AGCAACACCAGCCTCCTG SEQ ID NO: 397
Probe CACCTCCTCTCCAATGCCTGTGAA SEQ ID NO: 398
RPr GGGCTATGGCAGAAACTCCT SEQ ID NO: 399
Cdx2 NM_001265.2 FPr GGGCAGGCAAGGTTTACA SEQ ID NO: 400
Probe ATCTTAGCTGCCTTTGGCTTCCGC SEQ ID NO: 401
RPr GTCTTTGGTCAGTCCAGCTTTC SEQ ID NO: 402
CEACAM1 NM_001712.2 FPr ACTTGCCTGTTCAGAGCACTCA SEQ ID NO: 403
Probe TCCTTCCCACCCCCAGTCCTGTC SEQ ID NO: 404
RPr TGGCAAATCCGAATTAGAGTGA SEQ ID NO: 405
CEACAM6 NM_002483.2 FPr CACAGCCTCACTTCTAACCTTCTG SEQ ID NO: 406
Probe ACCCACCCACCACTGCCAAGCTC SEQ ID NO: 407
RPr TTGAATGGCGTGGATTCAATAG SEQ ID NO: 408
CEBPB NM_005194.2 FPr GCAACCCACGTGTAACTGTC SEQ ID NO: 409
Probe CCGGGCCCTGAGTAATCGCTTAA SEQ ID NO: 410
RPr ACAAGCCCGTAGGAACATCT SEQ ID NO: 411
CEGP1 NM_020974.1 FPr TGACAATCAGCACACCTGCAT SEQ ID NO: 412
Probe CAGGCCCTCTTCCGAGCGGT SEQ ID NO: 413
RPr TGTGACTACAGCCGTGATCCTTA SEQ ID NO: 414
CENPA NM_001809.2 FPr TAAATTCACTCGTGGTGTGGA SEQ ID NO: 415
Probe CTTCAATTGGCAAGCCCAGGC SEQ ID NO: 416
RPr GCCTCTTGTAGGGCCAATAG SEQ ID NO: 417
CENPE NM_001813.1 FPr GGATGCTGGTGACCTCTTCT SEQ ID NO: 418
Probe TCCCTCACGTTGCAACAGGAATTAA SEQ ID NO: 419
RPr GCCAAGGCACCAAGTAACTC SEQ ID NO: 420
CENPF NM_016343.2 FPr CTCCCGTCAACAGCGTTC SEQ ID NO: 421
Probe ACACTGGACCAGGAGTGCATCCAG SEQ ID NO: 422
RPr GGGTGAGTCTGGCCTTCA SEQ ID NO: 423
CES2 NM_003869.4 FPr ACTTTGCGAGAAATGGGAAC SEQ ID NO: 424
Probe AGTGTGGCAGACCCTCGCCATT SEQ ID NO: 425
RPr CAGGTATTGCTCCTCCTGGT SEQ ID NO: 426
CGA NM_001275.2 FPr CTGAAGGAGCTCCAAGACCT SEQ ID NO: 427
(CHGA
official)
Probe TGCTGATGTGCCCTCTCCTTGG SEQ ID NO: 428
RPr CAAAACCGCTGTGTTTCTTC SEQ ID NO: 429
CGB NM_000737.2 FPr CCACCATAGGCAGAGGCA SEQ ID NO: 430
Probe ACACCCTACTCCCTGTGCCTCCAG SEQ ID NO: 431
RPr AGTCGTCGAGTGCTAGGGAC SEQ ID NO: 432
CHAF1B NM_005441.1 FPr GAGGCCAGTGGTGGAAACAG SEQ ID NO: 433
Probe AGCTGATGAGTCTGCCCTACCGCCTG SEQ ID NO: 434
RPr TCCGAGGCCACAGCAAAC SEQ ID NO: 435
CHD2 NM_001271.1 FPr CTCTGTGCGAGGCTGTCA SEQ ID NO: 436
Probe ACCCATCTCGGGATCCCTGATACC SEQ ID NO: 437
RPr GGTAAGGACTGTGGGCTGG SEQ ID NO: 438
CHFR NM_018223.1 FPr AAGGAAGTGGTCCCTCTGTG SEQ ID NO: 439
Probe TGAAGTCTCCAGCTTTGCCTCAGC SEQ ID NO: 440
RPr GACGCAGTCTTTCTGTCTGG SEQ ID NO: 441
Chk1 NM_001274.1 FPr GATAAATTGGTACAAGGGATCAGCTT SEQ ID NO: 442
Probe CCAGCCCACATGTCCTGATCATATGC SEQ ID NO: 443
RPr GGGTGCCAAGTAACTGACTATTCA SEQ ID NO: 444
Chk2 NM_007194.1 FPr ATGTGGAACCCCCACCTACTT SEQ ID NO: 445
Probe AGTCCCAACAGAAACAAGAACTTCAGGCG SEQ ID NO: 446
RPr CAGTCCACAGCACGGTTATACC SEQ ID NO: 447
CIAP1 NM_001166.2 FPr TGCCTGTGGTGGGAAGCT SEQ ID NO: 448
Probe TGACATAGCATCATCCTTTGGTTCCCAGTT SEQ ID NO: 449
RPr GGAAAATGCCTCCGGTGTT SEQ ID NO: 450
cIAP2 NM_001165.2 FPr GGATATTTCCGTGGCTCTTATTCA SEQ ID NO: 451
Probe TCTCCATCAAATCCTGTAAACTCCAGAG SEQ ID NO: 452
CA
RPr CTTCTCATCAAGGCAGAAAAATCTT SEQ ID NO: 453
CKS1B NM_001826.1 FPr GGTCCCTAAAACCCATCTGA SEQ ID NO: 454
Probe TGAACGCCAAGATTCCTCCATTCA SEQ ID NO: 455
RPr TAATGGACCCATCCCTGACT SEQ ID NO: 456
CKS2 NM_001827.1 FPr GGCTGGACGTGGTTTTGTCT SEQ ID NO: 457
Probe CTGCGCCCGCTCTTCGCG SEQ ID NO: 458
RPr CGCTGCAGAAAATGAAACGA SEQ ID NO: 459
Claudin 4 NM_001305.2 FPr GGCTGCTTTGCTGCAACTG SEQ ID NO: 460
Probe CGCACAGACAAGCCTTACTCCGCC SEQ ID NO: 461
RPr CAGAGCGGGCAGCAGAATA SEQ ID NO: 462
CLDN1 NM_021101.3 FPr TCTGGGAGGTGCCCTACTT SEQ ID NO: 463
Probe TGTTCCTGTCCCCGAAAAACAACC SEQ ID NO: 464
RPr TGGATAGGGCCTTGGTGTT SEQ ID NO: 465
CLDN7 NM_001307.3 FPr GGTCTGCCCTAGTCATCCTG SEQ ID NO: 466
Probe TGCACTGCTCTCCTGTTCCTGTCC SEQ ID NO: 467
RPr GTACCCAGCCTTGCTCTCAT SEQ ID NO: 468
CLIC1 NM_001288.3 FPr CGGTACTTGAGCAATGCCTA SEQ ID NO: 469
Probe CGGGAAGAATTCGCTTCCACCTG SEQ ID NO: 470
RPr TCGATCTCCTCATCATCTGG SEQ ID NO: 471
CLTC NM_004859.1 FPr ACCGTATGGACAGCCACAG SEQ ID NO: 472
Probe TCTCACATGCTGTACCCAAAGCCA SEQ ID NO: 473
RPr TGACTACAGGATCAGCGCTTC SEQ ID NO: 474
CLU NM_001831.1 FPr CCCCAGGATACCTACCACTACCT SEQ ID NO: 475
Probe CCCTTCAGCCTGCCCCACCG SEQ ID NO: 476
RPr TGCGGGACTTGGGAAAGA SEQ ID NO: 477
cMet NM_000245.1 FPr GACATTTCCAGTCCTGCAGTCA SEQ ID NO: 478
Probe TGCCTCTCTGCCCCACCCTTTGT SEQ ID NO: 479
RPr CTCCGATCGCACACATTTGT SEQ ID NO: 480
cMYC NM_002467.1 FPr TCCCTCCACTCGGAAGGACTA SEQ ID NO: 481
Probe TCTGACACTGTCCAACTTGACCCTCTT SEQ ID NO: 482
RPr CGGTTGTTGCTGATCTGTCTCA SEQ ID NO: 483
CNN NM_001299.2 FPr TCCACCCTCCTGGCTTTG SEQ ID NO: 484
Probe TCCTTTCGTCTTCGCCATGCTGG SEQ ID NO: 485
RPr TCACTCCCACGTTCACCTTGT SEQ ID NO: 486
COL1A1 NM_000088.2 FPr GTGGCCATCCAGCTGACC SEQ ID NO: 487
Probe TCCTGCGCCTGATGTCCACCG SEQ ID NO: 488
RPr CAGTGGTAGGTGATGTTCTGGGA SEQ ID NO: 489
COL1A2 NM_000089.2 FPr CAGCCAAGAACTGGTATAGGAGCT SEQ ID NO: 490
Probe TCTCCTAGCCAGACGTGTTTCTTGTCCTTG SEQ ID NO: 491
RPr AAACTGGCTGCCAGCATTG SEQ ID NO: 492
COPS3 NM_003653.2 FPr ATGCCCAGTGTTCCTGACTT SEQ ID NO: 493
Probe CGAAACGCTATTCTCACAGGTTCAGC SEQ ID NO: 494
RPr CTCCCCATTACAAGTGCTGA SEQ ID NO: 495
COX2 NM_000963.1 FPr TCTGCAGAGTTGGAAGCACTCTA SEQ ID NO: 496
Probe CAGGATACAGCTCCACAGCATCGATGTC SEQ ID NO: 497
RPr GCCGAGGCTTTTCTACCAGAA SEQ ID NO: 498
COX3 MITO_COX3 FPr TCGAGTCTCCCTTCACCATT SEQ ID NO: 499
Probe CGACGGCATCTACGGCTCAACAT SEQ ID NO: 500
RPr GACGTGAAGTCCGTGGAAG SEQ ID NO: 501
CP NM_000096.1 FPr CGTGAGTACACAGATGCCTCC SEQ ID NO: 502
Probe TCTTCAGGGCCTCTCTCCTTTCGA SEQ ID NO: 503
RPr CCAGGATGCCAAGATGCT SEQ ID NO: 504
CRBP NM_002899.2 FPr TGGTCTGCAAGCAAGTATTCAAG SEQ ID NO: 505
Probe TCTGCTTGGGCCTCACTGCACCT SEQ ID NO: 506
RPr GCTGATTGGTTGGGACAAGGT SEQ ID NO: 507
CREBBP NM_004380.1 FPr TGGGAAGCAGCTGTGTACCAT SEQ ID NO: 508
Probe CCTCGCGATGCTGCCTACTACAGCTATC SEQ ID NO: 509
RPr GAAACACTTCTCACAGAAATGATACCTA SEQ ID NO: 510
TT
CRIP2 NM_001312.1 FPr GTGCTACGCCACCCTGTT SEQ ID NO: 511
Probe CCGATGTTCACGCCTTTGGGTC SEQ ID NO: 512
RPr CAGGGGCTTCTCGTAGATGT SEQ ID NO: 513
cripto NM_003212.1 FPr GGGTCTGTGCCCCATGAC SEQ ID NO: 514
(TDGF1
official)
Probe CCTGGCTGCCCAAGAAGTGTTCCCT SEQ ID NO: 515
RPr TGACCGTGCCAGCATTTACA SEQ ID NO: 516
CRK(a) NM_016823.2 FPr CTCCCTAACCTCCAGAATGG SEQ ID NO: 517
Probe ACTCGCTTCTGGATAACCCTGGCA SEQ ID NO: 518
RPr TGTCTTGTCGTAGGCATTGG SEQ ID NO: 519
CRMP1 NM_001313.1 FPr AAGGTTTTTGGATTGCAAGG SEQ ID NO: 520
Probe ACCGTCATACATGCCCCTGGAAAC SEQ ID NO: 521
RPr GGGTGTAGCTGGTACCTCGT SEQ ID NO: 522
CRYAB NM_001885.1 FPr GATGTGATTGAGGTGCATGG SEQ ID NO: 523
Probe TGTTCATCCTGGCGCTCTTCATGT SEQ ID NO: 524
RPr GAACTCCCTGGAGATGAAACC SEQ ID NO: 525
CSEL1 NM_001316.2 FPr TTACGCAGCTCATGCTCTTG SEQ ID NO: 526
Probe ACGGCTCTTTACTATGCGAGGGCC SEQ ID NO: 527
RPr GCAGCTGTAAAGAGAGTGGCAT SEQ ID NO: 528
CSF1 NM_000757.3 FPr TGCAGCGGCTGATTGACA SEQ ID NO: 529
Probe TCAGATGGAGACCTCGTGCCAAATTACA SEQ ID NO: 530
RPr CAACTGTTCCTGGTCTACAAACTCA SEQ ID NO: 531
CSK (SRC) NM_004383.1 FPr CCTGAACATGAAGGAGCTGA SEQ ID NO: 532
Probe TCCCGATGGTCTGCAGCAGCT SEQ ID NO: 533
RPr CATCACGTCTCCGAACTCC SEQ ID NO: 534
CTAG1B NM_001327.1 FPr GCTCTCCATCAGCTCCTGTC SEQ ID NO: 535
Probe CCACATCAACAGGGAAAGCTGCTG SEQ ID NO: 536
RPr AACACGGGCAGAAAGCACT SEQ ID NO: 537
CTGF NM_001901.1 FPr GAGTTCAAGTGCCCTGACG SEQ ID NO: 538
Probe AACATCATGTTCTTCTTCATGACCTCGC SEQ ID NO: 539
RPr AGTTGTAATGGCAGGCACAG SEQ ID NO: 540
CTHRC1 NM_138455.2 FPr GCTCACTTCGGCTAAAATGC SEQ ID NO: 541
Probe ACCAACGCTGACAGCATGCATTTC SEQ ID NO: 542
RPr TCAGCTCCATTGAATGTGAAA SEQ ID NO: 543
CTLA4 NM_005214.2 FPr CACTGAGGTCCGGGTGACA SEQ ID NO: 544
Probe CACCTGGCTGTCAGCCTGCCG SEQ ID NO: 545
RPr GTAGGTTGCCGCACAGACTTC SEQ ID NO: 546
CTNNBIP1 NM_020248.2 FPr GTTTTCCAGGTCGGAGACG SEQ ID NO: 547
Probe CTTTGCAGCTACTGCCTCCGGTCT SEQ ID NO: 548
RPr AGCATCCAGGGTGTTCCA SEQ ID NO: 549
CTSB NM_001908.1 FPr GGCCGAGATCTACAAAAACG SEQ ID NO: 550
Probe CCCCGTGGAGGGAGCTTTCTC SEQ ID NO: 551
RPr GCAGGAAGTCCGAATACACA SEQ ID NO: 552
CTSD NM_001909.1 FPr GTACATGATCCCCTGTGAGAAGGT SEQ ID NO: 553
Probe ACCCTGCCCGCGATCACACTGA SEQ ID NO: 554
RPr GGGACAGCTTGTAGCCTTTGC SEQ ID NO: 555
CTSH NM_004390.1 FPr GCAAGTTCCAACCTGGAAAG SEQ ID NO: 556
Probe TGGCTACATCCTTGACAAAGCCGA SEQ ID NO: 557
RPr CATCGCTTCCTCGTCATAGA SEQ ID NO: 558
CTSL NM_001912.1 FPr GGGAGGCTTATCTCACTGAGTGA SEQ ID NO: 559
Probe TTGAGGCCCAGAGCAGTCTACCAGATTCT SEQ ID NO: 560
RPr CCATTGCAGCCTTCATTGC SEQ ID NO: 561
CTSL2 NM_001333.2 FPr TGTCTCACTGAGCGAGCAGAA SEQ ID NO: 562
Probe CTTGAGGACGCGAACAGTCCACCA SEQ ID NO: 563
RPr ACCATTGCAGCCCTGATTG SEQ ID NO: 564
CUL1 NM_003592.2 FPr ATGCCCTGGTAATGTCTGCAT SEQ ID NO: 565
Probe CAGCCACAAAGCCAGCGTCATTGT SEQ ID NO: 566
RPr GCGACCACAAGCCTTATCAAG SEQ ID NO: 567
CUL4A NM_003589.1 FPr AAGCATCTTCCTGTTCTTGGA SEQ ID NO: 568
Probe TATGTGCTGCAGAACTCCACGCTG SEQ ID NO: 569
RPr AATCCCATATCCCAGATGGA SEQ ID NO: 570
CXCL12 NM_000609.3 FPr GAGCTACAGATGCCCATGC SEQ ID NO: 571
Probe TTCTTCGAAAGCCATGTTGCCAGA SEQ ID NO: 572
RPr TTTGAGATGCTTGACGTTGG SEQ ID NO: 573
CXCR4 NM_003467.1 FPr TGACCGCTTCTACCCCAATG SEQ ID NO: 574
Probe CTGAAACTGGAACACAACCACCCACAAG SEQ ID NO: 575
RPr AGGATAAGGCCAACCATGATGT SEQ ID NO: 576
CYBA NM_000101.1 FPr GGTGCCTACTCCATTGTGG SEQ ID NO: 577
Probe TACTCCAGCAGGCACACAAACACG SEQ ID NO: 578
RPr GTGGAGCCCTTCTTCCTCTT SEQ ID NO: 579
CYP1B1 NM_000104.2 FPr CCAGCTTTGTGCCTGTCACTAT SEQ ID NO: 580
Probe CTCATGCCACCACTGCCAACACCTC SEQ ID NO: 581
RPr GGGAATGTGGTAGCCCAAGA SEQ ID NO: 582
CYP2C8 NM_000770.2 FPr CCGTGTTCAAGAGGAAGCTC SEQ ID NO: 583
Probe TTTTCTCAACTCCTCCACAAGGCA SEQ ID NO: 584
RPr AGTGGGATCACAGGGTGAAG SEQ ID NO: 585
CYP3A4 NM_017460.3 FPr AGAACAAGGACAACATAGATCCTTACAT SEQ ID NO: 586
AT
Probe CACACCCTTTGGAAGTGGACCCAGAA SEQ ID NO: 587
RPr GCAAACCTCATGCCAATGC SEQ ID NO: 588
CYR61 NM_001554.3 FPr TGCTCATTCTTGAGGAGCAT SEQ ID NO: 589
Probe CAGCACCCTTGGCAGTTTCGAAAT SEQ ID NO: 590
RPr GTGGCTGCATTAGTGTCCAT SEQ ID NO: 591
DAPK1 NM_004938.1 FPr CGCTGACATCATGAATGTTCCT SEQ ID NO: 592
Probe TCATATCCAAACTCGCCTCCAGCCG SEQ ID NO: 593
RPr TCTCTTTCAGCAACGATGTGTCTT SEQ ID NO: 594
DCC NM_005215.1 FPr AAATGTCCTCCTCGACTGCT SEQ ID NO: 595
Probe ATCACTGGAACTCCTCGGTCGGAC SEQ ID NO: 596
RPr TGAATGCCATCTTTCTTCCA SEQ ID NO: 597
DCC_exons X76132_18-23 FPr GGTCACCGTTGGTGTCATCA SEQ ID NO: 598
18-23
Probe CAGCCACGATGACCACTACCAGCACT SEQ ID NO: 599
RPr GAGCGTCGGGTGCAAATC SEQ ID NO: 600
DCC_exons X76132_6-7 FPr ATGGAGATGTGGTCATTCCTAGTG SEQ ID NO: 601
6-7
Probe TGCTTCCTCCCACTATCTGAAAATAA SEQ ID NO: 602
RPr CACCACCCCAAGTATCCGTAAG SEQ ID NO: 603
DCK NM_000788.1 FPr GCCGCCACAAGACTAAGGAAT SEQ ID NO: 604
Probe AGCTGCCCGTCTTTCTCAGCCAGC SEQ ID NO: 605
RPr CGATGTTCCCTTCGATGGAG SEQ ID NO: 606
DDB1 NM_001923.2 FPr TGCGGATCATCCGGAATG SEQ ID NO: 607
Probe AATTGGAATCCACGAGCATGCCAGC SEQ ID NO: 608
RPr TCCTTTGATGCCTGGTAAGTCA SEQ ID NO: 609
DET1 NM_017996.2 FPr CTTGTGGAGATCACCCAATCAG SEQ ID NO: 610
Probe CTATGCCCGGGACTCGGGCCT SEQ ID NO: 611
RPr CCCGCCTGGATCTCAAACT SEQ ID NO: 612
DHFR NM_000791.2 FPr TTGCTATAACTAAGTGCTTCTCCAAGA SEQ ID NO: 613
Probe CCCAACTGAGTCCCCAGCACCT SEQ ID NO: 614
RPr GTGGAATGGCAGCTCACTGTAG SEQ ID NO: 615
DHPS NM_013407.1 FPr GGGAGAACGGGATCAATAGGAT SEQ ID NO: 616
Probe CTCATTGGGCACCAGCAGGTTTCC SEQ ID NO: 617
RPr GCATCAGCCAGTCCTCAAACT SEQ ID NO: 618
DIABLO NM_019887.1 FPr CACAATGGCGGCTCTGAAG SEQ ID NO: 619
Probe AAGTTACGCTGCGCGACAGCCAA SEQ ID NO: 620
RPr ACACAAACACTGTCTGTACCTGAAGA SEQ ID NO: 621
DIAPH1 NM_005219.2 FPr CAAGCAGTCAAGGAGAACCA SEQ ID NO: 622
Probe TTCTTCTGTCTCCCGCCGCTTC SEQ ID NO: 623
RPr AGTTTTGCTCGCCTCATCTT SEQ ID NO: 624
DICER1 NM_177438.1 FPr TCCAATTCCAGCATCACTGT SEQ ID NO: 625
Probe AGAAAAGCTGTTTGTCTCCCCAGCA SEQ ID NO: 626
RPr GGCAGTGAAGGCGATAAAGT SEQ ID NO: 627
DKK1 NM_012242.1 FPr TGACAACTACCAGCCGTACC SEQ ID NO: 628
Probe AGTGCCGCACTCCTCGTCCTCT SEQ ID NO: 629
RPr GGGACTAGCGCAGTACTCATC SEQ ID NO: 630
DLC1 NM_006094.3 FPr GATTCAGACGAGGATGAGCC SEQ ID NO: 631
Probe AAAGTCCATTTGCCACTGATGGCA SEQ ID NO: 632
RPr CACCTCTTGCTGTCCCTTTG SEQ ID NO: 633
DPYD NM_000110.2 FPr AGGACGCAAGGAGGGTTTG SEQ ID NO: 634
Probe CAGTGCCTACAGTCTCGAGTCTGCCAGTG SEQ ID NO: 635
RPr GATGTCCGCCGAGTCCTTACT SEQ ID NO: 636
DR4 NM_003844.1 FPr TGCACAGAGGGTGTGGGTTAC SEQ ID NO: 637
Probe CAATGCTTCCAACAATTTGTTTGCTTGCC SEQ ID NO: 638
RPr TCTTCATCTGATTTACAAGCTGTACATG SEQ ID NO: 639
DR5 NM_003842.2 FPr CTCTGAGACAGTGCTTCGATGACT SEQ ID NO: 640
Probe CAGACTTGGTGCCCTTTGACTCC SEQ ID NO: 641
RPr CCATGAGGCCCAACTTCCT SEQ ID NO: 642
DRG1 NM_004147.3 FPr CCTGGATCTCCCAGGTATCA SEQ ID NO: 643
Probe ACCTTTCCCATCCTTGGCACCTTC SEQ ID NO: 644
RPr TGCAATGACTTGACGACCTC SEQ ID NO: 645
DSP NM_004415.1 FPr TGGCACTACTGCATGATTGACA SEQ ID NO: 646
Probe CAGGGCCATGACAATCGCCAA SEQ ID NO: 647
RPr CCTGCCGCATTGTTTTCAG SEQ ID NO: 648
DTYMK NM_012145.1 FPr AAATCGCTGGGAACAAGTG SEQ ID NO: 649
Probe CGCCCTGGCTCAACTTTTCCTTAA SEQ ID NO: 650
RPr AATGCGTATCTGTCCACGAC SEQ ID NO: 651
DUSP1 NM_004417.2 FPr AGACATCAGCTCCTGGTTCA SEQ ID NO: 652
Probe CGAGGCCATTGACTTCATAGACTCCA SEQ ID NO: 653
RPr GACAAACACCCTTCCTCCAG SEQ ID NO: 654
DUSP2 NM_004418.2 FPr TATCCCTGTGGAGGACAACC SEQ ID NO: 655
Probe CCTCCTGGAACCAGGCACTGATCT SEQ ID NO: 656
RPr CACCCAGTCAATGAAGCCTA SEQ ID NO: 657
DUT NM_001948.2 FPr ACACATGGAGTGCTTCTGGA SEQ ID NO: 658
Probe ATCAGCCCACTTGACCACCCAGTT SEQ ID NO: 659
RPr CTCTTGCCTGTGCTTCCAC SEQ ID NO: 660
DYRK1B NM_004714.1 FPr AGCATGACACGGAGATGAAG SEQ ID NO: 661
Probe CACCTGAAGCGGCACTTCATGTTC SEQ ID NO: 662
RPr AATACCAGGCACAGGTGGTT SEQ ID NO: 663
E2F1 NM_005225.1 FPr ACTCCCTCTACCCTTGAGCA SEQ ID NO: 664
Probe CAGAAGAACAGCTCAGGGACCCCT SEQ ID NO: 665
RPr CAGGCCTCAGTTCCTTCAGT SEQ ID NO: 666
EDN1 NM_001955.1 FPr TGCCACCTGGACATCATTTG SEQ ID NO: 667
endothelin
Probe CACTCCCGAGCACGTTGTTCCGT SEQ ID NO: 668
RPr TGGACCTAGGGCTTCCAAGTC SEQ ID NO: 669
EFNA1 NM_004428.2 FPr TACATCTCCAAACCCATCCA SEQ ID NO: 670
Probe CAACCTCAAGCAGCGGTCTTCATG SEQ ID NO: 671
RPr TTGCCACTGACAGTCACCTT SEQ ID NO: 672
EFNA3 NM_004952.3 FPr ACTACATCTCCACGCCCACT SEQ ID NO: 673
Probe CCTCAGACACTTCCAGTGCAGGTTG SEQ ID NO: 674
RPr CAGCAGACGAACACCTTCAT SEQ ID NO: 675
EFNB1 NM_004429.3 FPr GGAGCCCGTATCCTGGAG SEQ ID NO: 676
Probe CCCTCAACCCCAAGTTCCTGAGTG SEQ ID NO: 677
RPr GGATAGATCACCAAGCCCTTC SEQ ID NO: 678
EFNB2 NM_004093.2 FPr TGACATTATCATCCCGCTAAGGA SEQ ID NO: 679
Probe CGGACAGCGTCTTCTGCCCTCACT SEQ ID NO: 680
RPr GTAGTCCCCGCTGACCTTCTC SEQ ID NO: 681
EFP NM_005082.2 FPr TTGAACAGAGCCTGACCAAG SEQ ID NO: 682
Probe TGATGCTTTCTCCAGAAACTCGAACTCA SEQ ID NO: 683
RPr TGTTGAGATTCCTCGCAGTT SEQ ID NO: 684
EGFR NM_005228.1 FPr TGTCGATGGACTTCCAGAAC SEQ ID NO: 685
Probe CACCTGGGCAGCTGCCAA SEQ ID NO: 686
RPr ATTGGGACAGCTTGGATCA SEQ ID NO: 687
EGLN1 NM_022051.1 FPr TCAATGGCCGGACGAAAG SEQ ID NO: 688
Probe CATTGCCCGGATAACAAGCAACCATG SEQ ID NO: 689
RPr TTTGGATTATCAACATGACGTACATAAC SEQ ID NO: 690
EGLN3 NM_022073.2 FPr GCTGGTCCTCTACTGCGG SEQ ID NO: 691
Probe CCGGCTGGGCAAATACTACGTCAA SEQ ID NO: 692
RPr CCACCATTGCCTTAGACCTC SEQ ID NO: 693
EGR1 NM_001964.2 FPr GTCCCCGCTGCAGATCTCT SEQ ID NO: 694
Probe CGGATCCTTTCCTCACTCGCCCA SEQ ID NO: 695
RPr CTCCAGCTTAGGGTAGTTGTCCAT SEQ ID NO: 696
EGR3 NM_004430.2 FPr CCATGTGGATGAATGAGGTG SEQ ID NO: 697
Probe ACCCAGTCTCACCTTCTCCCCACC SEQ ID NO: 698
RPr TGCCTGAGAAGAGGTGAGGT SEQ ID NO: 699
EI24 NM_004879.2 FPr AAAGTGGTGAATGCCATTTG SEQ ID NO: 700
Probe CCTCAAATGCCAGGTCAGCTATATCCTG SEQ ID NO: 701
RPr GTGAGGCTTCCTCCCTGATA SEQ ID NO: 702
EIF4E NM_001968.1 FPr GATCTAAGATGGCGACTGTCGAA SEQ ID NO: 703
Probe ACCACCCCTACTCCTAATCCCCCGACT SEQ ID NO: 704
RPr TTAGATTCCGTTTTCTCCTCTTCTG SEQ ID NO: 705
EIF4EL3 NM_004846.1 FPr AAGCCGCGGTTGAATGTG SEQ ID NO: 706
Probe TGACCCTCTCCCTCTCTGGATGGCA SEQ ID NO: 707
RPr TGACGCCAGCTTCAATGATG SEQ ID NO: 708
ELAVL1 NM_001419.2 FPr GACAGGAGGCCTCTATCCTG SEQ ID NO: 709
Probe CACCCCACCCTCCACCTCAATC SEQ ID NO: 710
RPr GTGAGGTAGGTCTGGGGAAG SEQ ID NO: 711
EMP1 NM_001423.1 FPr GCTAGTACTTTGATGCTCCCTTGAT SEQ ID NO: 712
Probe CCAGAGAGCCTCCCTGCAGCCA SEQ ID NO: 713
RPr GAACAGCTGGAGGCCAAGTC SEQ ID NO: 714
EMR3 NM_032571.2 FPr TGGCCTACCTCTTCACCATC SEQ ID NO: 715
Probe TCAACAGCCTCCAAGGCTTCTTCA SEQ ID NO: 716
RPr TGAGGAGGCAGTAGACCAAGA SEQ ID NO: 717
EMS1 NM_005231.2 FPr GGCAGTGTCACTGAGTCCTTGA SEQ ID NO: 718
Probe ATCCTCCCCTGCCCCGCG SEQ ID NO: 719
RPr TGCACTGTGCGTCCCAAT SEQ ID NO: 720
ENO1 NM_001428.2 FPr CAAGGCCGTGAACGAGAAGT SEQ ID NO: 721
Probe CTGCAACTGCCTCCTGCTCAAAGTCA SEQ ID NO: 722
RPr CGGTCACGGAGCCAATCT SEQ ID NO: 723
EP300 NM_001429.1 FPr AGCCCCAGCAACTACAGTCT SEQ ID NO: 724
Probe CACTGACATCATGGCTGGCCTTG SEQ ID NO: 725
RPr TGTTCAAAGGTTGACCATGC SEQ ID NO: 726
EPAS1 NM_001430.3 FPr AAGCCTTGGAGGGTTTCATTG SEQ ID NO: 727
Probe TGTCGCCATCTTGGGTCACCACG SEQ ID NO: 728
RPr TGCTGATGTTTTCTGACAGAAAGAT SEQ ID NO: 729
EpCAM NM_002354.1 FPr GGGCCCTCCAGAACAATGAT SEQ ID NO: 730
Probe CCGCTCTCATCGCAGTCAGGATCAT SEQ ID NO: 731
RPr TGCACTGCTTGGCCTTAAAGA SEQ ID NO: 732
EPHA2 NM_004431.2 FPr CGCCTGTTCACCAAGATTGAC SEQ ID NO: 733
Probe TGCGCCCGATGAGATCACCG SEQ ID NO: 734
RPr GTGGCGTGCCTCGAAGTC SEQ ID NO: 735
EPHB2 NM_004442.4 FPr CAACCAGGCAGCTCCATC SEQ ID NO: 736
Probe CACCTGATGCATGATGGACACTGC SEQ ID NO: 737
RPr GTAATGCTGTCCACGGTGC SEQ ID NO: 738
EPHB4 NM_004444.3 FPr TGAACGGGGTATCCTCCTTA SEQ ID NO: 739
Probe CGTCCCATTTGAGCCTGTCAATGT SEQ ID NO: 740
RPr AGGTACCTCTCGGTCAGTGG SEQ ID NO: 741
EphB6 NM_004445.1 FPr ACTGGTCCTCCATCGGCT SEQ ID NO: 742
Probe CCTTGCACCTCAAACCAAAGCTCC SEQ ID NO: 743
RPr CCAGTGTAGCATGAGTGCTGA SEQ ID NO: 744
EPM2A NM_005670.2 FPr ACTGTGGCACTTAGGGGAGA SEQ ID NO: 745
Probe CTGCCTCTGCCCAAAGCAAATGTC SEQ ID NO: 746
RPr AGTGGAAATGTGTCCTGGCT SEQ ID NO: 747
ErbB3 NM_001982.1 FPr CGGTTATGTCATGCCAGATACAC SEQ ID NO: 748
Probe CCTCAAAGGTACTCCCTCCTCCCGG SEQ ID NO: 749
RPr GAACTGAGACCCACTGAAGAAAGG SEQ ID NO: 750
ERCC1 NM_001983.1 FPr GTCCAGGTGGATGTGAAAGA SEQ ID NO: 751
Probe CAGCAGGCCCTCAAGGAGCTG SEQ ID NO: 752
RPr CGGCCAGGATACACATCTTA SEQ ID NO: 753
ERCC2 NM_000400.2 FPr TGGCCTTCTTCACCAGCTA SEQ ID NO: 754
Probe AGGCCACGGTGCTCTCCATGTACT SEQ ID NO: 755
RPr CAAGGATCCCCTGCTCATAC SEQ ID NO: 756
EREG NM_001432.1 FPr ATAACAAAGTGTAGCTCTGACATGAATG SEQ ID NO: 757
Probe TTGTTTGCATGGACAGTGCATCTATCTGGT SEQ ID NO: 758
RPr CACACCTGCAGTAGTTTTGACTCA SEQ ID NO: 759
ERK1 Z11696.1 FPr ACGGATCACAGTGGAGGAAG SEQ ID NO: 760
Probe CGCTGGCTCACCCCTACCTG SEQ ID NO: 761
RPr CTCATCCGTCGGGTCATAGT SEQ ID NO: 762
ERK2 NM_002745.1 FPr AGTTCTTGACCCCTGGTCCT SEQ ID NO: 763
Probe TCTCCAGCCCGTCTTGGCTT SEQ ID NO: 764
RPr AAACGGCTCAAAGGAGTCAA SEQ ID NO: 765
ESPL1 NM_012291.1 FPr ACCCCCAGACCGGATCAG SEQ ID NO: 766
Probe CTGGCCCTCATGTCCCCTTCACG SEQ ID NO: 767
RPr TGTAGGGCAGACTTCCTCAAACA SEQ ID NO: 768
EstR1 NM_000125.1 FPr CGTGGTGCCCCTCTATGAC SEQ ID NO: 769
Probe CTGGAGATGCTGGACGCCC SEQ ID NO: 770
RPr GGCTAGTGGGCGCATGTAG SEQ ID NO: 771
ETV4 NM_001986.1 FPr TCCAGTGCCTATGACCCC SEQ ID NO: 772
Probe CAGACAAATCGCCATCAAGTCCCC SEQ ID NO: 773
RPr ACTGTCCAAGGGCACCAG SEQ ID NO: 774
F3 NM_001993.2 FPr GTGAAGGATGTGAAGCAGACGTA SEQ ID NO: 775
Probe TGGCACGGGTCTTCTCCTACC SEQ ID NO: 776
RPr AACCGGTGCTCTCCACATTC SEQ ID NO: 777
FABP4 NM_001442.1 FPr GCTTTGCCACCAGGAAAGT SEQ ID NO: 778
Probe CTGGCATGGCCAAACCTAACATGA SEQ ID NO: 779
RPr CATCCCCATTCACACTGATG SEQ ID NO: 780
FAP NM_004460.2 FPr CTGACCAGAACCACGGCT SEQ ID NO: 781
Probe CGGCCTGTCCACGAACCACTTATA SEQ ID NO: 782
RPr GGAAGTGGGTCATGTGGG SEQ ID NO: 783
fas NM_000043.1 FPr GGATTGCTCAACAACCATGCT SEQ ID NO: 784
Probe TCTGGACCCTCCTACCTCTGGTTCTTACGCT SEQ ID NO: 785
RPr GGCATTAACACTTTTGGACGATAA SEQ ID NO: 786
fasl NM_000639.1 FPr GCACTTTGGGATTCTTTCCATTAT SEQ ID NO: 787
Probe ACAACATTCTCGGTGCCTGTAACAAAGAA SEQ ID NO: 788
RPr GCATGTAAGAAGACCCTCACTGAA SEQ ID NO: 789
FASN NM_004104.4 FPr GCCTCTTCCTGTTCGACG SEQ ID NO: 790
Probe TCGCCCACCTACGTACTGGCCTAC SEQ ID NO: 791
RPr GCTTTGCCCGGTAGCTCT SEQ ID NO: 792
FBXO5 NM_012177.2 FPr GGCTATTCCTCATTTTCTCTACAAAGTG SEQ ID NO: 793
Probe CCTCCAGGAGGCTACCTTCTTCATGTTCAC SEQ ID NO: 794
RPr GGATTGTAGACTGTCACCGAAATTC SEQ ID NO: 795
FBXW7 NM_033632.1 FPr CCCCAGTTTCAACGAGACTT SEQ ID NO: 796
Probe TCATTGCTCCCTAAAGAGTTGGCACTC SEQ ID NO: 797
RPr GTTCCAGGAATGAAAGCACA SEQ ID NO: 798
FDXR NM_004110.2 FPr GAGATGATTCAGTTACCGGGAG SEQ ID NO: 799
Probe AATCCACAGGATCCAAAATGGGCC SEQ ID NO: 800
RPr ATCTTGTCCTGGAGACCCAA SEQ ID NO: 801
FES NM_002005.2 FPr CTCTGCAGGCCTAGGTGC SEQ ID NO: 802
Probe CTCCTCAGCGGCTCCAGCTCATAT SEQ ID NO: 803
RPr CCAGGACTGTGAAGAGCTGTC SEQ ID NO: 804
FGF18 NM_003862.1 FPr CGGTAGTCAAGTCCGGATCAA SEQ ID NO: 805
Probe CAAGGAGACGGAATTCTACCTGTGC SEQ ID NO: 806
RPr GCTTGCCTTTGCGGTTCA SEQ ID NO: 807
FGF2 NM_002006.2 FPr AGATGCAGGAGAGAGGAAGC SEQ ID NO: 808
Probe CCTGCAGACTGCTTTTTGCCCAAT SEQ ID NO: 809
RPr GTTTTGCAGCCTTACCCAAT SEQ ID NO: 810
FGFR1 NM_023109.1 FPr CACGGGACATTCACCACATC SEQ ID NO: 811
Probe ATAAAAAGACAACCAACGGCCGACTGC SEQ ID NO: 812
RPr GGGTGCCATCCACTTCACA SEQ ID NO: 813
FGFR2 NM_000141.2 FPr GAGGGACTGTTGGCATGCA SEQ ID NO: 814
isoform 1
Probe TCCCAGAGACCAACGTTCAAGCAGTTG SEQ ID NO: 815
RPr GAGTGAGAATTCGATCCAAGTCTTC SEQ ID NO: 816
FHIT NM_002012.1 FPr CCAGTGGAGCGCTTCCAT SEQ ID NO: 817
Probe TCGGCCACTTCATCAGGACGCAG SEQ ID NO: 818
RPr CTCTCTGGGTCGTCTGAAACAA SEQ ID NO: 819
FIGF NM_004469.2 FPr GGTTCCAGCTTTCTGTAGCTGT SEQ ID NO: 820
Probe ATTGGTGGCCACACCACCTCCTTA SEQ ID NO: 821
RPr GCCGCAGGTTCTAGTTGCT SEQ ID NO: 822
FLJ12455 NM_022078.1 FPr CCACCAGCATGAAGTTTCG SEQ ID NO: 823
Probe ACCCCTCACAAAGGCCATGTCTGT SEQ ID NO: 824
RPr GGCTGTCTGAAGCACAACTG SEQ ID NO: 825
FLJ20712 AK000719.1 FPr GCCACACAAACATGCTCCT SEQ ID NO: 826
Probe ATGTCTTTCCCAGCAGCTCTGCCT SEQ ID NO: 827
RPr GCCACAGGAAACTTCCGA SEQ ID NO: 828
FLT1 NM_002019.1 FPr GGCTCCCGAATCTATCTTTG SEQ ID NO: 829
Probe CTACAGCACCAAGAGCGACGTGTG SEQ ID NO: 830
RPr TCCCACAGCAATACTCCGTA SEQ ID NO: 831
FLT4 NM_002020.1 FPr ACCAAGAAGCTGAGGACCTG SEQ ID NO: 832
Probe AGCCCGCTGACCATGGAAGATCT SEQ ID NO: 833
RPr CCTGGAAGCTGTAGCAGACA SEQ ID NO: 834
FOS NM_005252.2 FPr CGAGCCCTTTGATGACTTCCT SEQ ID NO: 835
Probe TCCCAGCATCATCCAGGCCCAG SEQ ID NO: 836
RPr GGAGCGGGCTGTCTCAGA SEQ ID NO: 837
FOXO3A NM_001455.1 FPr TGAAGTCCAGGACGATGATG SEQ ID NO: 838
Probe CTCTACAGCAGCTCAGCCAGCCTG SEQ ID NO: 839
RPr ACGGCTTGCTTACTGAAGGT SEQ ID NO: 840
FPGS NM_004957.3 FPr CAGCCCTGCCAGTTTGAC SEQ ID NO: 841
Probe ATGCCGTCTTCTGCCCTAACCTGA SEQ ID NO: 842
RPr GTTGCCTGTGGATGACACC SEQ ID NO: 843
FRP1 NM_003012.2 FPr TTGGTACCTGTGGGTTAGCA SEQ ID NO: 844
Probe TCCCCAGGGTAGAATTCAATCAGAGC SEQ ID NO: 845
RPr CACATCCAAATGCAAACTGG SEQ ID NO: 846
FST NM_006350.2 FPr GTAAGTCGGATGAGCCTGTCTGT SEQ ID NO: 847
Probe CCAGTGACAATGCCACTTATGCCAGC SEQ ID NO: 848
RPr CAGCTTCCTTCATGGCACACT SEQ ID NO: 849
Furin NM_002569.1 FPr AAGTCCTCGATACGCACTATAGCA SEQ ID NO: 850
Probe CCCGGATGGTCTCCACGTCAT SEQ ID NO: 851
RPr CTGGCATGTGGCACATGAG SEQ ID NO: 852
FUS NM_004960.1 FPr GGATAATTCAGACAACAACACCATCT SEQ ID NO: 853
Probe TCAATTGTAACATTCTCACCCAGGCCTTG SEQ ID NO: 854
RPr TGAAGTAATCAGCCACAGACTCAAT SEQ ID NO: 855
FUT1 NM_000148.1 FPr CCGTGCTCATTGCTAACCA SEQ ID NO: 856
Probe TCTGTCCCTGAACTCCCAGAACCA SEQ ID NO: 857
RPr CTGCCCAAAGCCAGATGTA SEQ ID NO: 858
FUT3 NM_000149.1 FPr CAGTTCGGTCCAACAGAGAA SEQ ID NO: 859
Probe AGCAGGCAACCACCATGTCATTTG SEQ ID NO: 860
RPr TGCGAATTATATCCCGATGA SEQ ID NO: 861
FUT6 NM_000150.1 FPr CGTGTGTCTCAAGACGATCC SEQ ID NO: 862
Probe TGTGTACCCTAATGGGTCCCGCTT SEQ ID NO: 863
RPr GGTCCCTGTGCTGTCTGG SEQ ID NO: 864
FXYD5 NM_014164.4 FPr AGAGCACCAAAGCAGCTCAT SEQ ID NO: 865
Probe CACTGATGACACCACGACGCTCTC SEQ ID NO: 866
RPr GTGCTTGGGGATGGTCTCT SEQ ID NO: 867
FYN NM_002037.3 FPr GAAGCGCAGATCATGAAGAA SEQ ID NO: 868
Probe CTGAAGCACGACAAGCTGGTCCAG SEQ ID NO: 869
RPr CTCCTCAGACACCACTGCAT SEQ ID NO: 870
FZD1 NM_003505.1 FPr GGTGCACCAGTTCTACCCTC SEQ ID NO: 871
Probe ACTTGAGCTCAGCGGAACACTGCA SEQ ID NO: 872
RPr GCGTACATGGAGCACAGGA SEQ ID NO: 873
FZD2 NM_001466.2 FPr TGGATCCTCACCTGGTCG SEQ ID NO: 874
Probe TGCGCTTCCACCTTCTTCACTGTC SEQ ID NO: 875
RPr GCGCTGCATGTCTACCAA SEQ ID NO: 876
FZD6 NM_003506.2 FPr AATGAGAGAGGTGAAAGCGG SEQ ID NO: 877
Probe CGGAGCTAGCACCCCCAGGTTAAG SEQ ID NO: 878
RPr AGGTTCACCACAGTCCTGTTC SEQ ID NO: 879
G-Catenin NM_002230.1 FPr TCAGCAGCAAGGGCATCAT SEQ ID NO: 880
Probe CGCCCGCAGGCCTCATCCT SEQ ID NO: 881
RPr GGTGGTTTTCTTGAGCGTGTACT SEQ ID NO: 882
G1P2 NM_005101.1 FPr CAACGAATTCCAGGTGTCC SEQ ID NO: 883
Probe CTGAGCAGCTCCATGTCGGTGTC SEQ ID NO: 884
RPr GATCTGCGCCTTCAGCTC SEQ ID NO: 885
GADD45 NM_001924.2 FPr GTGCTGGTGACGAATCCA SEQ ID NO: 886
Probe TTCATCTCAATGGAAGGATCCTGCC SEQ ID NO: 887
RPr CCCGGCAAAAACAAATAAGT SEQ ID NO: 888
GADD45B NM_015675.1 FPr ACCCTCGACAAGACCACACT SEQ ID NO: 889
Probe AACTTCAGCCCCAGCTCCCAAGTC SEQ ID NO: 890
RPr TGGGAGTTCATGGGTACAGA SEQ ID NO: 891
GADD45G NM_006705.2 FPr CGCGCTGCAGATCCATTT SEQ ID NO: 892
Probe CGCTGATCCAGGCTTTCTGCTGC SEQ ID NO: 893
RPr CGCACTATGTCGATGTCGTTCT SEQ ID NO: 894
GAGE4 NM_001474.1 FPr GGAACAGGGTCACCCACAGA SEQ ID NO: 895
Probe TCAGGACCATCTTCACACTCACACCCA SEQ ID NO: 896
RPr GATTTGGCGGGTCCATCTC SEQ ID NO: 897
GBP1 NM_002053.1 FPr TTGGGAAATATTTGGGCATT SEQ ID NO: 898
Probe TTGGGACATTGTAGACTTGGCCAGAC SEQ ID NO: 899
RPr AGAAGCTAGGGTGGTTGTCC SEQ ID NO: 900
GBP2 NM_004120.2 FPr GCATGGGAACCATCAACCA SEQ ID NO: 901
Probe CCATGGACCAACTTCACTATGTGACAGA SEQ ID NO: 902
GC
RPr TGAGGAGTTTGCCTTGATTCG SEQ ID NO: 903
GCLC NM_001498.1 FPr CTGTTGCAGGAAGGCATTGA SEQ ID NO: 904
Probe CATCTCCTGGCCCAGCATGTT SEQ ID NO: 905
RPr GTCAGTGGGTCTCTAATAAAGAGATGAG SEQ ID NO: 906
GCLM NM_002061.1 FPr TGTAGAATCAAACTCTTCATCATCAACT SEQ ID NO: 907
AG
Probe TGCAGTTGACATGGCCTGTTCAGTCC SEQ ID NO: 908
RPr CACAGAATCCAGCTGTGCAACT SEQ ID NO: 909
GCNT1 NM_001490.3 FPr TGGTGCTTGGAGCATAGAAG SEQ ID NO: 910
Probe TGCCCTTCACAAAGGAAATCCCTG SEQ ID NO: 911
RPr GCAACGTCCTCAGCATTTC SEQ ID NO: 912
GDF15 NM_004864.1 FPr CGCTCCAGACCTATGATGACT SEQ ID NO: 913
Probe TGTTAGCCAAAGACTGCCACTGCA SEQ ID NO: 914
RPr ACAGTGGAAGGACCAGGACT SEQ ID NO: 915
GIT1 NM_014030.2 FPr GTGTATGACGAGGTGGATCG SEQ ID NO: 916
Probe AGCCAGCCACACTGCATCATTTTC SEQ ID NO: 917
RPr ACCAGAGTGCTGTGGTTTTG SEQ ID NO: 918
GJA1 NM_000165.2 FPr GTTCACTGGGGGTGTATGG SEQ ID NO: 919
Probe ATCCCCTCCCTCTCCACCCATCTA SEQ ID NO: 920
RPr AAATACCAACATGCACCTCTCTT SEQ ID NO: 921
GJB2 NM_004004.3 FPr TGTCATGTACGACGGCTTCT SEQ ID NO: 922
Probe AGGCGTTGCACTTCACCAGCC SEQ ID NO: 923
RPr AGTCCACAGTGTTGGGACAA SEQ ID NO: 924
GPX1 NM_000581.2 FPr GCTTATGACCGACCCCAA SEQ ID NO: 925
Probe CTCATCACCTGGTCTCCGGTGTGT SEQ ID NO: 926
RPr AAAGTTCCAGGCAACATCGT SEQ ID NO: 927
GPX2 NM_002083.1 FPr CACACAGATCTCCTACTCCATCCA SEQ ID NO: 928
Probe CATGCTGCATCCTAAGGCTCCTCAGG SEQ ID NO: 929
RPr GGTCCAGCAGTGTCTCCTGAA SEQ ID NO: 930
Grb10 NM_005311.2 FPr CTTCGCCTTTGCTGATTGC SEQ ID NO: 931
Probe CTCCAAACGCCTGCCTGACGACTG SEQ ID NO: 932
RPr CCATAACGCACATGCTCCAA SEQ ID NO: 933
GRB14 NM_004490.1 FPr TCCCACTGAAGCCCTTTCAG SEQ ID NO: 934
Probe CCTCCAAGCGAGTCCTTCTTCAACCG SEQ ID NO: 935
RPr AGTGCCCAGGCGTAAACATC SEQ ID NO: 936
GRB2 NM_002086.2 FPr GTCCATCAGTGCATGACGTT SEQ ID NO: 937
Probe AGGCCACGTATAGTCCTAGCTGACGC SEQ ID NO: 938
RPr AGCCCACTTGGTTTCTTGTT SEQ ID NO: 939
GRB7 NM_005310.1 FPr CCATCTGCATCCATCTTGTT SEQ ID NO: 940
Probe CTCCCCACCCTTGAGAAGTGCCT SEQ ID NO: 941
RPr GGCCACCAGGGTATTATCTG SEQ ID NO: 942
GRIK1 NM_000830.2 FPr GTTGGGTGCATCTCTCGG SEQ ID NO: 943
Probe AATTCATGCCGAGATACAGCCGCT SEQ ID NO: 944
RPr CGTGCTCCATCTTCCTAGCTT SEQ ID NO: 945
GRO1 NM_001511.1 FPr CGAAAAGATGCTGAACAGTGACA SEQ ID NO: 946
Probe CTTCCTCCTCCCTTCTGGTCAGTTGGAT SEQ ID NO: 947
RPr TCAGGAACAGCCACCAGTGA SEQ ID NO: 948
GRP NM_002091.1 FPr CTGGGTCTCATAGAAGCAAAGGA SEQ ID NO: 949
Probe AGAAACCACCAGCCACCTCAACCCA SEQ ID NO: 950
RPr CCACGAAGGCTGCTGATTG SEQ ID NO: 951
GRPR NM_005314.1 FPr ATGCTGCTGGCCATTCCA SEQ ID NO: 952
Probe CCGTGTTTTCTGACCTCCATCCCTTCC SEQ ID NO: 953
RPr AGGTCTGGTTGGTGCTTTCCT SEQ ID NO: 954
GSK3B NM_002093.2 FPr GACAAGGACGGCAGCAAG SEQ ID NO: 955
Probe CCAGGAGTTGCCACCACTGTTGTC SEQ ID NO: 956
RPr TTGTGGCCTGTCTGGACC SEQ ID NO: 957
GSTA3 NM_000847.3 FPr TCTCCAACTTCCCTCTGCTG SEQ ID NO: 958
Probe AGGCCCTGAAAACCAGAATCAGCA SEQ ID NO: 959
RPr ACTTCTTCACCGTGGGCA SEQ ID NO: 960
GSTM1 NM_000561.1 FPr AAGCTATGAGGAAAAGAAGTACACGAT SEQ ID NO: 961
Probe TCAGCCACTGGCTTCTGTCATAATCAGG SEQ ID NO: 962
AG
RPr GGCCCAGCTTGAATTTTTCA SEQ ID NO: 963
GSTM3 NM_000849.3 FPr CAATGCCATCTTGCGCTACAT SEQ ID NO: 964
Probe CTCGCAAGCACAACATGTGTGGTGAGA SEQ ID NO: 965
RPr GTCCACTCGAATCTTTTCTTCTTCA SEQ ID NO: 966
GSTp NM_000852.2 FPr GAGACCCTGCTGTCCCAGAA SEQ ID NO: 967
Probe TCCCACAATGAAGGTCTTGCCTCCCT SEQ ID NO: 968
RPr GGTTGTAGTCAGCGAAGGAGATC SEQ ID NO: 969
GSTT1 NM_000853.1 FPr CACCATCCCCACCCTGTCT SEQ ID NO: 970
Probe CACAGCCGCCTGAAAGCCACAAT SEQ ID NO: 971
RPr GGCCTCAGTGTGCATCATTCT SEQ ID NO: 972
H2AFZ NM_002106.2 FPr CCGGAAAGGCCAAGACAA SEQ ID NO: 973
Probe CCCGCTCGCAGAGAGCCGG SEQ ID NO: 974
RPr AATACGGCCCACTGGGAACT SEQ ID NO: 975
HB-EGF NM_001945.1 FPr GACTCCTTCGTCCCCAGTTG SEQ ID NO: 976
Probe TTGGGCCTCCCATAATTGCTTTGCC SEQ ID NO: 977
RPr TGGCACTTGAAGGCTCTGGTA SEQ ID NO: 978
hCRA a U78556.1 FPr TGACACCCTTACCTTCCTGAGAA SEQ ID NO: 979
Probe TCTGCTTTCCGCGCTCCCAGG SEQ ID NO: 980
RPr AAAAACACGAGTCAAAAATAGAAGTCA SEQ ID NO: 981
CT
HDAC1 NM_004964.2 FPr CAAGTACCACAGCGATGACTACATTAA SEQ ID NO: 982
Probe TTCTTGCGCTCCATCCGTCCAGA SEQ ID NO: 983
RPr GCTTGCTGTACTCCGACATGTT SEQ ID NO: 984
HDAC2 NM_001527.1 FPr GGTGGCTACACAATCCGTAA SEQ ID NO: 985
Probe TGCAGTCTCATATGTCCAACATCGAGC SEQ ID NO: 986
RPr TGGGAATCTCACAATCAAGG SEQ ID NO: 987
HDGF NM_004494.1 FPr TCCTAGGCATTCTGGACCTC SEQ ID NO: 988
Probe CATTCCTACCCCTGATCCCAACCC SEQ ID NO: 989
RPr GCTGTTGATGCTCCATCCTT SEQ ID NO: 990
hENT1 NM_004955.1 FPr AGCCGTGACTGTTGAGGTC SEQ ID NO: 991
Probe AAGTCCAGCATCGCAGGCAGC SEQ ID NO: 992
RPr AAGTAACGTTCCCAGGTGCT SEQ ID NO: 993
Hepsin NM_002151.1 FPr AGGCTGCTGGAGGTCATCTC SEQ ID NO: 994
Probe CCAGAGGCCGTTTCTTGGCCG SEQ ID NO: 995
RPr CTTCCTGCGGCCACAGTCT SEQ ID NO: 996
HER2 NM_004448.1 FPr CGGTGTGAGAAGTGCAGCAA SEQ ID NO: 997
Probe CCAGACCATAGCACACTCGGGCAC SEQ ID NO: 998
RPr CCTCTCGCAAGTGCTCCAT SEQ ID NO: 999
Herstatin AF177761.2 FPr CACCCTGTCCTATCCTTCCT SEQ ID NO: 1000
Probe CCCTCTTGGGACCTAGTCTCTGCCT SEQ ID NO: 1001
RPr GGCCAGGGGTAGAGAGTAGA SEQ ID NO: 1002
HES6 NM_018645.3 FPr TTAGGGACCCTGCAGCTCT SEQ ID NO: 1003
Probe TAGCTCCCTCCCTCCACCCACTC SEQ ID NO: 1004
RPr CTACAAAATTCTTCCTCCTGCC SEQ ID NO: 1005
HGF M29145.1 FPr CCGAAATCCAGATGATGATG SEQ ID NO: 1006
Probe CTCATGGACCCTGGTGCTACACG SEQ ID NO: 1007
RPr CCCAAGGAATGAGTGGATTT SEQ ID NO: 1008
HIF1A NM_001530.1 FPr TGAACATAAAGTCTGCAACATGGA SEQ ID NO: 1009
Probe TTGCACTGCACAGGCCACATTCAC SEQ ID NO: 1010
RPr TGAGGTTGGTTACTGTTGGTATCATATA SEQ ID NO: 1011
HK1 NM_000188.1 FPr TACGCACAGAGGCAAGCA SEQ ID NO: 1012
Probe TAAGAGTCCGGGATCCCCAGCCTA SEQ ID NO: 1013
RPr GAGAGAAGTGCTGGAGAGGC SEQ ID NO: 1014
HLA-DPB1 NM_002121.4 FPr TCCATGATGGTTCTGCAGGTT SEQ ID NO: 1015
Probe CCCCGGACAGTGGCTCTGACG SEQ ID NO: 1016
RPr TGAGCAGCACCATCAGTAACG SEQ ID NO: 1017
HLA-DRA NM_019111.3 FPr GACGATTTGCCAGCTTTGAG SEQ ID NO: 1018
Probe TCAAGGTGCATTGGCCAACATAGC SEQ ID NO: 1019
RPr TCCAGGTTGGCTTTGTCC SEQ ID NO: 1020
HLA-DRB1 NM_002124.1 FPr GCTTTCTCAGGACCTGGTTG SEQ ID NO: 1021
Probe CATTTTCTGCAGTTGCCGAACCAG SEQ ID NO: 1022
RPr AGGAAGCCACAAGGGAGG SEQ ID NO: 1023
HLA-G NM_002127.2 FPr CCTGCGCGGCTACTACAAC SEQ ID NO: 1024
Probe CGAGGCCAGTTCTCACACCCTCCAG SEQ ID NO: 1025
RPr CAGGTCGCAGCCAATCATC SEQ ID NO: 1026
HMGB1 NM_002128.3 FPr TGGCCTGTCCATTGGTGAT SEQ ID NO: 1027
Probe TTCCACATCTCTCCCAGTTTCTTCGCAA SEQ ID NO: 1028
RPr GCTTGTCATCTGCAGCAGTGTT SEQ ID NO: 1029
hMLH NM_000249.2 FPr CTACTTCCAGCAACCCCAGA SEQ ID NO: 1030
Probe TCCACATCAGAATCTTCCCG SEQ ID NO: 1031
RPr CTTTCGGGAATCATCTTCCA SEQ ID NO: 1032
HNRPAB NM_004499.2 FPr CAAGGGAGCGACCAACTGA SEQ ID NO: 1033
Probe CTCCATATCCAAACAAAGCATGTGTGCG SEQ ID NO: 1034
RPr GTTTGCCAAGTTAAATTTGGTACATAAT SEQ ID NO: 1035
HNRPD NM_031370.2 FPr GCCAGTAAGAACGAGGAGGA SEQ ID NO: 1036
Probe AAGGCCATTCAAACTCCTCCCCAC SEQ ID NO: 1037
RPr CGTCGCTGCTTCAGAGTGT SEQ ID NO: 1038
HoxA1 NM_005522.3 FPr AGTGACAGATGGACAATGCAAGA SEQ ID NO: 1039
Probe TGAACTCCTTCCTGGAATACCCCA SEQ ID NO: 1040
RPr CCGAGTCGCCACTGCTAAGT SEQ ID NO: 1041
HoxA5 NM_019102.2 FPr TCCCTTGTGTTCCTTCTGTGAA SEQ ID NO: 1042
Probe AGCCCTGTTCTCGTTGCCCTAATTCATC SEQ ID NO: 1043
RPr GGCAATAAACAGGCTCATGATTAA SEQ ID NO: 1044
HOXB13 NM_006361.2 FPr CGTGCCTTATGGTTACTTTGG SEQ ID NO: 1045
Probe ACACTCGGCAGGAGTAGTACCCGC SEQ ID NO: 1046
RPr CACAGGGTTTCAGCGAGC SEQ ID NO: 1047
HOXB7 NM_004502.2 FPr CAGCCTCAAGTTCGGTTTTC SEQ ID NO: 1048
Probe ACCGGAGCCTTCCCAGAACAAACT SEQ ID NO: 1049
RPr GTTGGAAGCAAACGCACA SEQ ID NO: 1050
HRAS NM_005343.2 FPr GGACGAATACGACCCCACT SEQ ID NO: 1051
Probe ACCACCTGCTTCCGGTAGGAATCC SEQ ID NO: 1052
RPr GCACGTCTCCCCATCAAT SEQ ID NO: 1053
HSBP1 NM_001537.1 FPr GGAGATGGCCGAGACTGAC SEQ ID NO: 1054
Probe CAAGACCGTGCAGGACCTCACCT SEQ ID NO: 1055
RPr CTGCAGGAGTGTCTGCACC SEQ ID NO: 1056
HSD17B1 NM_000413.1 FPr CTGGACCGCACGGACATC SEQ ID NO: 1057
Probe ACCGCTTCTACCAATACCTCGCCCA SEQ ID NO: 1058
RPr CGCCTCGCGAAAGACTTG SEQ ID NO: 1059
HSD17B2 NM_002153.1 FPr GCTTTCCAAGTGGGGAATTA SEQ ID NO: 1060
Probe AGTTGCTTCCATCCAACCTGGAGG SEQ ID NO: 1061
RPr TGCCTGCGATATTTGTTAGG SEQ ID NO: 1062
HSPA1A NM_005345.4 FPr CTGCTGCGACAGTCCACTA SEQ ID NO: 1063
Probe AGAGTGACTCCCGTTGTCCCAAGG SEQ ID NO: 1064
RPr CAGGTTCGCTCTGGGAAG SEQ ID NO: 1065
HSPA1B NM_005346.3 FPr GGTCCGCTTCGTCTTTCGA SEQ ID NO: 1066
Probe TGACTCCCGCGGTCCCAAGG SEQ ID NO: 1067
RPr GCACAGGTTCGCTCTGGAA SEQ ID NO: 1068
HSPA4 NM_002154.3 FPr TTCAGTGTGTCCAGTGCATC SEQ ID NO: 1069
Probe CATTTTCCTCAGACTTGTGAACCTCCACT SEQ ID NO: 1070
RPr ATCTGTTTCCATTGGCTCCT SEQ ID NO: 1071
HSPA5 NM_005347.2 FPr GGCTAGTAGAACTGGATCCCAACA SEQ ID NO: 1072
Probe TAATTAGACCTAGGCCTCAGCTGCACTG SEQ ID NO: 1073
CC
RPr GGTCTGCCCAAATGCTTTTC SEQ ID NO: 1074
HSPA8 NM_006597.3 FPr CCTCCCTCTGGTGGTGCTT SEQ ID NO: 1075
Probe CTCAGGGCCCACCATTGAAGAGGTTG SEQ ID NO: 1076
RPr GCTACATCTACACTTGGTTGGCTTAA SEQ ID NO: 1077
HSPB1 NM_001540.2 FPr CCGACTGGAGGAGCATAAA SEQ ID NO: 1078
Probe CGCACTTTTCTGAGCAGACGTCCA SEQ ID NO: 1079
RPr ATGCTGGCTGACTCTGCTC SEQ ID NO: 1080
HSPCA NM_005348.2 FPr CAAAAGGCAGAGGCTGATAA SEQ ID NO: 1081
Probe TGACCAGATCCTTCACAGACTTGTCGT SEQ ID NO: 1082
RPr AGCGCAGTTTCATAAAGCAA SEQ ID NO: 1083
HSPE1 NM_002157.1 FPr GCAAGCAACAGTAGTCGCTG SEQ ID NO: 1084
Probe TCTCCACCCTTTCCTTTAGAACCCG SEQ ID NO: 1085
RPr CCAACTTTCACGCTAACTGGT SEQ ID NO: 1086
HSPG2 NM_005529.2 FPr GAGTACGTGTGCCGAGTGTT SEQ ID NO: 1087
Probe CAGCTCCGTGCCTCTAGAGGCCT SEQ ID NO: 1088
RPr CTCAATGGTGACCAGGACA SEQ ID NO: 1089
ICAM1 NM_000201.1 FPr GCAGACAGTGACCATCTACAGCTT SEQ ID NO: 1090
Probe CCGGCGCCCAACGTGATTCT SEQ ID NO: 1091
RPr CTTCTGAGACCTCTGGCTTCGT SEQ ID NO: 1092
ICAM2 NM_000873.2 FPr GGTCATCCTGACACTGCAAC SEQ ID NO: 1093
Probe TTGCCCACAGCCACCAAAGTG SEQ ID NO: 1094
RPr TGCACTCAATGGTGAAGGAC SEQ ID NO: 1095
ID1 NM_002165.1 FPr AGAACCGCAAGGTGAGCAA SEQ ID NO: 1096
Probe TGGAGATTCTCCAGCACGTCATCGAC SEQ ID NO: 1097
RPr TCCAACTGAAGGTCCCTGATG SEQ ID NO: 1098
ID2 NM_002166.1 FPr AACGACTGCTACTCCAAGCTCAA SEQ ID NO: 1099
Probe TGCCCAGCATCCCCCAGAACAA SEQ ID NO: 1100
RPr GGATTTCCATCTTGCTCACCTT SEQ ID NO: 1101
ID3 NM_002167.2 FPr CTTCACCAAATCCCTTCCTG SEQ ID NO: 1102
Probe TCACAGTCCTTCGCTCCTGAGCAC SEQ ID NO: 1103
RPr CTCTGGCTCTTCAGGCTACA SEQ ID NO: 1104
ID4 NM_001546.2 FPr TGGCCTGGCTCTTAATTTG SEQ ID NO: 1105
Probe CTTTTGTTTTGCCCAGTATAGACTCGGAAG SEQ ID NO: 1106
RPr TGCAATCATGCAAGACCAC SEQ ID NO: 1107
IFIT1 NM_001548.1 FPr TGACAACCAAGCAAATGTGA SEQ ID NO: 1108
Probe AAGTTGCCCCAGGTCACCAGACTC SEQ ID NO: 1109
RPr CAGTCTGCCCATGTGGTAAT SEQ ID NO: 1110
IGF1 NM_000618.1 FPr TCCGGAGCTGTGATCTAAGGA SEQ ID NO: 1111
Probe TGTATTGCGCACCCCTCAAGCCTG SEQ ID NO: 1112
RPr CGGACAGAGCGAGCTGACTT SEQ ID NO: 1113
IGF1R NM_000875.2 FPr GCATGGTAGCCGAAGATTTCA SEQ ID NO: 1114
Probe CGCGTCATACCAAAATCTCCGATTTTGA SEQ ID NO: 1115
RPr TTTCCGGTAATAGTCTGTCTCATAGATATC SEQ ID NO: 1116
IGF2 NM_000612.2 FPr CCGTGCTTCCGGACAACTT SEQ ID NO: 1117
Probe TACCCCGTGGGCAAGTTCTTCCAA SEQ ID NO: 1118
RPr TGGACTGCTTCCAGGTGTCA SEQ ID NO: 1119
IGFBP2 NM_000597.1 FPr GTGGACAGCACCATGAACA SEQ ID NO: 1120
Probe CTTCCGGCCAGCACTGCCTC SEQ ID NO: 1121
RPr CCTTCATACCCGACTTGAGG SEQ ID NO: 1122
IGFBP3 NM_000598.1 FPr ACGCACCGGGTGTCTGA SEQ ID NO: 1123
Probe CCCAAGTTCCACCCCCTCCATTCA SEQ ID NO: 1124
RPr TGCCCTTTCTTGATGATGATTATC SEQ ID NO: 1125
IGFBP5 NM_000599.1 FPr TGGACAAGTACGGGATGAAGCT SEQ ID NO: 1126
Probe CCCGTCAACGTACTCCATGCCTGG SEQ ID NO: 1127
RPr CGAAGGTGTGGCACTGAAAGT SEQ ID NO: 1128
IGFBP6 NM_002178.1 FPr TGAACCGCAGAGACCAACAG SEQ ID NO: 1129
Probe ATCCAGGCACCTCTACCACGCCCTC SEQ ID NO: 1130
RPr GTCTTGGACACCCGCAGAAT SEQ ID NO: 1131
IGFBP7 NM_001553 FPr GGGTCACTATGGAGTTCAAAGGA SEQ ID NO: 1132
Probe CCCGGTCACCAGGCAGGAGTTCT SEQ ID NO: 1133
RPr GGGTCTGAATGGCCAGGTT SEQ ID NO: 1134
IHH NM_002181.1 FPr AAGGACGAGGAGAACACAGG SEQ ID NO: 1135
Probe ATGACCCAGCGCTGCAAGGAC SEQ ID NO: 1136
RPr AGATAGCCAGCGAGTTCAGG SEQ ID NO: 1137
IL-8 NM_000584.2 FPr AAGGAACCATCTCACTGTGTGTAAAC SEQ ID NO: 1138
Probe TGACTTCCAAGCTGGCCGTGGC SEQ ID NO: 1139
RPr ATCAGGAAGGCTGCCAAGAG SEQ ID NO: 1140
IL10 NM_000572.1 FPr GGCGCTGTCATCGATTTCTT SEQ ID NO: 1141
Probe CTGCTCCACGGCCTTGCTCTTG SEQ ID NO: 1142
RPr TGGAGCTTATTAAAGGCATTCTTCA SEQ ID NO: 1143
IL1B NM_000576.2 FPr AGCTGAGGAAGATGCTGGTT SEQ ID NO: 1144
Probe TGCCCACAGACCTTCCAGGAGAAT SEQ ID NO: 1145
RPr GGAAAGAAGGTGCTCAGGTC SEQ ID NO: 1146
IL6 NM_000600.1 FPr CCTGAACCTTCCAAAGATGG SEQ ID NO: 1147
Probe CCAGATTGGAAGCATCCATCTTTTTCA SEQ ID NO: 1148
RPr ACCAGGCAAGTCTCCTCATT SEQ ID NO: 1149
IL6ST NM_002184.2 FPr GGCCTAATGTTCCAGATCCT SEQ ID NO: 1150
Probe CATATTGCCCAGTGGTCACCTCACA SEQ ID NO: 1151
RPr AAAATTGTGCCTTGGAGGAG SEQ ID NO: 1152
ILT-2 NM_006669.1 FPr AGCCATCACTCTCAGTGCAG SEQ ID NO: 1153
Probe CAGGTCCTATCGTGGCCCCTGA SEQ ID NO: 1154
RPr ACTGCAGAGTCAGGGTCTCC SEQ ID NO: 1155
IMP-1 NM_006546.2 FPr GAAAGTGTTTGCGGAGCAC SEQ ID NO: 1156
Probe CTCCTACAGCGGCCAGTTCTTGGT SEQ ID NO: 1157
RPr GAAGGCGTAGCCGGATTT SEQ ID NO: 1158
IMP2 NM_006548.3 FPr CAATCTGATCCCAGGGTTGAA SEQ ID NO: 1159
Probe CTCAGCGCACTTGGCATCTTTTCAACA SEQ ID NO: 1160
RPr GGCCCTGCTGGTGGAGATA SEQ ID NO: 1161
ING1L NM_001564.1 FPr TGTTTCCAAGATCCTGCTGA SEQ ID NO: 1162
Probe CCATCTTTGCTTTATCTGAGGCTCGTTC SEQ ID NO: 1163
RPr TCTTTCTGGTTGGCTGGAAT SEQ ID NO: 1164
ING5 NM_032329.4 FPr CCTACAGCAAGTGCAAGGAA SEQ ID NO: 1165
Probe CCAGCTGCACTTTGTCGTCACTGT SEQ ID NO: 1166
RPr CATCTCGTAGGTCTGCATGG SEQ ID NO: 1167
INHA NM_002191.2 FPr CCTCCCAGTTTCATCTTCCACTA SEQ ID NO: 1168
Probe ATGTGCAGCCCACAACCACCATGA SEQ ID NO: 1169
RPr AGGGACTGGAAGGGACAGGTT SEQ ID NO: 1170
INHBA NM_002192.1 FPr GTGCCCGAGCCATATAGCA SEQ ID NO: 1171
Probe ACGTCCGGGTCCTCACTGTCCTTCC SEQ ID NO: 1172
RPr CGGTAGTGGTTGATGACTGTTGA SEQ ID NO: 1173
INHBB NM_002193.1 FPr AGCCTCCAGGATACCAGCAA SEQ ID NO: 1174
Probe AGCTAAGCTGCCATTTGTCACCG SEQ ID NO: 1175
RPr TCTCCGACTGACAGGCATTTG SEQ ID NO: 1176
IRS1 NM_005544.1 FPr CCACAGCTCACCTTCTGTCA SEQ ID NO: 1177
Probe TCCATCCCAGCTCCAGCCAG SEQ ID NO: 1178
RPr CCTCAGTGCCAGTCTCTTCC SEQ ID NO: 1179
ITGA3 NM_002204.1 FPr CCATGATCCTCACTCTGCTG SEQ ID NO: 1180
Probe CACTCCAGACCTCGCTTAGCATGG SEQ ID NO: 1181
RPr GAAGCTTTGTAGCCGGTGAT SEQ ID NO: 1182
ITGA4 NM_000885.2 FPr CAACGCTTCAGTGATCAATCC SEQ ID NO: 1183
Probe CGATCCTGCATCTGTAAATCGCCC SEQ ID NO: 1184
RPr GTCTGGCCGGGATTCTTT SEQ ID NO: 1185
ITGA5 NM_002205.1 FPr AGGCCAGCCCTACATTATCA SEQ ID NO: 1186
Probe TCTGAGCCTTGTCCTCTATCCGGC SEQ ID NO: 1187
RPr GTCTTCTCCACAGTCCAGCA SEQ ID NO: 1188
ITGA6 NM_000210.1 FPr CAGTGACAAACAGCCCTTCC SEQ ID NO: 1189
Probe TCGCCATCTTTTGTGGGATTCCTT SEQ ID NO: 1190
RPr GTTTAGCCTCATGGGCGTC SEQ ID NO: 1191
ITGA7 NM_002206.1 FPr GATATGATTGGTCGCTGCTTTG SEQ ID NO: 1192
Probe CAGCCAGGACCTGGCCATCCG SEQ ID NO: 1193
RPr AGAACTTCCATTCCCCACCAT SEQ ID NO: 1194
ITGAV NM_002210.2 FPr ACTCGGACTGCACAAGCTATT SEQ ID NO: 1195
Probe CCGACAGCCACAGAATAACCCAAA SEQ ID NO: 1196
RPr TGCCATCACCATTGAAATCT SEQ ID NO: 1197
ITGB1 NM_002211.2 FPr TCAGAATTGGATTTGGCTCA SEQ ID NO: 1198
Probe TGCTAATGTAAGGCATCACAGTCTTTTCCA SEQ ID NO: 1199
RPr CCTGAGCTTAGCTGGTGTTG SEQ ID NO: 1200
ITGB3 NM_000212.1 FPr ACCGGGAGCCCTACATGAC SEQ ID NO: 1201
Probe AAATACCTGCAACCGTTACTGCCGTGAC SEQ ID NO: 1202
RPr CCTTAAGCTCTTTCACTGACTCAATCT SEQ ID NO: 1203
ITGB4 NM_000213.2 FPr CAAGGTGCCCTCAGTGGA SEQ ID NO: 1204
Probe CACCAACCTGTACCCGTATTGCGA SEQ ID NO: 1205
RPr GCGCACACCTTCATCTCAT SEQ ID NO: 1206
ITGB5 NM_002213.3 FPr TCGTGAAAGATGACCAGGAG SEQ ID NO: 1207
Probe TGCTATGTTTCTACAAAACCGCCAAGG SEQ ID NO: 1208
RPr GGTGAACATCATGACGCAGT SEQ ID NO: 1209
K-ras NM_033360.2 FPr GTCAAAATGGGGAGGGACTA SEQ ID NO: 1210
Probe TGTATCTTGTTGAGCTATCCAAACTGCCC SEQ ID NO: 1211
RPr CAGGACCACCACAGAGTGAG SEQ ID NO: 1212
KCNH2 iso NM_000238.2 FPr GAGCGCAAAGTGGAAATCG SEQ ID NO: 1213
a/b
Probe TAGGAAGCAGCTCCCATCTTTCCGGTA SEQ ID NO: 1214
RPr TCTTCACGGGCACCACATC SEQ ID NO: 1215
KCNH2 iso NM_172057.1 FPr TCCTGCTGCTGGTCATCTAC SEQ ID NO: 1216
a/c
Probe TGTCTTCACACCCTACTCGGCTGC SEQ ID NO: 1217
RPr CCTTCTTCCGTCTCCTTCAG SEQ ID NO: 1218
KCNK4 NM_016611.2 FPr CCTATCAGCCGCTGGTGT SEQ ID NO: 1219
Probe ATCCTGCTCGGCCTGGCTTACTTC SEQ ID NO: 1220
RPr TGGTGGTGAGCACTGAGG SEQ ID NO: 1221
KDR NM_002253.1 FPr GAGGACGAAGGCCTCTACAC SEQ ID NO: 1222
Probe CAGGCATGCAGTGTTCTTGGCTGT SEQ ID NO: 1223
RPr AAAAATGCCTCCACTTTTGC SEQ ID NO: 1224
Ki-67 NM_002417.1 FPr CGGACTTTGGGTGCGACTT SEQ ID NO: 1225
Probe CCACTTGTCGAACCACCGCTCGT SEQ ID NO: 1226
RPr TTACAACTCTTCCACTGGGACGAT SEQ ID NO: 1227
KIAA0125 NM_014792.2 FPr GTGTCCTGGTCCATGTGGT SEQ ID NO: 1228
Probe CACGTGTCTCCACCTCCAAGGAGA SEQ ID NO: 1229
RPr GGGAGGTGCACACTGAGG SEQ ID NO: 1230
KIF22 NM_007317.1 FPr CTAAGGCACTTGCTGGAAGG SEQ ID NO: 1231
Probe TCCATAGGCAAGCACACTGGCATT SEQ ID NO: 1232
RPr TCTTCCCAGCTCCTGTGG SEQ ID NO: 1233
KIF2C NM_006845.2 FPr AATTCCTGCTCCAAAAGAAAGTCTT SEQ ID NO: 1234
Probe AAGCCGCTCCACTCGCATGTCC SEQ ID NO: 1235
RPr CGTGATGCGAAGCTCTGAGA SEQ ID NO: 1236
KIFC1 XM_371813.1 FPr CCACAGGGTTGAAGAACCAG SEQ ID NO: 1237
Probe AGCCAGTTCCTGCTGTTCCTGTCC SEQ ID NO: 1238
RPr CACCTGATGTGCCAGACTTC SEQ ID NO: 1239
Kitlng NM_000899.1 FPr GTCCCCGGGATGGATGTT SEQ ID NO: 1240
Probe CATCTCGCTTATCCAACAATGACTTGGCA SEQ ID NO: 1241
RPr GATCAGTCAAGCTGTCTGACAATTG SEQ ID NO: 1242
KLF5 NM_001730.3 FPr GTGCAACCGCAGCTTCTC SEQ ID NO: 1243
Probe CTCTGACCACCTGGCCCTGCATAT SEQ ID NO: 1244
RPr CGGGCAGTGCTCAGTTCT SEQ ID NO: 1245
KLF6 NM_001300.4 FPr CACGAGACCGGCTACTTCTC SEQ ID NO: 1246
Probe AGTACTCCTCCAGAGACGGCAGCG SEQ ID NO: 1247
RPr GCTCTAGGCAGGTCTGTTGC SEQ ID NO: 1248
KLK10 NM_002776.1 FPr GCCCAGAGGCTCCATCGT SEQ ID NO: 1249
Probe CCTCTTCCTCCCCAGTCGGCTGA SEQ ID NO: 1250
RPr CAGAGGTTTGAACAGTGCAGACA SEQ ID NO: 1251
KLK6 NM_002774.2 FPr GACGTGAGGGTCCTGATTCT SEQ ID NO: 1252
Probe TTACCCCAGCTCCATCCTTGCATC SEQ ID NO: 1253
RPr TCCTCACTCATCACGTCCTC SEQ ID NO: 1254
KLRK1 NM_007360.1 FPr TGAGAGCCAGGCTTCTTGTA SEQ ID NO: 1255
Probe TGTCTCAAAATGCCAGCCTTCTGAA SEQ ID NO: 1256
RPr ATCCTGGTCCTCTTTGCTGT SEQ ID NO: 1257
KNTC2 NM_006101.1 FPr ATGTGCCAGTGAGCTTGAGT SEQ ID NO: 1258
Probe CCTTGGAGAAACACAAGCACCTGC SEQ ID NO: 1259
RPr TGAGCCCCTGGTTAACAGTA SEQ ID NO: 1260
KRAS2 NM_004985.3 FPr GAGACCAAGGTTGCAAGGC SEQ ID NO: 1261
Probe AAGCTCAAAGGTTCACACAGGGCC SEQ ID NO: 1262
RPr CAGTCCATGCTGTGAAACTCTC SEQ ID NO: 1263
KRT19 NM_002276.1 FPr TGAGCGGCAGAATCAGGAGTA SEQ ID NO: 1264
Probe CTCATGGACATCAAGTCGCGGCTG SEQ ID NO: 1265
RPr TGCGGTAGGTGGCAATCTC SEQ ID NO: 1266
KRT8 NM_002273.1 FPr GGATGAAGCTTACATGAACAAGGTAGA SEQ ID NO: 1267
Probe CGTCGGTCAGCCCTTCCAGGC SEQ ID NO: 1268
RPr CATATAGCTGCCTGAGGAAGTTGAT SEQ ID NO: 1269
LAMA3 NM_000227.2 FPr CAGATGAGGCACATGGAGAC SEQ ID NO: 1270
Probe CTGATTCCTCAGGTCCTTGGCCTG SEQ ID NO: 1271
RPr TTGAAATGGCAGAACGGTAG SEQ ID NO: 1272
LAMB3 NM_000228.1 FPr ACTGACCAAGCCTGAGACCT SEQ ID NO: 1273
Probe CCACTCGCCATACTGGGTGCAGT SEQ ID NO: 1274
RPr GTCACACTTGCAGCATTTCA SEQ ID NO: 1275
LAMC2 NM_005562.1 FPr ACTCAAGCGGAAATTGAAGCA SEQ ID NO: 1276
Probe AGGTCTTATCAGCACAGTCTCCGCCTCC SEQ ID NO: 1277
RPr ACTCCCTGAAGCCGAGACACT SEQ ID NO: 1278
LAT NM_014387.2 FPr GTGAACGTTCCGGAGAGC SEQ ID NO: 1279
Probe ATCCAGAGACGCTTCTGCGCTCTC SEQ ID NO: 1280
RPr ACATTCACATACTCCCGGCT SEQ ID NO: 1281
LCN2 NM_005564.2 FPr CGCTGGGCAACATTAAGAG SEQ ID NO: 1282
Probe TCACCACTCGGACGAGGTAACTCG SEQ ID NO: 1283
RPr AGCATGCTGGTTGTAGTTGGT SEQ ID NO: 1284
LDLRAP1 NM_015627.1 FPr CAGTGCCTCTCGCCTGTC SEQ ID NO: 1285
Probe ACTGGGACAAGCCTGACAGCAGC SEQ ID NO: 1286
RPr TGAAGAGGTCATCCTGCTCTG SEQ ID NO: 1287
LEF NM_016269.2 FPr GATGACGGAAAGCATCCAG SEQ ID NO: 1288
Probe TGGAGGCCTCTACAACAAGGGACC SEQ ID NO: 1289
RPr CCCGGAATAACTCGAGTAGGA SEQ ID NO: 1290
LGALS3 NM_002306.1 FPr AGCGGAAAATGGCAGACAAT SEQ ID NO: 1291
Probe ACCCAGATAACGCATCATGGAGCGA SEQ ID NO: 1292
RPr CTTGAGGGTTTGGGTTTCCA SEQ ID NO: 1293
LGMN NM_001008530.1 FPr TTGGTGCCGTTCCTATAGATG SEQ ID NO: 1294
Probe CAGTGCTTGCCTCCATCTTCAGGA SEQ ID NO: 1295
RPr GAACCTGCCACGATCACC SEQ ID NO: 1296
LILRB3 NM_006864.1 FPr CACCTGGTCTGGGAAGATACC SEQ ID NO: 1297
Probe ACCGAGACCCCAATCAAAACCTCC SEQ ID NO: 1298
RPr AAGAGCAGCAGGACGAAGG SEQ ID NO: 1299
LMNB1 NM_005573.1 FPr TGCAAACGCTGGTGTCACA SEQ ID NO: 1300
Probe CAGCCCCCCAACTGACCTCATC SEQ ID NO: 1301
RPr CCCCACGAGTTCTGGTTCTTC SEQ ID NO: 1302
LMYC NM_012421.1 FPr CCCATCCAGAACACTGATTG SEQ ID NO: 1303
Probe TGACCTCCATCCCTTTCACTTGAATG SEQ ID NO: 1304
RPr CTGCTTTCTATGCACCCTTTC SEQ ID NO: 1305
LOX NM_002317.3 FPr CCAATGGGAGAACAACGG SEQ ID NO: 1306
Probe CAGGCTCAGCAAGCTGAACACCTG SEQ ID NO: 1307
RPr CGCTGAGGCTGGTACTGTG SEQ ID NO: 1308
LOXL2 NM_002318.1 FPr TCAGCGGGCTCTTAAACAA SEQ ID NO: 1309
Probe CAGCTGTCCCCGCAGTAAAGAAGC SEQ ID NO: 1310
RPr AAGACAGGAGTTGACCACGC SEQ ID NO: 1311
LRP5 NM_002335.1 FPr CGACTATGACCCACTGGACA SEQ ID NO: 1312
Probe CGCCCATCCACCCAGTAGATGAAC SEQ ID NO: 1313
RPr CTTGGCTCGCTTGATGTTC SEQ ID NO: 1314
LRP6 NM_002336.1 FPr GGATGTAGCCATCTCTGCCT SEQ ID NO: 1315
Probe ATAGACCTCAGGGCCTTCGCTGTG SEQ ID NO: 1316
RPr AGTTCAAAGCCAATAGGGCA SEQ ID NO: 1317
LY6D NM_003695.2 FPr AATGCTGATGACTTGGAGCAG SEQ ID NO: 1318
Probe CACAGACCCCACAGAGGATGAAGC SEQ ID NO: 1319
RPr CTGCATCCTCTGTGGGGT SEQ ID NO: 1320
MAD NM_002357.1 FPr TGGTTCTGATTAGGTAACGTATTGGA SEQ ID NO: 1321
Probe CTGCCCACAACTCCCTTGCACGTAA SEQ ID NO: 1322
RPr GGTCAAGGTGGGACACTGAAG SEQ ID NO: 1323
MAD1L1 NM_003550.1 FPr AGAAGCTGTCCCTGCAAGAG SEQ ID NO: 1324
Probe CATGTTCTTCACAATCGCTGCATCC SEQ ID NO: 1325
RPr AGCCGTACCAGCTCAGACTT SEQ ID NO: 1326
MAD2L1 NM_002358.2 FPr CCGGGAGCAGGGAATCAC SEQ ID NO: 1327
Probe CGGCCACGATTTCGGCGCT SEQ ID NO: 1328
RPr ATGCTGTTGATGCCGAATGA SEQ ID NO: 1329
MADH2 NM_005901.2 FPr GCTGCCTTTGGTAAGAACATGTC SEQ ID NO: 1330
Probe TCCATCTTGCCATTCACGCCGC SEQ ID NO: 1331
RPr ATCCCAGCAGTCTCTTCACAACT SEQ ID NO: 1332
MADH4 NM_005359.3 FPr GGACATTACTGGCCTGTTCACA SEQ ID NO: 1333
Probe TGCATTCCAGCCTCCCATTTCCA SEQ ID NO: 1334
RPr ACCAATACTCAGGAGCAGGATGA SEQ ID NO: 1335
MADH7 NM_005904.1 FPr TCCATCAAGGCTTTCGACTA SEQ ID NO: 1336
Probe CTGCAGGCTGTACGCCTTCTCG SEQ ID NO: 1337
RPr CTGCTGCATAAACTCGTGGT SEQ ID NO: 1338
MAP2 NM_031846.1 FPr CGGACCACCAGGTCAGAG SEQ ID NO: 1339
Probe CCACTCTTCCCTGCTCTGCGAATT SEQ ID NO: 1340
RPr CAGGGGTAGTGGGTGTTGAG SEQ ID NO: 1341
MAP2K1 NM_002755.2 FPr GCCTTTCTTACCCAGAAGCAGAA SEQ ID NO: 1342
Probe TCTCAAAGTCGTCATCCTTCAGTTCTCCCA SEQ ID NO: 1343
RPr CAGCCCCCAGCTCACTGAT SEQ ID NO: 1344
MAP3K1 XM_042066.8 FPr GGTTGGCATCAAAAGGAACT SEQ ID NO: 1345
Probe AATTGTCCCTGAAACTCTCCTGCACC SEQ ID NO: 1346
RPr TGCCATAAATGCAATTGTCC SEQ ID NO: 1347
MAPK14 NM_139012.1 FPr TGAGTGGAAAAGCCTGACCTATG SEQ ID NO: 1348
Probe TGAAGTCATCAGCTTTGTGCCACCACC SEQ ID NO: 1349
RPr GGACTCCATCTCTTCTTGGTCAA SEQ ID NO: 1350
Maspin NM_002639.1 FPr CAGATGGCCACTTTGAGAACATT SEQ ID NO: 1351
Probe AGCTGACAACAGTGTGAACGACCAGACC SEQ ID NO: 1352
RPr GGCAGCATTAACCACAAGGATT SEQ ID NO: 1353
MAX NM_002382.3 FPr CAAACGGGCTCATCATAATGC SEQ ID NO: 1354
Probe TGATGTGGTCCCTACGTTTTCGTTCCA SEQ ID NO: 1355
RPr TCCCGCAAACTGTGAAAGCT SEQ ID NO: 1356
MCM2 NM_004526.1 FPr GACTTTTGCCCGCTACCTTTC SEQ ID NO: 1357
Probe ACAGCTCATTGTTGTCACGCCGGA SEQ ID NO: 1358
RPr GCCACTAACTGCTTCAGTATGAAGAG SEQ ID NO: 1359
MCM3 NM_002388.2 FPr GGAGAACAATCCCCTTGAGA SEQ ID NO: 1360
Probe TGGCCTTTCTGTCTACAAGGATCACCA SEQ ID NO: 1361
RPr ATCTCCTGGATGGTGATGGT SEQ ID NO: 1362
MCM6 NM_005915.2 FPr TGATGGTCCTATGTGTCACATTCA SEQ ID NO: 1363
Probe CAGGTTTCATACCAACACAGGCTTCAGC SEQ ID NO: 1364
AC
RPr TGGGACAGGAAACACACCAA SEQ ID NO: 1365
MCP1 NM_002982.1 FPr CGCTCAGCCAGATGCAATC SEQ ID NO: 1366
Probe TGCCCCAGTCACCTGCTGTTA SEQ ID NO: 1367
RPr GCACTGAGATCTTCCTATTGGTGAA SEQ ID NO: 1368
MDK NM_002391.2 FPr GGAGCCGACTGCAAGTACA SEQ ID NO: 1369
Probe ATCACACGCACCCCAGTTCTCAAA SEQ ID NO: 1370
RPr GACTTTGGTGCCTGTGCC SEQ ID NO: 1371
MDM2 NM_002392.1 FPr CTACAGGGACGCCATCGAA SEQ ID NO: 1372
Probe CTTACACCAGCATCAAGATCCGG SEQ ID NO: 1373
RPr ATCCAACCAATCACCTGAATGTT SEQ ID NO: 1374
MGAT5 NM_002410.2 FPr GGAGTCGAAGGTGGACAATC SEQ ID NO: 1375
Probe AATGGCACCGGAACAAACTCAACC SEQ ID NO: 1376
RPr TGGGAACAGCTGTAGTGGAGT SEQ ID NO: 1377
MGMT NM_002412.1 FPr GTGAAATGAAACGCACCACA SEQ ID NO: 1378
Probe CAGCCCTTTGGGGAAGCTGG SEQ ID NO: 1379
RPr GACCCTGCTCACAACCAGAC SEQ ID NO: 1380
mGST1 NM_020300.2 FPr ACGGATCTACCACACCATTGC SEQ ID NO: 1381
Probe TTTGACACCCCTTCCCCAGCCA SEQ ID NO: 1382
RPr TCCATATCCAACAAAAAAACTCAAAG SEQ ID NO: 1383
MMP1 NM_002421.2 FPr GGGAGATCATCGGGACAACTC SEQ ID NO: 1384
Probe AGCAAGATTTCCTCCAGGTCCATCAAAA SEQ ID NO: 1385
GG
RPr GGGCCTGGTTGAAAAGCAT SEQ ID NO: 1386
MMP12 NM_002426.1 FPr CCAACGCTTGCCAAATCCT SEQ ID NO: 1387
Probe AACCAGCTCTCTGTGACCCCAATT SEQ ID NO: 1388
RPr ACGGTAGTGACAGCATCAAAACTC SEQ ID NO: 1389
MMP2 NM_004530.1 FPr CCATGATGGAGAGGCAGACA SEQ ID NO: 1390
Probe CTGGGAGCATGGCGATGGATACCC SEQ ID NO: 1391
RPr GGAGTCCGTCCTTACCGTCAA SEQ ID NO: 1392
MMP7 NM_002423.2 FPr GGATGGTAGCAGTCTAGGGATTAACT SEQ ID NO: 1393
Probe CCTGTATGCTGCAACTCATGAACTTGGC SEQ ID NO: 1394
RPr GGAATGTCCCATACCCAAAGAA SEQ ID NO: 1395
MMP9 NM_004994.1 FPr GAGAACCAATCTCACCGACA SEQ ID NO: 1396
Probe ACAGGTATTCCTCTGCCAGCTGCC SEQ ID NO: 1397
RPr CACCCGAGTGTAACCATAGC SEQ ID NO: 1398
MRP1 NM_004996.2 FPr TCATGGTGCCCGTCAATG SEQ ID NO: 1399
Probe ACCTGATACGTCTTGGTCTTCATCGCCAT SEQ ID NO: 1400
RPr CGATTGTCTTTGCTCTTCATGTG SEQ ID NO: 1401
MRP2 NM_000392.1 FPr AGGGGATGACTTGGACACAT SEQ ID NO: 1402
Probe CTGCCATTCGACATGACTGCAATTT SEQ ID NO: 1403
RPr AAAACTGCATGGCTTTGTCA SEQ ID NO: 1404
MRP3 NM_003786.2 FPr TCATCCTGGCGATCTACTTCCT SEQ ID NO: 1405
Probe TCTGTCCTGGCTGGAGTCGCTTTCAT SEQ ID NO: 1406
RPr CCGTTGAGTGGAATCAGCAA SEQ ID NO: 1407
MRP4 NM_005845.1 FPr AGCGCCTGGAATCTACAACT SEQ ID NO: 1408
Probe CGGAGTCCAGTGTTTTCCCACTTG SEQ ID NO: 1409
RPr AGAGCCCCTGGAGAGAAGAT SEQ ID NO: 1410
MRPL40 NM_003776.2 FPr ACTTGCAGGCTGCTATCCTT SEQ ID NO: 1411
Probe TTCCTACTCTCAGGGGCAGCATGTT SEQ ID NO: 1412
RPr AGCAGACTTGAACCCTGGTC SEQ ID NO: 1413
MSH2 NM_000251.1 FPr GATGCAGAATTGAGGCAGAC SEQ ID NO: 1414
Probe CAAGAAGATTTACTTCGTCGATTCCCAGA SEQ ID NO: 1415
RPr TCTTGGCAAGTCGGTTAAGA SEQ ID NO: 1416
MSH3 NM_002439.1 FPr TGATTACCATCATGGCTCAGA SEQ ID NO: 1417
Probe TCCCAATTGTCGCTTCTTCTGCAG SEQ ID NO: 1418
RPr CTTGTGAAAATGCCATCCAC SEQ ID NO: 1419
MSH6 NM_000179.1 FPr TCTATTGGGGGATTGGTAGG SEQ ID NO: 1420
Probe CCGTTACCAGCTGGAAATTCCTGAGA SEQ ID NO: 1421
RPr CAAATTGCGAGTGGTGAAAT SEQ ID NO: 1422
MT3 NM_005954.1 FPr GTGTGAGAAGTGTGCCAAGG SEQ ID NO: 1423
Probe CTCTCCGCCTTTGCACACACAGT SEQ ID NO: 1424
RPr CTGCACTTCTCTGCTTCTGC SEQ ID NO: 1425
MTA1 NM_004689.2 FPr CCGCCCTCACCTGAAGAGA SEQ ID NO: 1426
Probe CCCAGTGTCCGCCAAGGAGCG SEQ ID NO: 1427
RPr GGAATAAGTTAGCCGCGCTTCT SEQ ID NO: 1428
MUC1 NM_002456.1 FPr GGCCAGGATCTGTGGTGGTA SEQ ID NO: 1429
Probe CTCTGGCCTTCCGAGAAGGTACC SEQ ID NO: 1430
RPr CTCCACGTCGTGGACATTGA SEQ ID NO: 1431
MUC2 NM_002457.1 FPr CTATGAGCCATGTGGGAACC SEQ ID NO: 1432
Probe AGCTTCGAGACCTGCAGGACCATC SEQ ID NO: 1433
RPr ATGTTGGAGTGGATGCCG SEQ ID NO: 1434
MUC5B XM_039877.11 FPr TGCCCTTGCACTGTCCTAA SEQ ID NO: 1435
Probe TCAGCCATCCTGCACACCTACACC SEQ ID NO: 1436
RPr CAGCCACACTCATCCACG SEQ ID NO: 1437
MUTYH NM_012222.1 FPr GTACGACCAAGAGAAACGGG SEQ ID NO: 1438
Probe TCTGCCCGTCTTCTCCATGGTAGG SEQ ID NO: 1439
RPr CCTGTCCAGGTCCATCTCA SEQ ID NO: 1440
MVP NM_017458.1 FPr ACGAGAACGAGGGCATCTATGT SEQ ID NO: 1441
Probe CGCACCTTTCCGGTCTTGACATCCT SEQ ID NO: 1442
RPr GCATGTAGGTGCTTCCAATCAC SEQ ID NO: 1443
MX1 NM_002462.2 FPr GAAGGAATGGGAATCAGTCATGA SEQ ID NO: 1444
Probe TCACCCTGGAGATCAGCTCCCGA SEQ ID NO: 1445
RPr GTCTATTAGAGTCAGATCCGGGACAT SEQ ID NO: 1446
MXD4 NM_006454.2 FPr AGAAACTGGAGGAGCAGGAC SEQ ID NO: 1447
Probe TGCAGCTGCTCCTTGATGCTCAGT SEQ ID NO: 1448
RPr CTTCAGGAAACGATGCTCCT SEQ ID NO: 1449
MYBL2 NM_002466.1 FPr GCCGAGATCGCCAAGATG SEQ ID NO: 1450
Probe CAGCATTGTCTGTCCTCCCTGGCA SEQ ID NO: 1451
RPr CTTTTGATGGTAGAGTTCCAGTGATTC SEQ ID NO: 1452
MYH11 NM_002474.1 FPr CGGTACTTCTCAGGGCTAATATATACG SEQ ID NO: 1453
Probe CTCTTCTGCGTGGTGGTCAACCCCTA SEQ ID NO: 1454
RPr CCGAGTAGATGGGCAGGTGTT SEQ ID NO: 1455
MYLK NM_053025.1 FPr TGACGGAGCGTGAGTGCAT SEQ ID NO: 1456
Probe CCCTCCGAGATCTGCCGCATGTACT SEQ ID NO: 1457
RPr ATGCCCTGCTTGTGGATGTAC SEQ ID NO: 1458
NAT2 NM_000015.1 FPr TAACTGACATTCTTGAGCACCAGAT SEQ ID NO: 1459
Probe CGGGCTGTTCCCTTTGAGAACCTTAACA SEQ ID NO: 1460
RPr ATGGCTTGCCCACAATGC SEQ ID NO: 1461
NAV2 NM_182964.3 FPr CTCTCCCAGCACAGCTTGA SEQ ID NO: 1462
Probe CCTCACTGAGTCAACCAGCCTGGA SEQ ID NO: 1463
RPr CACCAGTGTCATCCAGCAAC SEQ ID NO: 1464
NCAM1 NM_000615.1 FPr TAGTTCCCAGCTGACCATCA SEQ ID NO: 1465
Probe CTCAGCCTCGTCGTTCTTATCCACC SEQ ID NO: 1466
RPr CAGCCTTGTTCTCAGCAATG SEQ ID NO: 1467
NDE1 NM_017668.1 FPr CTACTGCGGAAAGTCGGG SEQ ID NO: 1468
Probe CTGGAGTCCAAACTCGCTTCCTGC SEQ ID NO: 1469
RPr GGACTGATCGTACACGAGGTT SEQ ID NO: 1470
NDRG1 NM_006096.2 FPr AGGGCAACATTCCACAGC SEQ ID NO: 1471
Probe CTGCAAGGACACTCATCACAGCCA SEQ ID NO: 1472
RPr CAGTGCTCCTACTCCGGC SEQ ID NO: 1473
NDUFS3 NM_004551.1 FPr TATCCATCCTGATGGCGTC SEQ ID NO: 1474
Probe CCCAGTGCTGACTTTCCTCAGGGA SEQ ID NO: 1475
RPr TTGAACTGTGCATTGGTGTG SEQ ID NO: 1476
NEDD8 NM_006156.1 FPr TGCTGGCTACTGGGTGTTAGT SEQ ID NO: 1477
Probe TGCAGTCCTGTGTGCTTCCCTCTC SEQ ID NO: 1478
RPr GACAACCAGGGACACAGTCA SEQ ID NO: 1479
NEK2 NM_002497.1 FPr GTGAGGCAGCGCGACTCT SEQ ID NO: 1480
Probe TGCCTTCCCGGGCTGAGGACT SEQ ID NO: 1481
RPr TGCCAATGGTGTACAACACTTCA SEQ ID NO: 1482
NF2 NM_000268.2 FPr ACTCCAGAGCTGACCTCCAC SEQ ID NO: 1483
Probe CTACAATGACTTCCCAGGCTGGGC SEQ ID NO: 1484
RPr TCAGGGCTTCAGTGTCTCAC SEQ ID NO: 1485
NFKBp50 NM_003998.1 FPr CAGACCAAGGAGATGGACCT SEQ ID NO: 1486
Probe AAGCTGTAAACATGAGCCGCACCA SEQ ID NO: 1487
RPr AGCTGCCAGTGCTATCCG SEQ ID NO: 1488
NFKBp65 NM_021975.1 FPr CTGCCGGGATGGCTTCTAT SEQ ID NO: 1489
Probe CTGAGCTCTGCCCGGACCGCT SEQ ID NO: 1490
RPr CCAGGTTCTGGAAACTGTGGAT SEQ ID NO: 1491
NISCH NM_007184.1 FPr CCAAGGAATCATGTTCGTTCAG SEQ ID NO: 1492
Probe TGGCCAGCAGCCTCTCGTCCAC SEQ ID NO: 1493
RPr TGGTGCTCGGGAGTCAGACT SEQ ID NO: 1494
Nkd-1 NM_033119.3 FPr GAGAGAGTGAGCGAACCCTG SEQ ID NO: 1495
Probe CCAGGCTCCAAGAAGCAGCTGAAG SEQ ID NO: 1496
RPr CGTCGCACTGGAGCTCTT SEQ ID NO: 1497
NMB NM_021077.1 FPr GGCTGCTGGTACAAATACTGC SEQ ID NO: 1498
Probe TGTCTGCCCCTATTATTGGTGTCATTTCT SEQ ID NO: 1499
RPr CAATCTAAGCCACGCTGTTG SEQ ID NO: 1500
NMBR NM_002511.1 FPr TGATCCATCTCTAGGCCACA SEQ ID NO: 1501
Probe TTGTCACCTTAGTTGCCCGGGTTC SEQ ID NO: 1502
RPr GAGCAAATGGGTTGACACAA SEQ ID NO: 1503
NME1 NM_000269.1 FPr CCAACCCTGCAGACTCCAA SEQ ID NO: 1504
Probe CCTGGGACCATCCGTGGAGACTTCT SEQ ID NO: 1505
RPr ATGTATAATGTTCCTGCCAACTTGTATG SEQ ID NO: 1506
NOS3 NM_000603.2 FPr ATCTCCGCCTCGCTCATG SEQ ID NO: 1507
Probe TTCACTCGCTTCGCCATCACCG SEQ ID NO: 1508
RPr TCGGAGCCATACAGGATTGTC SEQ ID NO: 1509
NOTCH1 NM_017617.2 FPr CGGGTCCACCAGTTTGAATG SEQ ID NO: 1510
Probe CCGCTCTGCAGCCGGGACA SEQ ID NO: 1511
RPr GTTGTATTGGTTCGGCACCAT SEQ ID NO: 1512
NOTCH2 NM_024408.2 FPr CACTTCCCTGCTGGGATTAT SEQ ID NO: 1513
Probe CCGTGTTGCACAGCTCATCACACT SEQ ID NO: 1514
RPr AGTTGTCAAACAGGCACTCG SEQ ID NO: 1515
NPM1 NM_002520.2 FPr AATGTTGTCCAGGTTCTATTGC SEQ ID NO: 1516
Probe AACAGGCATTTTGGACAACACATTCTTG SEQ ID NO: 1517
RPr CAAGCAAAGGGTGGAGTTC SEQ ID NO: 1518
NR4A1 NM_002135.2 FPr CACAGCTTGCTTGTCGATGTC SEQ ID NO: 1519
Probe CCTTCGCCTGCCTCTCTGCCC SEQ ID NO: 1520
RPr ATGCCGGTCGGTGATGAG SEQ ID NO: 1521
NRG1 NM_013957.1 FPr CGAGACTCTCCTCATAGTGAAAGGTAT SEQ ID NO: 1522
Probe ATGACCACCCCGGCTCGTATGTCA SEQ ID NO: 1523
RPr CTTGGCGTGTGGAAATCTACAG SEQ ID NO: 1524
NRP1 NM_003873.1 FPr CAGCTCTCTCCACGCGATTC SEQ ID NO: 1525
Probe CAGGATCTACCCCGAGAGAGCCACTCAT SEQ ID NO: 1526
RPr CCCAGCAGCTCCATTCTGA SEQ ID NO: 1527
NRP2 NM_003872.1 FPr CTACAGCCTAAACGGCAAGG SEQ ID NO: 1528
Probe AGGACCCCAGGACCCAGCAG SEQ ID NO: 1529
RPr GTTCCCTTCGAACAGCTTTG SEQ ID NO: 1530
NTN1 NM_004822.1 FPr AGAAGGACTATGCCGTCCAG SEQ ID NO: 1531
Probe ATCCACATCCTGAAGGCGGACAAG SEQ ID NO: 1532
RPr CCGTGAACTTCCACCAGTC SEQ ID NO: 1533
NUFIP1 NM_012345.1 FPr GCTTCCACATCGTGGTATTG SEQ ID NO: 1534
Probe CTTCTGATAGGTTTCCTCGGCATCAGA SEQ ID NO: 1535
RPr AACTGCAGGGTTGAAGGACT SEQ ID NO: 1536
ODC1 NM_002539.1 FPr AGAGATCACCGGCGTAATCAA SEQ ID NO: 1537
Probe CCAGCGTTGGACAAATACTTTCCGTCA SEQ ID NO: 1538
RPr CGGGCTCAGCTATGATTCTCA SEQ ID NO: 1539
OPN, NM_000582.1 FPr CAACCGAAGTTTTCACTCCAGTT SEQ ID NO: 1540
osteopontin
Probe TCCCCACAGTAGACACATATGATGGCCG SEQ ID NO: 1541
RPr CCTCAGTCCATAAACCACACTATCA SEQ ID NO: 1542
ORC1L NM_004153.2 FPr TCCTTGACCATACCGGAGG SEQ ID NO: 1543
Probe TGCATGTACATCTCCGGTGTCCCT SEQ ID NO: 1544
RPr CAGTGGCAGTCTTCCCTGTC SEQ ID NO: 1545
OSM NM_020530.3 FPr GTTTCTGAAGGGGAGGTCAC SEQ ID NO: 1546
Probe CTGAGCTGGCCTCCTATGCCTCAT SEQ ID NO: 1547
RPr AGGTGTCTGGTTTGGGACA SEQ ID NO: 1548
OSMR NM_003999.1 FPr GCTCATCATGGTCATGTGCT SEQ ID NO: 1549
Probe CAGGTCTCCTTGATCCACTGACTTTTCA SEQ ID NO: 1550
RPr TGTAAGGGTCAGGGATGTCA SEQ ID NO: 1551
P14ARF S78535.1 FPr CCCTCGTGCTGATGCTACT SEQ ID NO: 1552
Probe CTGCCCTAGACGCTGGCTCCTC SEQ ID NO: 1553
RPr CATCATGACCTGGTCTTCTAGG SEQ ID NO: 1554
p16-INK4 L27211.1 FPr GCGGAAGGTCCCTCAGACA SEQ ID NO: 1555
Probe CTCAGAGCCTCTCTGGTTCTTTCAATCGG SEQ ID NO: 1556
RPr TGATGATCTAAGTTTCCCGAGGTT SEQ ID NO: 1557
p21 NM_000389.1 FPr TGGAGACTCTCAGGGTCGAAA SEQ ID NO: 1558
Probe CGGCGGCAGACCAGCATGAC SEQ ID NO: 1559
RPr GGCGTTTGGAGTGGTAGAAATC SEQ ID NO: 1560
p27 NM_004064.1 FPr CGGTGGACCACGAAGAGTTAA SEQ ID NO: 1561
Probe CCGGGACTTGGAGAAGCACTGCA SEQ ID NO: 1562
RPr GGCTCGCCTCTTCCATGTC SEQ ID NO: 1563
P53 NM_000546.2 FPr CTTTGAACCCTTGCTTGCAA SEQ ID NO: 1564
Probe AAGTCCTGGGTGCTTCTGACGCACA SEQ ID NO: 1565
RPr CCCGGGACAAAGCAAATG SEQ ID NO: 1566
p53R2 AB036063.1 FPr CCCAGCTAGTGTTCCTCAGA SEQ ID NO: 1567
Probe TCGGCCAGCTTTTTCCAATCTTTG SEQ ID NO: 1568
RPr CCGTAAGCCCTTCCTCTATG SEQ ID NO: 1569
PADI4 NM_012387.1 FPr AGCAGTGGCTTGCTTTCTTC SEQ ID NO: 1570
Probe CCTGTGATGTCCCAGTTTCCCACTC SEQ ID NO: 1571
RPr TGCTAGGACCATGTTGGGAT SEQ ID NO: 1572
PAI1 NM_000602.1 FPr CCGCAACGTGGTTTTCTCA SEQ ID NO: 1573
Probe CTCGGTGTTGGCCATGCTCCAG SEQ ID NO: 1574
RPr TGCTGGGTTTCTCCTCCTGTT SEQ ID NO: 1575
Pak1 NM_002576.3 FPr GAGCTGTGGGTTGTTATGGA SEQ ID NO: 1576
Probe ACATCTGTCAAGGAGCCTCCAGCC SEQ ID NO: 1577
RPr CCATGCAAGTTTCTGTCACC SEQ ID NO: 1578
PARC NM_015089.1 FPr GGAGCTGACCTGCTTCCTAC SEQ ID NO: 1579
Probe TCCTTATGCATCGAGGCCAGGC SEQ ID NO: 1580
RPr AGCAGAGCACCACAGCATAG SEQ ID NO: 1581
PCAF NM_003884.3 FPr AGGTGGCTGTGTTACTGCAA SEQ ID NO: 1582
Probe TGCCACAGTTCTGCGACAGTCTACC SEQ ID NO: 1583
RPr CACCTGTGTGGTTTCGTACC SEQ ID NO: 1584
PCNA NM_002592.1 FPr GAAGGTGTTGGAGGCACTCAAG SEQ ID NO: 1585
Probe ATCCCAGCAGGCCTCGTTGATGAG SEQ ID NO: 1586
RPr GGTTTACACCGCTGGAGCTAA SEQ ID NO: 1587
PDGFA NM_002607.2 FPr TTGTTGGTGTGCCCTGGTG SEQ ID NO: 1588
Probe TGGTGGCGGTCACTCCCTCTGC SEQ ID NO: 1589
RPr TGGGTTCTGTCCAAACACTGG SEQ ID NO: 1590
PDGFB NM_002608.1 FPr ACTGAAGGAGACCCTTGGAG SEQ ID NO: 1591
Probe TCTCCTGCCGATGCCCCTAGG SEQ ID NO: 1592
RPr TAAATAACCCTGCCCACACA SEQ ID NO: 1593
PDGFC NM_016205.1 FPr AGTTACTAAAAAATACCACGAGGTCCTT SEQ ID NO: 1594
Probe CCCTGACACCGGTCTTTGGTCTCAACT SEQ ID NO: 1595
RPr GTCGGTGAGTGATTTGTGCAA SEQ ID NO: 1596
PDGFD NM_025208.2 FPr TATCGAGGCAGGTCATACCA SEQ ID NO: 1597
Probe TCCAGGTCAACTTTTGACTTCCGGT SEQ ID NO: 1598
RPr TAACGCTTGGCATCATCATT SEQ ID NO: 1599
PDGFRa NM_006206.2 FPr GGGAGTTTCCAAGAGATGGA SEQ ID NO: 1600
Probe CCCAAGACCCGACCAAGCACTAG SEQ ID NO: 1601
RPr CTTCAACCACCTTCCCAAAC SEQ ID NO: 1602
PDGFRb NM_002609.2 FPr CCAGCTCTCCTTCCAGCTAC SEQ ID NO: 1603
Probe ATCAATGTCCCTGTCCGAGTGCTG SEQ ID NO: 1604
RPr GGGTGGCTCTCACTTAGCTC SEQ ID NO: 1605
PFN1 NM_005022.2 FPr GGAAAACGTTCGTCAACATC SEQ ID NO: 1606
Probe CAACCAGGACACCCACCTCAGCT SEQ ID NO: 1607
RPr AAAACTTGACCGGTCTTTGC SEQ ID NO: 1608
PFN2 NM_053024.1 FPr TCTATACGTCGATGGTGACTGC SEQ ID NO: 1609
Probe CTCCCCACCTTGACTCTTTGTCCG SEQ ID NO: 1610
RPr GCCGACAGCCACATTGTAT SEQ ID NO: 1611
PGK1 NM_000291.1 FPr AGAGCCAGTTGCTGTAGAACTCAA SEQ ID NO: 1612
Probe TCTCTGCTGGGCAAGGATGTTCTGTTC SEQ ID NO: 1613
RPr CTGGGCCTACACAGTCCTTCA SEQ ID NO: 1614
PI3K NM_002646.2 FPr TGCTACCTGGACAGCCCG SEQ ID NO: 1615
Probe TCCTCCTGAAACGAGCTGTGTCTGACTT SEQ ID NO: 1616
RPr AGGCCGTCCTTCAGTAACCA SEQ ID NO: 1617
PI3KC2A NM_002645.1 FPr ATACCAATCACCGCACAAACC SEQ ID NO: 1618
Probe TGCGCTGTGACTGGACTTAACAAATAGC SEQ ID NO: 1619
CT
RPr CACACTAGCATTTTCTCCGCATA SEQ ID NO: 1620
PIK3CA NM_006218.1 FPr GTGATTGAAGAGCATGCCAA SEQ ID NO: 1621
Probe TCCTGCTTCTCGGGATACAGACCA SEQ ID NO: 1622
RPr GTCCTGCGTGGGAATAGC SEQ ID NO: 1623
PIM1 NM_002648.2 FPr CTGCTCAAGGACACCGTCTA SEQ ID NO: 1624
Probe TACACTCGGGTCCCATCGAAGTCC SEQ ID NO: 1625
RPr GGATCCACTCTGGAGGGC SEQ ID NO: 1626
Pin1 NM_006221.1 FPr GATCAACGGCTACATCCAGA SEQ ID NO: 1627
Probe TCAAAGTCCTCCTCTCCCGACTTGA SEQ ID NO: 1628
RPr TGAACTGTGAGGCCAGAGAC SEQ ID NO: 1629
PKD1 NM_000296.2 FPr CAGCACCAGCGATTACGAC SEQ ID NO: 1630
Probe AGCCATTGTGAGGACTCTCCCAGC SEQ ID NO: 1631
RPr CTGAATAGGCCCACGTCC SEQ ID NO: 1632
PKR2 NM_002654.3 FPr CCGCCTGGACATTGATTCAC SEQ ID NO: 1633
Probe ACCCATCACAGCCCGGAACACTG SEQ ID NO: 1634
RPr CTGGGCCAATGGTACAGATGA SEQ ID NO: 1635
PLA2G2A NM_000300.2 FPr GCATCCCTCACCCATCCTA SEQ ID NO: 1636
Probe AGGCCAGGCAGGAGCCCTTCTATA SEQ ID NO: 1637
RPr GCTGGAAATCTGCTGGATGT SEQ ID NO: 1638
PLAUR NM_002659.1 FPr CCCATGGATGCTCCTCTGAA SEQ ID NO: 1639
Probe CATTGACTGCCGAGGCCCCATG SEQ ID NO: 1640
RPr CCGGTGGCTACCAGACATTG SEQ ID NO: 1641
PLK NM_005030.2 FPr AATGAATACAGTATTCCCAAGCACAT SEQ ID NO: 1642
Probe AACCCCGTGGCCGCCTCC SEQ ID NO: 1643
RPr TGTCTGAAGCATCTTCTGGATGA SEQ ID NO: 1644
PLK3 NM_004073.2 FPr TGAAGGAGACGTACCGCTG SEQ ID NO: 1645
Probe CAAGCAGGTTCACTACACGCTGCC SEQ ID NO: 1646
RPr CAGGCAGTGAGAGGCTGG SEQ ID NO: 1647
PLOD2 NM_000935.2 FPr CAGGGAGGTGGTTGCAAAT SEQ ID NO: 1648
Probe TCCAGCCTTTTCGTGGTGACTCAA SEQ ID NO: 1649
RPr TCTCCCAGGATGCATGAAG SEQ ID NO: 1650
PMS1 NM_000534.2 FPr CTTACGGTTTTCGTGGAGAAG SEQ ID NO: 1651
Probe CCTCAGCTATACAACAAATTGACCCCAAG SEQ ID NO: 1652
RPr AGCAGCCGTTCTTGTTGTAA SEQ ID NO: 1653
PMS2 NM_000535.2 FPr GATGTGGACTGCCATTCAAA SEQ ID NO: 1654
Probe TCGAAATTTACATCCGGTATCTTCCTGG SEQ ID NO: 1655
RPr TGCGAGATTAGTTGGCTGAG SEQ ID NO: 1656
PPARG NM_005037.3 FPr TGACTTTATGGAGCCCAAGTT SEQ ID NO: 1657
Probe TTCCAGTGCATTGAACTTCACAGCA SEQ ID NO: 1658
RPr GCCAAGTCGCTGTCATCTAA SEQ ID NO: 1659
PPID NM_005038.1 FPr TCCTCATTTGGATGGGAAAC SEQ ID NO: 1660
Probe TTCCTTTAATTACTTGGCCAAACACCACA SEQ ID NO: 1661
RPr CCAATATCCTTGCCACTCCTA SEQ ID NO: 1662
PPM1D NM_003620.1 FPr GCCATCCGCAAAGGCTTT SEQ ID NO: 1663
Probe TCGCTTGTCACCTTGCCATGTGG SEQ ID NO: 1664
RPr GGCCATTCCGCCAGTTTC SEQ ID NO: 1665
PPP2R4 NM_178001.1 FPr GGCTCAGAGCATAAGGCTTC SEQ ID NO: 1666
Probe TTGGTCACTTCTCCCAACTTGGGC SEQ ID NO: 1667
RPr ACGGGAACTCAGAAAACTGG SEQ ID NO: 1668
PR NM_000926.2 FPr GCATCAGGCTGTCATTATGG SEQ ID NO: 1669
Probe TGTCCTTACCTGTGGGAGCTGTAAGGTC SEQ ID NO: 1670
RPr AGTAGTTGTGCTGCCCTTCC SEQ ID NO: 1671
PRDX2 NM_005809.4 FPr GGTGTCCTTCGCCAGATCAC SEQ ID NO: 1672
Probe TTAATGATTTGCCTGTGGGACGCTCC SEQ ID NO: 1673
RPr CAGCCGCAGAGCCTCATC SEQ ID NO: 1674
PRDX3 NM_006793.2 FPr TGACCCCAATGGAGTCATCA SEQ ID NO: 1675
Probe CATTTGAGCGTCAACGATCTCCCAGTG SEQ ID NO: 1676
RPr CCAAGCGGAGGGTTTCTTC SEQ ID NO: 1677
PRDX4 NM_006406.1 FPr TTACCCATTTGGCCTGGATTAA SEQ ID NO: 1678
Probe CCAAGTCCTCCTTGTCTTCGAGGGGT SEQ ID NO: 1679
RPr CTGAAAGAAGTGGAATCCTTATTGG SEQ ID NO: 1680
PRDX6 NM_004905.2 FPr CTGTGAGCCAGAGGATGTCA SEQ ID NO: 1681
Probe CTGCCAATTGTGTTTTCCTGCAGC SEQ ID NO: 1682
RPr TGTGATGACACCAGGATGTG SEQ ID NO: 1683
PRKCA NM_002737.1 FPr CAAGCAATGCGTCATCAATGT SEQ ID NO: 1684
Probe CAGCCTCTGCGGAATGGATCACACT SEQ ID NO: 1685
RPr GTAAATCCGCCCCCTCTTCT SEQ ID NO: 1686
PRKCB1 NM_002738.5 FPr GACCCAGCTCCACTCCTG SEQ ID NO: 1687
Probe CCAGACCATGGACCGCCTGTACTT SEQ ID NO: 1688
RPr CCCATTCACGTACTCCATCA SEQ ID NO: 1689
PRKCD NM_006254.1 FPr CTGACACTTGCCGCAGAGAA SEQ ID NO: 1690
Probe CCCTTTCTCACCCACCTCATCTGCAC SEQ ID NO: 1691
RPr AGGTGGTCCTTGGTCTGGAA SEQ ID NO: 1692
PRKR NM_002759.1 FPr GCGATACATGAGCCCAGAACA SEQ ID NO: 1693
Probe AGGTCCACTTCCTTTCCATAGTCTTGCGA SEQ ID NO: 1694
RPr TCAGCAAGAATTAGCCCCAAAG SEQ ID NO: 1695
pS2 NM_003225.1 FPr GCCCTCCCAGTGTGCAAAT SEQ ID NO: 1696
Probe TGCTGTTTCGACGACACCGTTCG SEQ ID NO: 1697
RPr CGTCGATGGTATTAGGATAGAAGCA SEQ ID NO: 1698
PTCH NM_000264.2 FPr CCACGACAAAGCCGACTAC SEQ ID NO: 1699
Probe CCTGAAACAAGGCTGAGAATCCCG SEQ ID NO: 1700
RPr TACTCGATGGGCTCTGCTG SEQ ID NO: 1701
PTEN NM_000314.1 FPr TGGCTAAGTGAAGATGACAATCATG SEQ ID NO: 1702
Probe CCTTTCCAGCTTTACAGTGAATTGCTGCA SEQ ID NO: 1703
RPr TGCACATATCATTACACCAGTTCGT SEQ ID NO: 1704
PTGER3 NM_000957.2 FPr TAACTGGGGCAACCTTTTCT SEQ ID NO: 1705
Probe CCTTTGCCTTCCTGGGGCTCTT SEQ ID NO: 1706
RPr TTGCAGGAAAAGGTGACTGT SEQ ID NO: 1707
PTHLH NM_002820.1 FPr AGTGACTGGGAGTGGGCTAGAA SEQ ID NO: 1708
Probe TGACACCTCCACAACGTCGCTGGA SEQ ID NO: 1709
RPr AAGCCTGTTACCGTGAATCGA SEQ ID NO: 1710
PTHR1 NM_000316.1 FPr CGAGGTACAAGCTGAGATCAAGAA SEQ ID NO: 1711
Probe CCAGTGCCAGTGTCCAGCGGCT SEQ ID NO: 1712
RPr GCGTGCCTTTCGCTTGAA SEQ ID NO: 1713
PTK2 NM_005607.3 FPr GACCGGTCGAATGATAAGGT SEQ ID NO: 1714
Probe ACCAGGCCCGTCACATTCTCGTAC SEQ ID NO: 1715
RPr CTGGACATCTCGATGACAGC SEQ ID NO: 1716
PTK2B NM_004103.3 FPr CAAGCCCAGCCGACCTAAG SEQ ID NO: 1717
Probe CTCCGCAAACCAACCTCCTGGCT SEQ ID NO: 1718
RPr GAACCTGGAACTGCAGCTTTG SEQ ID NO: 1719
PTP4A3 NM_007079.2 FPr CCTGTTCTCGGCACCTTAAA SEQ ID NO: 1720
Probe ACCTGACTGCCCCGGGGTCTAATA SEQ ID NO: 1721
RPr TATTGCCTTCGGGTGTCC SEQ ID NO: 1722
PTP4A3 v2 NM_032611.1 FPr AATATTTGTGCGGGGTATGG SEQ ID NO: 1723
Probe CCAAGAGAAACGAGATTTAAAAACCCA SEQ ID NO: 1724
CC
RPr AACGAGATCCCTGTGCTTGT SEQ ID NO: 1725
PTPD1 NM_007039.2 FPr CGCTTGCCTAACTCATACTTTCC SEQ ID NO: 1726
Probe TCCACGCAGCGTGGCACTG SEQ ID NO: 1727
RPr CCATTCAGACTGCGCCACTT SEQ ID NO: 1728
PTPN1 NM_002827.2 FPr AATGAGGAAGTTTCGGATGG SEQ ID NO: 1729
Probe CTGATCCAGACAGCCGACCAGCT SEQ ID NO: 1730
RPr CTTCGATCACAGCCAGGTAG SEQ ID NO: 1731
PTPRF NM_002840.2 FPr TGTTTTAGCTGAGGGACGTG SEQ ID NO: 1732
Probe CCGACGTCCCCAAACCTAGCTAGG SEQ ID NO: 1733
RPr TACCAACCCTGGAATGTTGA SEQ ID NO: 1734
PTPRJ NM_002843.2 FPr AACTTCCGGTACCTCGTTCGT SEQ ID NO: 1735
Probe ACTACATGAAGCAGAGTCCTCCCGAATCG SEQ ID NO: 1736
RPr AGCACTGCAATGCACCAGAA SEQ ID NO: 1737
PTPRO NM_030667.1 FPr CATGGCCTGATCATGGTGT SEQ ID NO: 1738
Probe CCCACAGCAAATGCTGCAGAAAGT SEQ ID NO: 1739
RPr CCATGTGTACAAACTGCAGGA SEQ ID NO: 1740
PTTG1 NM_004219.2 FPr GGCTACTCTGATCTATGTTGATAAGGAA SEQ ID NO: 1741
Probe CACACGGGTGCCTGGTTCTCCA SEQ ID NO: 1742
RPr GCTTCAGCCCATCCTTAGCA SEQ ID NO: 1743
RAB32 NM_006834.2 FPr CCTGCAGCTGTGGGACAT SEQ ID NO: 1744
Probe CGATTTGGCAACATGACCCGAGTA SEQ ID NO: 1745
RPr AGCACCAACAGCTTCCTTG SEQ ID NO: 1746
RAB6C NM_032144.1 FPr GCGACAGCTCCTCTAGTTCCA SEQ ID NO: 1747
Probe TTCCCGAAGTCTCCGCCCG SEQ ID NO: 1748
RPr GGAACACCAGCTTGAATTTCCT SEQ ID NO: 1749
RAC1 NM_006908.3 FPr TGTTGTAAATGTCTCAGCCCC SEQ ID NO: 1750
Probe CGTTCTTGGTCCTGTCCCTTGGA SEQ ID NO: 1751
RPr TTGAGCAAAGCGTACAAAGG SEQ ID NO: 1752
RAD51C NM_058216.1 FPr GAACTTCTTGAGCAGGAGCATACC SEQ ID NO: 1753
Probe AGGGCTTCATAATCACCTTCTGTTC SEQ ID NO: 1754
RPr TCCACCCCCAAGAATATCATCTAGT SEQ ID NO: 1755
RAD54L NM_003579.2 FPr AGCTAGCCTCAGTGACACACATG SEQ ID NO: 1756
Probe ACACAACGTCGGCAGTGCAACCTG SEQ ID NO: 1757
RPr CCGGATCTGACGGCTGTT SEQ ID NO: 1758
RAF1 NM_002880.1 FPr CGTCGTATGCGAGAGTCTGT SEQ ID NO: 1759
Probe TCCAGGATGCCTGTTAGTTCTCAGCA SEQ ID NO: 1760
RPr TGAAGGCGTGAGGTGTAGAA SEQ ID NO: 1761
RALBP1 NM_006788.2 FPr GGTGTCAGATATAAATGTGCAAATGC SEQ ID NO: 1762
Probe TGCTGTCCTGTCGGTCTCAGTACGTTCA SEQ ID NO: 1763
RPr TTCGATATTGCCAGCAGCTATAAA SEQ ID NO: 1764
RANBP2 NM_006267.3 FPr TCCTTCAGCTTTCACACTGG SEQ ID NO: 1765
Probe TCCAGAAGAGTCATGCAACTTCATTTCTG SEQ ID NO: 1766
RPr AAATCCTGTTCCCACCTGAC SEQ ID NO: 1767
ranBP7 NM_006391.1 FPr AACATGATTATCCAAGCCGC SEQ ID NO: 1768
Probe AAGCCAATTTTGTCCACAATGGCA SEQ ID NO: 1769
RPr GCCAACAAGCACTGTTATCG SEQ ID NO: 1770
RANBP9 NM_005493.2 FPr CAAGTCAGTTGAGACGCCAGTT SEQ ID NO: 1771
Probe TTCTATGGCGGCCTGACTTCCTCCA SEQ ID NO: 1772
RPr TGCAGCTCTCGTCCAAAGTG SEQ ID NO: 1773
RAP1GDS1 NM_021159.3 FPr TGTGGATGCTGGATTGATTT SEQ ID NO: 1774
Probe CCACTGGTGCAGCTGCTAAATAGCA SEQ ID NO: 1775
RPr AAGCAGCACTTCCTGGTCTT SEQ ID NO: 1776
RARA NM_000964.1 FPr AGTCTGTGAGAAACGACCGAAAC SEQ ID NO: 1777
Probe TCGGGCTTGGGCACCTCCTTCTT SEQ ID NO: 1778
RPr CGGCGTCAGCGTGTAGCT SEQ ID NO: 1779
RARB NM_016152.2 FPr TGCCTGGACATCCTGATTCT SEQ ID NO: 1780
Probe TGCACCAGGTATACCCCAGAACAAGA SEQ ID NO: 1781
RPr AAGGCCGTCTGAGAAAGTCA SEQ ID NO: 1782
RASSF1 NM_007182.3 FPr AGTGGGAGACACCTGACCTT SEQ ID NO: 1783
Probe TTGATCTTCTGCTCAATCTCAGCTTGAGA SEQ ID NO: 1784
RPr TGATCTGGGCATTGTACTCC SEQ ID NO: 1785
RBM5 NM_005778.1 FPr CGAGAGGGAGAGCAAGACCAT SEQ ID NO: 1786
Probe CTGCGCGGCCTTCCCATCA SEQ ID NO: 1787
RPr TCTCGAATATCGCTCTCTGTGATG SEQ ID NO: 1788
RBX1 NM_014248.2 FPr GGAACCACATTATGGATCTTTGC SEQ ID NO: 1789
Probe TAGAATGTCAAGCTAACCAGGCGTCCGC SEQ ID NO: 1790
RPr CATGCGACAGTACACTCTTCTGAA SEQ ID NO: 1791
RCC1 NM_001269.2 FPr GGGCTGGGTGAGAATGTG SEQ ID NO: 1792
Probe ATACCAGGGCCGGCTTCTTCCTCT SEQ ID NO: 1793
RPr CACAACATCCTCCGGAATG SEQ ID NO: 1794
REG4 NM_032044.2 FPr TGCTAACTCCTGCACAGCC SEQ ID NO: 1795
Probe TCCTCTTCCTTTCTGCTAGCCTGGC SEQ ID NO: 1796
RPr TGCTAGGTTTCCCCTCTGAA SEQ ID NO: 1797
RFC NM_003056.1 FPr TCAAGACCATCATCACTTTCATTGT SEQ ID NO: 1798
Probe CCTCCCGGTCCGCAAGCAGTT SEQ ID NO: 1799
RPr GGATCAGGAAGTACACGGAGTATAACT SEQ ID NO: 1800
RhoB NM_004040.2 FPr AAGCATGAACAGGACTTGACC SEQ ID NO: 1801
Probe CTTTCCAACCCCTGGGGAAGACAT SEQ ID NO: 1802
RPr CCTCCCCAAGTCAGTTGC SEQ ID NO: 1803
rhoC NM_175744.1 FPr CCCGTTCGGTCTGAGGAA SEQ ID NO: 1804
Probe TCCGGTTCGCCATGTCCCG SEQ ID NO: 1805
RPr GAGCACTCAAGGTAGCCAAAGG SEQ ID NO: 1806
RIZ1 NM_012231.1 FPr CCAGACGAGCGATTAGAAGC SEQ ID NO: 1807
Probe TGTGAGGTGAATGATTTGGGGGA SEQ ID NO: 1808
RPr TCCTCCTCTTCCTCCTCCTC SEQ ID NO: 1809
RNF11 NM_014372.3 FPr ACCCTGGAAGAGATGGATCA SEQ ID NO: 1810
Probe CCATCATACAGATCACACACTCCCGG SEQ ID NO: 1811
RPr ATTGGGTCCCCATAAACAAA SEQ ID NO: 1812
ROCK1 NM_005406.1 FPr TGTGCACATAGGAATGAGCTTC SEQ ID NO: 1813
Probe TCACTCTCTTTGCTGGCCAACTGC SEQ ID NO: 1814
RPr GTTTAGCACGCAATTGCTCA SEQ ID NO: 1815
ROCK2 NM_004850.3 FPr GATCCGAGACCCTCGCTC SEQ ID NO: 1816
Probe CCCATCAACGTGGAGAGCTTGCT SEQ ID NO: 1817
RPr AGGACCAAGGAATTTAAGCCA SEQ ID NO: 1818
RPLPO NM_001002.2 FPr CCATTCTATCATCAACGGGTACAA SEQ ID NO: 1819
Probe TCTCCACAGACAAGGCCAGGACTCG SEQ ID NO: 1820
RPr TCAGCAAGTGGGAAGGTGTAATC SEQ ID NO: 1821
RPS13 NM_001017.2 FPr CAGTCGGCTTTACCCTATCG SEQ ID NO: 1822
Probe CAACTTCAACCAAGTGGGGACGCT SEQ ID NO: 1823
RPr TCTGCTCCTTCACGTCGTC SEQ ID NO: 1824
RRM1 NM_001033.1 FPr GGGCTACTGGCAGCTACATT SEQ ID NO: 1825
Probe CATTGGAATTGCCATTAGTCCCAGC SEQ ID NO: 1826
RPr CTCTCAGCATCGGTACAAGG SEQ ID NO: 1827
RRM2 NM_001034.1 FPr CAGCGGGATTAAACAGTCCT SEQ ID NO: 1828
Probe CCAGCACAGCCAGTTAAAAGATGCA SEQ ID NO: 1829
RPr ATCTGCGTTGAAGCAGTGAG SEQ ID NO: 1830
RTN4 NM_007008.1 FPr GACTGGAGTGGTGTTTGGTG SEQ ID NO: 1831
Probe CCAGCCTATTCCTGCTGCTTTCATTG SEQ ID NO: 1832
RPr CTGTTACGCTCACAATGCTG SEQ ID NO: 1833
RUNX1 NM_001754.2 FPr AACAGAGACATTGCCAACCA SEQ ID NO: 1834
Probe TTGGATCTGCTTGCTGTCCAAACC SEQ ID NO: 1835
RPr GTGATTTGCCCAGGAAGTTT SEQ ID NO: 1836
RXRA NM_002957.3 FPr GCTCTGTTGTGTCCTGTTGC SEQ ID NO: 1837
Probe TCAGTCACAGGAAGGCCAGAGCC SEQ ID NO: 1838
RPr GTACGGAGAAGCCACTTCACA SEQ ID NO: 1839
S100A1 NM_006271.1 FPr TGGACAAGGTGATGAAGGAG SEQ ID NO: 1840
Probe CCTCCCCGTCTCCATTCTCGTCTA SEQ ID NO: 1841
RPr AGCACCACATACTCCTGGAA SEQ ID NO: 1842
S100A2 NM_005978.2 FPr TGGCTGTGCTGGTCACTACCT SEQ ID NO: 1843
Probe CACAAGTACTCCTGCCAAGAGGGCGAC SEQ ID NO: 1844
RPr TCCCCCTTACTCAGCTTGAACT SEQ ID NO: 1845
S100A4 NM_002961.2 FPr GACTGCTGTCATGGCGTG SEQ ID NO: 1846
Probe ATCACATCCAGGGCCTTCTCCAGA SEQ ID NO: 1847
RPr CGAGTACTTGTGGAAGGTGGAC SEQ ID NO: 1848
S100A8 NM_002964.3 FPr ACTCCCTGATAAAGGGGAATTT SEQ ID NO: 1849
Probe CATGCCGTCTACAGGGATGACCTG SEQ ID NO: 1850
RPr TGAGGACACTCGGTCTCTAGC SEQ ID NO: 1851
S100A9 NM_002965.2 FPr CTTTGGGACAGAGTGCAAGA SEQ ID NO: 1852
Probe CGATGACTTGCAAAATGTCGCAGC SEQ ID NO: 1853
RPr TGGTCTCTATGTTGCGTTCC SEQ ID NO: 1854
S100P NM_005980.2 FPr AGACAAGGATGCCGTGGATAA SEQ ID NO: 1855
Probe TTGCTCAAGGACCTGGACGCCAA SEQ ID NO: 1856
RPr GAAGTCCACCTGGGCATCTC SEQ ID NO: 1857
SAT NM_002970.1 FPr CCTTTTACCACTGCCTGGTT SEQ ID NO: 1858
Probe TCCAGTGCTCTTTCGGCACTTCTG SEQ ID NO: 1859
RPr ACAATGCTGTGTCCTTCCG SEQ ID NO: 1860
SBA2 NM_018639.3 FPr GGACTCAACGATGGGCAG SEQ ID NO: 1861
Probe CCCTGTCTGCACCTCCCAGATCTT SEQ ID NO: 1862
RPr CGGAAAGATTCAAAAGCAGG SEQ ID NO: 1863
SDC1 NM_002997.1 FPr GAAATTGACGAGGGGTGTCT SEQ ID NO: 1864
Probe CTCTGAGCGCCTCCATCCAAGG SEQ ID NO: 1865
RPr AGGAGCTAACGGAGAACCTG SEQ ID NO: 1866
SEMA3B NM_004636.1 FPr GCTCCAGGATGTGTTTCTGTTG SEQ ID NO: 1867
Probe TCGCGGGACCACCGGACC SEQ ID NO: 1868
RPr ACGTGGAGAAGACGGCATAGA SEQ ID NO: 1869
SEMA3F NM_004186.1 FPr CGCGAGCCCCTCATTATACA SEQ ID NO: 1870
Probe CTCCCCACAGCGCATCGAGGAA SEQ ID NO: 1871
RPr CACTCGCCGTTGACATCCT SEQ ID NO: 1872
SEMA4B NM_020210.1 FPr TTCCAGCCCAACACAGTGAA SEQ ID NO: 1873
Probe ACTTTGGCCTGCCCGCTCCTCT SEQ ID NO: 1874
RPr GAGTCGGGTCGCCAGGTT SEQ ID NO: 1875
SFRP2 NM_003013.2 FPr CAAGCTGAACGGTGTGTCC SEQ ID NO: 1876
Probe CAGCACCGATTTCTTCAGGTCCCT SEQ ID NO: 1877
RPr TGCAAGCTGTCTTTGAGCC SEQ ID NO: 1878
SFRP4 NM_003014.2 FPr TACAGGATGAGGCTGGGC SEQ ID NO: 1879
Probe CCTGGGACAGCCTATGTAAGGCCA SEQ ID NO: 1880
RPr GTTGTTAGGGCAAGGGGC SEQ ID NO: 1881
SGCB NM_000232.1 FPr CAGTGGAGACCAGTTGGGTAGTG SEQ ID NO: 1882
Probe CACACATGCAGAGCTTGTAGCGTACCCA SEQ ID NO: 1883
RPr CCTTGAAGAGCGTCCCATCA SEQ ID NO: 1884
SHC1 NM_003029.3 FPr CCAACACCTTCTTGGCTTCT SEQ ID NO: 1885
Probe CCTGTGTTCTTGCTGAGCACCCTC SEQ ID NO: 1886
RPr CTGTTATCCCAACCCAAACC SEQ ID NO: 1887
SHH NM_000193.2 FPr GTCCAAGGCACATATCCACTG SEQ ID NO: 1888
Probe CACCGAGTTCTCTGCTTTCACCGA SEQ ID NO: 1889
RPr GAAGCAGCCTCCCGATTT SEQ ID NO: 1890
SI NM_001041.1 FPr AACGGACTCCCTCAATTTGT SEQ ID NO: 1891
Probe TGTCCATGGTCATGCAAATCTTGC SEQ ID NO: 1892
RPr GAAATTGCAGGGTCCAAGAT SEQ ID NO: 1893
Siah-1 NM_003031.2 FPr TTGGCATTGGAACTACATTCA SEQ ID NO: 1894
Probe TCCGCGGTATCCTCGGATTAGTTC SEQ ID NO: 1895
RPr GGTATGGAGAAGGGGGTCC SEQ ID NO: 1896
SIAT4A NM_003033.2 FPr AACCACAGTTGGAGGAGGAC SEQ ID NO: 1897
Probe CAGAGACAGTTTCCCTCCCCGCT SEQ ID NO: 1898
RPr CGAAGGAAGGGTGTTGGTAT SEQ ID NO: 1899
SIAT7B NM_006456.1 FPr TCCAGCCCAAATCCTCCT SEQ ID NO: 1900
Probe TGGCACATCCTACCCCAGATGCTA SEQ ID NO: 1901
RPr GGTGTCCTGGAGTCCTTGAA SEQ ID NO: 1902
SIM2 NM_005069.2 FPr GATGGTAGGAAGGGATGTGC SEQ ID NO: 1903
Probe CGCCTCTCCACGCACTCAGCTAT SEQ ID NO: 1904
RPr CACAAGGAGCTGTGAATGAGG SEQ ID NO: 1905
SIN3A NM_015477.1 FPr CCAGAGTCATGCTCATCCAG SEQ ID NO: 1906
Probe CTGTCCCTGCACTGGTGCAACTG SEQ ID NO: 1907
RPr CCACCTTCAGCCTCTGAAAT SEQ ID NO: 1908
SIR2 NM_012238.3 FPr AGCTGGGGTGTCTGTTTCAT SEQ ID NO: 1909
Probe CCTGACTTCAGGTCAAGGGATGG SEQ ID NO: 1910
RPr ACAGCAAGGCGAGCATAAAT SEQ ID NO: 1911
SKP1A NM_006930.2 FPr CCATTGCCTTTGCTTTGTTCAT SEQ ID NO: 1912
Probe TCCCATGGTTTTTATTCTGCCCTGCTG SEQ ID NO: 1913
RPr TTCCGGATTTCCTTTCTTTGC SEQ ID NO: 1914
SKP2 NM_005983.2 FPr AGTTGCAGAATCTAAGCCTGGAA SEQ ID NO: 1915
Probe CCTGCGGCTTTCGGATCCCA SEQ ID NO: 1916
RPr TGAGTTTTTTGCGAGAGTATTGACA SEQ ID NO: 1917
SLC25A3 NM_213611.1 FPr TCTGCCAGTGCTGAATTCTT SEQ ID NO: 1918
Probe TGCTGACATTGCCCTGGCTCCTAT SEQ ID NO: 1919
RPr TTCGAACCTTAGCAGCTTCC SEQ ID NO: 1920
SLC2A1 NM_006516.1 FPr GCCTGAGTCTCCTGTGCC SEQ ID NO: 1921
Probe ACATCCCAGGCTTCACCCTGAATG SEQ ID NO: 1922
RPr AGTCTCCACCCTCAGGCAT SEQ ID NO: 1923
SLC31A1 NM_001859.2 FPr CCGTTCGAAGAGTCGTGAG SEQ ID NO: 1924
Probe TCTCCGAATCTTAACCCGTCACCC SEQ ID NO: 1925
RPr AGTCCAGCCACTAGCACCTC SEQ ID NO: 1926
SLC5A8 NM_145913.2 FPr CCTGCTTTCAACCACATTGA SEQ ID NO: 1927
Probe TCCCATTGCTCTTGCCACTCTGAT SEQ ID NO: 1928
RPr AGAGCAGCTTCACAAACGAG SEQ ID NO: 1929
SLC7A5 NM_003486.4 FPr GCGCAGAGGCCAGTTAAA SEQ ID NO: 1930
Probe AGATCACCTCCTCGAACCCACTCC SEQ ID NO: 1931
RPr AGCTGAGCTGTGGGTTGC SEQ ID NO: 1932
SLPI NM_003064.2 FPr ATGGCCAATGTTTGATGCT SEQ ID NO: 1933
Probe TGGCCATCCATCTCACAGAAATTGG SEQ ID NO: 1934
RPr ACACTTCAAGTCACGCTTGC SEQ ID NO: 1935
SMARCA3 NM_003071.2 FPr AGGGACTGTCCTGGCACAT SEQ ID NO: 1936
Probe AGCAAAAGACCCAGGACATCTGCA SEQ ID NO: 1937
RPr CAACAAATTTGCCGCAGTC SEQ ID NO: 1938
SNAI1 NM_005985.2 FPr CCCAATCGGAAGCCTAACTA SEQ ID NO: 1939
Probe TCTGGATTAGAGTCCTGCAGCTCGC SEQ ID NO: 1940
RPr GTAGGGCTGCTGGAAGGTAA SEQ ID NO: 1941
SNAI2 NM_003068.3 FPr GGCTGGCCAAACATAAGCA SEQ ID NO: 1942
Probe CTGCACTGCGATGCCCAGTCTAGAAAATC SEQ ID NO: 1943
RPr TCCTTGTCACAGTATTTACAGCTGAA SEQ ID NO: 1944
SNRPF NM_003095.1 FPr GGCTGGTCGGCAGAGAGTAG SEQ ID NO: 1945
Probe AAACTCATGTAAACCACGGCCGAATGTTG SEQ ID NO: 1946
RPr TGAGGAAAGGTTTGGGATTGA SEQ ID NO: 1947
SOD1 NM_000454.3 FPr TGAAGAGAGGCATGTTGGAG SEQ ID NO: 1948
Probe TTTGTCAGCAGTCACATTGCCCAA SEQ ID NO: 1949
RPr AATAGACACATCGGCCACAC SEQ ID NO: 1950
SOD2 NM_000636.1 FPr GCTTGTCCAAATCAGGATCCA SEQ ID NO: 1951
Probe AACAACAGGCCTTATTCCACTGCTGGG SEQ ID NO: 1952
RPr AGCGTGCTCCCACACATCA SEQ ID NO: 1953
SOS1 NM_005633.2 FPr TCTGCACCAAATTCTCCAAG SEQ ID NO: 1954
Probe AACACCGTTAACACCTCCGCCTG SEQ ID NO: 1955
RPr GTGGTACTGGAAGCACCAGA SEQ ID NO: 1956
SOX17 NM_022454.2 FPr TCGTGTGCAAGCCTGAGA SEQ ID NO: 1957
Probe CTCCCCTACCAGGGGCATGACTC SEQ ID NO: 1958
RPr CTGTCGGGGAGATTCACAC SEQ ID NO: 1959
SPARC NM_003118.1 FPr TCTTCCCTGTACACTGGCAGTTC SEQ ID NO: 1960
Probe TGGACCAGCACCCCATTGACGG SEQ ID NO: 1961
RPr AGCTCGGTGTGGGAGAGGTA SEQ ID NO: 1962
SPINT2 NM_021102.1 FPr AGGAATGCAGCGGATTCCT SEQ ID NO: 1963
Probe CCCAAGTGCTCCCAGAAGGCAGG SEQ ID NO: 1964
RPr TCGCTGGAGTGGTCTTCAGA SEQ ID NO: 1965
SPRY1 AK026960.1 FPr CAGACCAGTCCCTGGTCATAGG SEQ ID NO: 1966
Probe CTGGGTCCGGATTGCCCTTTCAG SEQ ID NO: 1967
RPr CCTTCAAGTCATCCACAATCAGTT SEQ ID NO: 1968
SPRY2 NM_005842.1 FPr TGTGGCAAGTGCAAATGTAA SEQ ID NO: 1969
Probe CAGAGGCCTTGGGTAGGTGCACTC SEQ ID NO: 1970
RPr GTCGCAGATCCAGTCTGATG SEQ ID NO: 1971
SR-A1 NM_021228.1 FPr AGATGGAAGAAGCCAACCTG SEQ ID NO: 1972
Probe CTGGATCAGCTCCTGGGCCTTC SEQ ID NO: 1973
RPr CTGTGGCTGAGGATCTGGT SEQ ID NO: 1974
ST14 NM_021978.2 FPr TGACTGCACATGGAACATTG SEQ ID NO: 1975
Probe AGGTGCCCAACAACCAGCATGT SEQ ID NO: 1976
RPr AAGAATTTGAAGCGCACCTT SEQ ID NO: 1977
STAT1 NM_007315.1 FPr GGGCTCAGCTTTCAGAAGTG SEQ ID NO: 1978
Probe TGGCAGTTTTCTTCTGTCACCAAAA SEQ ID NO: 1979
RPr ACATGTTCAGCTGGTCCACA SEQ ID NO: 1980
STAT3 NM_003150.1 FPr TCACATGCCACTTTGGTGTT SEQ ID NO: 1981
Probe TCCTGGGAGAGATTGACCAGCA SEQ ID NO: 1982
RPr CTTGCAGGAAGCGGCTATAC SEQ ID NO: 1983
STAT5A NM_003152.1 FPr GAGGCGCTCAACATGAAATTC SEQ ID NO: 1984
Probe CGGTTGCTCTGCACTTCGGCCT SEQ ID NO: 1985
RPr GCCAGGAACACGAGGTTCTC SEQ ID NO: 1986
STAT5B NM_012448.1 FPr CCAGTGGTGGTGATCGTTCA SEQ ID NO: 1987
Probe CAGCCAGGACAACAATGCGACGG SEQ ID NO: 1988
RPr GCAAAAGCATTGTCCCAGAGA SEQ ID NO: 1989
STC1 NM_003155.1 FPr CTCCGAGGTGAGGAGGACT SEQ ID NO: 1990
Probe CACATCAAACGCACATCCCATGAG SEQ ID NO: 1991
RPr ACCTCTCCCTGGTTATGCAC SEQ ID NO: 1992
STK11 NM_000455.3 FPr GGACTCGGAGACGCTGTG SEQ ID NO: 1993
Probe TTCTTGAGGATCTTGACGGCCCTC SEQ ID NO: 1994
RPr GGGATCCTTCGCAACTTCTT SEQ ID NO: 1995
STK15 NM_003600.1 FPr CATCTTCCAGGAGGACCACT SEQ ID NO: 1996
Probe CTCTGTGGCACCCTGGACTACCTG SEQ ID NO: 1997
RPr TCCGACCTTCAATCATTTCA SEQ ID NO: 1998
STMN1 NM_005563.2 FPr AATACCCAACGCACAAATGA SEQ ID NO: 1999
Probe CACGTTCTCTGCCCCGTTTCTTG SEQ ID NO: 2000
RPr GGAGACAATGCAAACCACAC SEQ ID NO: 2001
STMY3 NM_005940.2 FPr CCTGGAGGCTGCAACATACC SEQ ID NO: 2002
Probe ATCCTCCTGAAGCCCTTTTCGCAGC SEQ ID NO: 2003
RPr TACAATGGCTTTGGAGGATAGCA SEQ ID NO: 2004
STS NM_000351.2 FPr GAAGATCCCTTTCCTCCTACTGTTC SEQ ID NO: 2005
Probe CTTCGTGGCTCTCGGCTTCCCA SEQ ID NO: 2006
RPr GGATGATGTTCGGCCTTGAT SEQ ID NO: 2007
SURV NM_001168.1 FPr TGTTTTGATTCCCGGGCTTA SEQ ID NO: 2008
Probe TGCCTTCTTCCTCCCTCACTTCTCACCT SEQ ID NO: 2009
RPr CAAAGCTGTCAGCTCTAGCAAAAG SEQ ID NO: 2010
TAGLN NM_003186.2 FPr GATGGAGCAGGTGGCTCAGT SEQ ID NO: 2011
Probe CCCAGAGTCCTCAGCCGCCTTCAG SEQ ID NO: 2012
RPr AGTCTGGAACATGTCAGTCTTGATG SEQ ID NO: 2013
TBP NM_003194.1 FPr GCCCGAAACGCCGAATATA SEQ ID NO: 2014
Probe TACCGCAGCAAACCGCTTGGG SEQ ID NO: 2015
RPr CGTGGCTCTCTTATCCTCATGAT SEQ ID NO: 2016
TCF-1 NM_000545.3 FPr GAGGTCCTGAGCACTGCC SEQ ID NO: 2017
Probe CTGGGTTCACAGGCTCCTTTGTCC SEQ ID NO: 2018
RPr GATGTGGGACCATGCTTGT SEQ ID NO: 2019
TCF-7 NM_003202.2 FPr GCAGCTGCAGTCAACAGTTC SEQ ID NO: 2020
Probe AAGTCATGGCCCAAATCCAGTGTG SEQ ID NO: 2021
RPr CTGTGAATGGGGAGGGGT SEQ ID NO: 2022
TCF7L1 NM_031283.1 FPr CCGGGACACTTTCCAGAAG SEQ ID NO: 2023
Probe TCTCACTTCGGCGAAATAGTCCCG SEQ ID NO: 2024
RPr AGAACGCGCTGTCCTGAG SEQ ID NO: 2025
TCF7L2 NM_030756.1 FPr CCAATCACGACAGGAGGATT SEQ ID NO: 2026
Probe AGACACCCCTACCCCACAGCTCTG SEQ ID NO: 2027
RPr TGGACACGGAAGCATTGAC SEQ ID NO: 2028
TCFL4 NM_170607.2 FPr CTGACTGCTCTGCTTAAAGGTGAA SEQ ID NO: 2029
Probe TAGCAGGAACAACAACAAAAGCCAACC SEQ ID NO: 2030
AA
RPr ATGTCTTGCACTGGCTACCTTGT SEQ ID NO: 2031
TEK NM_000459.1 FPr ACTTCGGTGCTACTTAACAACTTACATC SEQ ID NO: 2032
Probe AGCTCGGACCACGTACTGCTCCCTG SEQ ID NO: 2033
RPr CCTGGGCCTTGGTGTTGAC SEQ ID NO: 2034
TERC U86046.1 FPr AAGAGGAACGGAGCGAGTC SEQ ID NO: 2035
Probe CACGTCCCACAGCTCAGGGAATC SEQ ID NO: 2036
RPr ATGTGTGAGCCGAGTCCTG SEQ ID NO: 2037
TERT NM_003219.1 FPr GACATGGAGAACAAGCTGTTTGC SEQ ID NO: 2038
Probe ACCAAACGCAGGAGCAGCCCG SEQ ID NO: 2039
RPr GAGGTGTCACCAACAAGAAATCAT SEQ ID NO: 2040
TFF3 NM_003226.1 FPr AGGCACTGTTCATCTCAGTTTTTCT SEQ ID NO: 2041
Probe CAGAAAGCTTGCCGGGAGCAAAGG SEQ ID NO: 2042
RPr CATCAGGCTCCAGATATGAACTTTC SEQ ID NO: 2043
TGFA NM_003236.1 FPr GGTGTGCCACAGACCTTCCT SEQ ID NO: 2044
Probe TTGGCCTGTAATCACCTGTGCAGCCTT SEQ ID NO: 2045
RPr ACGGAGTTCTTGACAGAGTTTTGA SEQ ID NO: 2046
TGFB2 NM_003238.1 FPr ACCAGTCCCCCAGAAGACTA SEQ ID NO: 2047
Probe TCCTGAGCCCGAGGAAGTCCC SEQ ID NO: 2048
RPr CCTGGTGCTGTTGTAGATGG SEQ ID NO: 2049
TGFB3 NM_003239.1 FPr GGATCGAGCTCTTCCAGATCCT SEQ ID NO: 2050
Probe CGGCCAGATGAGCACATTGCC SEQ ID NO: 2051
RPr GCCACCGATATAGCGCTGTT SEQ ID NO: 2052
TGFBI NM_000358.1 FPr GCTACGAGTGCTGTCCTGG SEQ ID NO: 2053
Probe CCTTCTCCCCAGGGACCTTTTCAT SEQ ID NO: 2054
RPr AGTGGTAGGGCTGCTGGAC SEQ ID NO: 2055
TGFBR1 NM_004612.1 FPr GTCATCACCTGGCCTTGG SEQ ID NO: 2056
Probe AGCAATGACAGCTGCCAGTTCCAC SEQ ID NO: 2057
RPr GCAGACGAAGCACACTGGT SEQ ID NO: 2058
TGFBR2 NM_003242.2 FPr AACACCAATGGGTTCCATCT SEQ ID NO: 2059
Probe TTCTGGGCTCCTGATTGCTCAAGC SEQ ID NO: 2060
RPr CCTCTTCATCAGGCCAAACT SEQ ID NO: 2061
THBS1 NM_003246.1 FPr CATCCGCAAAGTGACTGAAGAG SEQ ID NO: 2062
Probe CCAATGAGCTGAGGCGGCCTCC SEQ ID NO: 2063
RPr GTACTGAACTCCGTTGTGATAGCATAG SEQ ID NO: 2064
THY1 NM_006288.2 FPr GGACAAGACCCTCTCAGGCT SEQ ID NO: 2065
Probe CAAGCTCCCAAGAGCTTCCAGAGC SEQ ID NO: 2066
RPr TTGGAGGCTGTGGGTCAG SEQ ID NO: 2067
TIMP1 NM_003254.1 FPr TCCCTGCGGTCCCAGATAG SEQ ID NO: 2068
Probe ATCCTGCCCGGAGTGGAACTGAAGC SEQ ID NO: 2069
RPr GTGGGAACAGGGTGGACACT SEQ ID NO: 2070
TIMP2 NM_003255.2 FPr TCACCCTCTGTGACTTCATCGT SEQ ID NO: 2071
Probe CCCTGGGACACCCTGAGCACCA SEQ ID NO: 2072
RPr TGTGGTTCAGGCTCTTCTTCTG SEQ ID NO: 2073
TIMP3 NM_000362.2 FPr CTACCTGCCTTGCTTTGTGA SEQ ID NO: 2074
Probe CCAAGAACGAGTGTCTCTGGACCG SEQ ID NO: 2075
RPr ACCGAAATTGGAGAGCATGT SEQ ID NO: 2076
TJP1 NM_003257.1 FPr ACTTTGCTGGGACAAAGGTC SEQ ID NO: 2077
Probe CTCGGGCCTGCCCACTTCTTC SEQ ID NO: 2078
RPr CACATGGACTCCTCAGCATC SEQ ID NO: 2079
TK1 NM_003258.1 FPr GCCGGGAAGACCGTAATTGT SEQ ID NO: 2080
Probe CAAATGGCTTCCTCTGGAAGGTCCCA SEQ ID NO: 2081
RPr CAGCGGCACCAGGTTCAG SEQ ID NO: 2082
TLN1 NM_006289.2 FPr AAGCAGAAGGGAGAGCGTAAGA SEQ ID NO: 2083
Probe CTTCCAGGCACACAAGAATTGTGGGC SEQ ID NO: 2084
RPr CCTTGGCCTCAATCTCACTCA SEQ ID NO: 2085
TMEPAI NM_020182.3 FPr CAGAAGGATGCCTGTGGC SEQ ID NO: 2086
Probe ATTCCGTTGCCTGACACTGTGCTC SEQ ID NO: 2087
RPr GTAGACCTGCGGCTCTGG SEQ ID NO: 2088
TMSB10 NM_021103.2 FPr GAAATCGCCAGCTTCGATAA SEQ ID NO: 2089
Probe CGTCTCCGTTTTCTTCAGCTTGGC SEQ ID NO: 2090
RPr GTCGGCAGGGTGTTCTTTT SEQ ID NO: 2091
TMSB4X NM_021109.2 FPr CACATCAAAGAACTACTGACAACGAA SEQ ID NO: 2092
Probe CCGCGCCTGCCTTTCCCA SEQ ID NO: 2093
RPr CCTGCCAGCCAGATAGATAGACA SEQ ID NO: 2094
TNC NM_002160.1 FPr AGCTCGGAACCTCACCGT SEQ ID NO: 2095
Probe CAGCCTTCGGGCTGTGGACATAC SEQ ID NO: 2096
RPr GTAGCAGCCTTGAGGCCC SEQ ID NO: 2097
TNF NM_000594.1 FPr GGAGAAGGGTGACCGACTCA SEQ ID NO: 2098
Probe CGCTGAGATCAATCGGCCCGACTA SEQ ID NO: 2099
RPr TGCCCAGACTCGGCAAAG SEQ ID NO: 2100
TNFRSF5 NM_001250.3 FPr TCTCACCTCGCTATGGTTCGT SEQ ID NO: 2101
Probe TGCCTCTGCAGTGCGTCCTCTGG SEQ ID NO: 2102
RPr GATGGACAGCGGTCAGCAA SEQ ID NO: 2103
TNFRSF6B NM_003823.2 FPr CCTCAGCACCAGGGTACCA SEQ ID NO: 2104
Probe TGACGGCACGCTCACACTCCTCAG SEQ ID NO: 2105
RPr TGTCCTGGAAAGCCACAAAGT SEQ ID NO: 2106
TNFSF4 NM_003326.2 FPr CTTCATCTTCCCTCTACCCAGA SEQ ID NO: 2107
Probe CAGGGGTTGGACCCTTTCCATCTT SEQ ID NO: 2108
RPr GCTGCATTTCCCACATTCTC SEQ ID NO: 2109
TOP2A NM_001067.1 FPr AATCCAAGGGGGAGAGTGAT SEQ ID NO: 2110
Probe CATATGGACTTTGACTCAGCTGTGGC SEQ ID NO: 2111
RPr GTACAGATTTTGCCCGAGGA SEQ ID NO: 2112
TOP2B NM_001068.1 FPr TGTGGACATCTTCCCCTCAGA SEQ ID NO: 2113
Probe TTCCCTACTGAGCCACCTTCTCTG SEQ ID NO: 2114
RPr CTAGCCCGACCGGTTCGT SEQ ID NO: 2115
TP NM_001953.2 FPr CTATATGCAGCCAGAGATGTGACA SEQ ID NO: 2116
Probe ACAGCCTGCCACTCATCACAGCC SEQ ID NO: 2117
RPr CCACGAGTTTCTTACTGAGAATGG SEQ ID NO: 2118
TP53BP1 NM_005657.1 FPr TGCTGTTGCTGAGTCTGTTG SEQ ID NO: 2119
Probe CCAGTCCCCAGAAGACCATGTCTG SEQ ID NO: 2120
RPr CTTGCCTGGCTTCACAGATA SEQ ID NO: 2121
TP53BP2 NM_005426.1 FPr GGGCCAAATATTCAGAAGC SEQ ID NO: 2122
Probe CCACCATAGCGGCCATGGAG SEQ ID NO: 2123
RPr GGATGGGTATGATGGGACAG SEQ ID NO: 2124
TP53I3 NM_004881.2 FPr GCGGACTTAATGCAGAGACA SEQ ID NO: 2125
Probe CAGTATGACCCACCTCCAGGAGCC SEQ ID NO: 2126
RPr TCAAGTCCCAAAATGTTGCT SEQ ID NO: 2127
TRAG3 NM_004909.1 FPr GACGCTGGTCTGGTGAAGATG SEQ ID NO: 2128
Probe CCAGGAAACCACGAGCCTCCAGC SEQ ID NO: 2129
RPr TGGGTGGTTGTTGGACAATG SEQ ID NO: 2130
TRAIL NM_003810.1 FPr CTTCACAGTGCTCCTGCAGTCT SEQ ID NO: 2131
Probe AAGTACACGTAAGTTACAGCCACACA SEQ ID NO: 2132
RPr CATCTGCTTCAGCTCGTTGGT SEQ ID NO: 2133
TS NM_001071.1 FPr GCCTCGGTGTGCCTTTCA SEQ ID NO: 2134
Probe CATCGCCAGCTACGCCCTGCTC SEQ ID NO: 2135
RPr CGTGATGTGCGCAATCATG SEQ ID NO: 2136
TST NM_003312.4 FPr GGAGCCGGATGCAGTAGGA SEQ ID NO: 2137
Probe ACCACGGATATGGCCCGAGTCCA SEQ ID NO: 2138
RPr AAGTCCATGAAAGGCATGTTGA SEQ ID NO: 2139
TUBA1 NM_006000.1 FPr TGTCACCCCGACTCAACGT SEQ ID NO: 2140
Probe AGACGCACCGCCCGGACTCAC SEQ ID NO: 2141
RPr ACGTGGACTGAGATGCATTCAC SEQ ID NO: 2142
TUBB NM_001069.1 FPr CGAGGACGAGGCTTAAAAAC SEQ ID NO: 2143
Probe TCTCAGATCAATCGTGCATCCTTAGTGAA SEQ ID NO: 2144
RPr ACCATGCTTGAGGACAACAG SEQ ID NO: 2145
TUFM NM_003321.3 FPr GTATCACCATCAATGCGGC SEQ ID NO: 2146
Probe CATGTGGAGTATAGCACTGCCGCC SEQ ID NO: 2147
RPr CAGTCTGTGTGGGCGTAGTG SEQ ID NO: 2148
TULP3 NM_003324.2 FPr TGTGTATAGTCCTGCCCCTCAA SEQ ID NO: 2149
Probe CCGGATTATCCGACATCTTACTGTGA SEQ ID NO: 2150
RPr CCCGATCCATTCCCCTTTTA SEQ ID NO: 2151
tusc4 NM_006545.4 FPr GGAGGAGCTAAATGCCTCAG SEQ ID NO: 2152
Probe ACTCATCAATGGGCAGAGTGCACC SEQ ID NO: 2153
RPr CCTTCAAGTGGATGGTGTTG SEQ ID NO: 2154
UBB NM_018955.1 FPr GAGTCGACCCTGCACCTG SEQ ID NO: 2155
Probe AATTAACAGCCACCCCTCAGGCG SEQ ID NO: 2156
RPr GCGAATGCCATGACTGAA SEQ ID NO: 2157
UBC NM_021009.2 FPr ACGCACCCTGTCTGACTACA SEQ ID NO: 2158
Probe CATCCAGAAAGAGTCCACCCTGCA SEQ ID NO: 2159
RPr ACCTCTAAGACGGAGCACCA SEQ ID NO: 2160
UBE2C NM_007019.2 FPr TGTCTGGCGATAAAGGGATT SEQ ID NO: 2161
Probe TCTGCCTTCCCTGAATCAGACAACC SEQ ID NO: 2162
RPr ATGGTCCCTACCCATTTGAA SEQ ID NO: 2163
UBE2M NM_003969.1 FPr CTCCATAATTTATGGCCTGCAGTA SEQ ID NO: 2164
Probe TCTTCTTGGAGCCCAACCCCGAG SEQ ID NO: 2165
RPr TGCGGCCTCCTTGTTCAG SEQ ID NO: 2166
UBL1 NM_003352.3 FPr GTGAAGCCACCGTCATCATG SEQ ID NO: 2167
Probe CTGACCAGGAGGCAAAACCTTCAACTGA SEQ ID NO: 2168
RPr CCTTCCTTCTTATCCCCCAAGT SEQ ID NO: 2169
UCP2 NM_003355.2 FPr ACCATGCTCCAGAAGGAGG SEQ ID NO: 2170
Probe CCCCGAGCCTTCTACAAAGGGTTC SEQ ID NO: 2171
RPr AACCCAAGCGGAGAAAGG SEQ ID NO: 2172
UGT1A1 NM_000463.2 FPr CCATGCAGCCTGGAATTTG SEQ ID NO: 2173
Probe CTACCCAGTGCCCCAACCCATTCTC SEQ ID NO: 2174
RPr GAGAGGCCTGGGCACGTA SEQ ID NO: 2175
UMPS NM_000373.1 FPr TGCGGAAATGAGCTCCAC SEQ ID NO: 2176
Probe CCCTGGCCACTGGGGACTACACTA SEQ ID NO: 2177
RPr CCTCAGCCATTCTAACCGC SEQ ID NO: 2178
UNC5A XM_030300.7 FPr GACAGCTGATCCAGGAGCC SEQ ID NO: 2179
Probe CGGGTCCTGCACTTCAAGGACAGT SEQ ID NO: 2180
RPr ATGGATAGGCGCAGGTTG SEQ ID NO: 2181
UNC5B NM_170744.2 FPr AGAACGGAGGCCGTGACT SEQ ID NO: 2182
Probe CGGGACGCTGCTCGACTCTAAGAA SEQ ID NO: 2183
RPr CATGCACAGCCCATCTGT SEQ ID NO: 2184
UNC5C NM_003728.2 FPr CTGAACACAGTGGAGCTGGT SEQ ID NO: 2185
Probe ACCTGCCGCACACAGAGTTTGC SEQ ID NO: 2186
RPr CTGGAAGATCTGCCCTTCTC SEQ ID NO: 2187
upa NM_002658.1 FPr GTGGATGTGCCCTGAAGGA SEQ ID NO: 2188
Probe AAGCCAGGCGTCTACACGAGAGTCTCAC SEQ ID NO: 2189
RPr CTGCGGATCCAGGGTAAGAA SEQ ID NO: 2190
UPP1 NM_003364.2 FPr ACGGGTCCTGCCTCAGTT SEQ ID NO: 2191
Probe TCAGCTTTCTCTGCATTGGCTCCC SEQ ID NO: 2192
RPr CGGGGCAATCATTGTGAC SEQ ID NO: 2193
VCAM1 NM_001078.2 FPr TGGCTTCAGGAGCTGAATACC SEQ ID NO: 2194
Probe CAGGCACACACAGGTGGGACACAAAT SEQ ID NO: 2195
RPr TGCTGTCGTGATGAGAAAATAGTG SEQ ID NO: 2196
VCL NM_003373.2 FPr GATACCACAACTCCCATCAAGCT SEQ ID NO: 2197
Probe AGTGGCAGCCACGGCGCC SEQ ID NO: 2198
RPr TCCCTGTTAGGCGCATCAG SEQ ID NO: 2199
VCP NM_007126.2 FPr GGCTTTGGCAGCTTCAGAT SEQ ID NO: 2200
Probe AGCTCCACCCTGGTTCCCTGAAG SEQ ID NO: 2201
RPr CTCCACTGCCCTGACTGG SEQ ID NO: 2202
VDAC1 NM_003374.1 FPr GCTGCGACATGGATTTCGA SEQ ID NO: 2203
Probe TTGCTGGGCCTTCCATCCGG SEQ ID NO: 2204
RPr CCAGCCCTCGTAACCTAGCA SEQ ID NO: 2205
VDAC2 NM_003375.2 FPr ACCCACGGACAGACTTGC SEQ ID NO: 2206
Probe CGCGTCCAATGTGTATTCCTCCAT SEQ ID NO: 2207
RPr AGCTTTGCCAAGGTCAGC SEQ ID NO: 2208
VDR NM_000376.1 FPr GCCCTGGATTTCAGAAAGAG SEQ ID NO: 2209
Probe CAAGTCTGGATCTGGGACCCTTTCC SEQ ID NO: 2210
RPr AGTTACAAGCCAGGGAAGGA SEQ ID NO: 2211
VEGF NM_003376.3 FPr CTGCTGTCTTGGGTGCATTG SEQ ID NO: 2212
Probe TTGCCTTGCTGCTCTACCTCCACCA SEQ ID NO: 2213
RPr GCAGCCTGGGACCACTTG SEQ ID NO: 2214
VEGF_altsplice1 AF486837.1 FPr TGTGAATGCAGACCAAAGAAAGA SEQ ID NO: 2215
Probe AGAGCAAGACAAGAAAATCCCTGTGGGC SEQ ID NO: 2216
RPr GCTTTCTCCGCTCTGAGCAA SEQ ID NO: 2217
VEGF_altsplice2 AF214570.1 FPr AGCTTCCTACAGCACAACAAAT SEQ ID NO: 2218
Probe TGTCTTGCTCTATCTTTCTTTGGTCTGCA SEQ ID NO: 2219
RPr CTCGGCTTGTCACATTTTTC SEQ ID NO: 2220
VEGFB NM_003377.2 FPr TGACGATGGCCTGGAGTGT SEQ ID NO: 2221
Probe CTGGGCAGCACCAAGTCCGGA SEQ ID NO: 2222
RPr GGTACCGGATCATGAGGATCTG SEQ ID NO: 2223
VEGFC NM_005429.2 FPr CCTCAGCAAGACGTTATTTGAAATT SEQ ID NO: 2224
Probe CCTCTCTCTCAAGGCCCCAAACCAGT SEQ ID NO: 2225
RPr AAGTGTGATTGGCAAAACTGATTG SEQ ID NO: 2226
VIM NM_003380.1 FPr TGCCCTTAAAGGAACCAATGA SEQ ID NO: 2227
Probe ATTTCACGCATCTGGCGTTCCA SEQ ID NO: 2228
RPr GCTTCAACGGCAAAGTTCTCTT SEQ ID NO: 2229
WIF NM_007191.2 FPr TACAAGCTGAGTGCCCAGG SEQ ID NO: 2230
Probe TACAAAAGCCTCCATTTCGGCACC SEQ ID NO: 2231
RPr CACTCGCAGATGCGTCTTT SEQ ID NO: 2232
WISP1 NM_003882.2 FPr AGAGGCATCCATGAACTTCACA SEQ ID NO: 2233
Probe CGGGCTGCATCAGCACACGC SEQ ID NO: 2234
RPr CAAACTCCACAGTACTTGGGTTGA SEQ ID NO: 2235
Wnt-3a NM_033131.2 FPr ACAAAGCTACCAGGGAGTCG SEQ ID NO: 2236
Probe TTTGTCCACGCCATTGCCTCAG SEQ ID NO: 2237
RPr TGAGCGTGTCACTGCAAAG SEQ ID NO: 2238
Wnt-5a NM_003392.2 FPr GTATCAGGACCACATGCAGTACATC SEQ ID NO: 2239
Probe TTGATGCCTGTCTTCGCGCCTTCT SEQ ID NO: 2240
RPr TGTCGGAATTGATACTGGCATT SEQ ID NO: 2241
Wnt-5b NM_032642.2 FPr TGTCTTCAGGGTCTTGTCCA SEQ ID NO: 2242
Probe TTCCGTAAGAGGCCTGGTGCTCTC SEQ ID NO: 2243
RPr GTGCACGTGGATGAAAGAGT SEQ ID NO: 2244
WNT2 NM_003391.1 FPr CGGTGGAATCTGGCTCTG SEQ ID NO: 2245
Probe CTCCCTCTGCTCTTGACCTGGCTC SEQ ID NO: 2246
RPr CCATGAAGAGTTGACCTCGG SEQ ID NO: 2247
WWOX NM_016373.1 FPr ATCGCAGCTGGTGGGTGTA SEQ ID NO: 2248
Probe CTGCTGTTTACCTTGGCGAGGCCTTT SEQ ID NO: 2249
RPr AGCTCCCTGTTGCATGGACTT SEQ ID NO: 2250
XPA NM_000380.2 FPr GGGTAGAGGGAAAAGGGTTC SEQ ID NO: 2251
Probe CAAAGGCTGAACTGGATTCTTAACCAAGA SEQ ID NO: 2252
RPr TGCACCACCATTGCTATTATT SEQ ID NO: 2253
XPC NM_004628.2 FPr GATACATCGTCTGCGAGGAA SEQ ID NO: 2254
Probe TTCAAAGACGTGCTCCTGACTGCC SEQ ID NO: 2255
RPr CTTTCAATGACTGCCTGCTC SEQ ID NO: 2256
XRCC1 NM_006297.1 FPr GGAGATGAAGCCCCCAAG SEQ ID NO: 2257
Probe AGAAGCAACCCCAGACCAAAACCA SEQ ID NO: 2258
RPr GTCCAGCTGCCTGAGTGG SEQ ID NO: 2259
YB-1 NM_004559.1 FPr AGACTGTGGAGTTTGATGTTGTTGA SEQ ID NO: 2260
Probe TTGCTGCCTCCGCACCCTTTTCT SEQ ID NO: 2261
RPr GGAACACCACCAGGACCTGTAA SEQ ID NO: 2262
YWHAH NM_003405.2 FPr CATGGCCTCCGCTATGAA SEQ ID NO: 2263
Probe AGGTTCATTCAGCTCTGTCACCGC SEQ ID NO: 2264
RPr GGAGATTTCGATCTTCATTGGA SEQ ID NO: 2265
zbtb7 NM_015898.2 FPr CTGCGTTCACACCCCAGT SEQ ID NO: 2266
Probe TCTCTCCAGAACAGCTCGCCCTGT SEQ ID NO: 2267
RPr CTCAGCCACGACAGATGGT SEQ ID NO: 2268
ZG16 NM_152338.1 FPr TGCTGAGCCTCCTCTCCTT SEQ ID NO: 2269
Probe TACTCCTCATCACAGTGCCCCTGC SEQ ID NO: 2270
RPr GGATGGGGGTTAGTGATAAGG SEQ ID NO: 2271
TABLE B
SEQ
ID
Gene Locus Link Sequence NO
A-Catenin NM_001903.1 CGTTCCGATCCTCTATACTGCATCCCAGGCATGCCTACAGCACCCTGATGTCGCAGCCTATA SEQ ID
AGGCCAACAGGGACCT NO:
2272
ABCB1 NM_000927.2 AAACACCACTGGAGCATTGACTACCAGGCTCGCCAATGATGCTGCTCAAGTTAAAGGGGCT SEQ ID
ATAGGTTCCAGGCTTG NO:
2273
ABCC5 NM_005688.1 TGCAGACTGTACCATGCTGACCATTGCCCATCGCCTGCACACGGTTCTAGGCTCCGATAGGA SEQ ID
TTATGGTGCTGGCC NO:
2274
ABCC6 NM_001171.2 GGATGAACCTCGACCTGCTGCAGGAGCACTCGGACGAGGCTATCTGGGCAGCCCTGGAGAC SEQ ID
GGTGCAGCTC NO:
2275
ACP1 NM_004300.2 GCTACCAAGTCCGTGCTGTTTGTGTGTCTGGGTAACATTTGTCGATCACCCATTGCAGAAGC SEQ ID
AGTTTTC NO:
2276
ADAM10 NM_001110.1 CCCATCAACTTGTGCCAGTACAGGGTCTGTGCAGTGGAGTAGGCACTTCAGTGGTCGAACCA SEQ ID
TCACC NO:
2277
ADAM17 NM_003183.3 GAAGTGCCAGGAGGCGATTAATGCTACTTGCAAAGGCGTGTCCTACTGCACAGGTAATAGC SEQ ID
AGTGAGTGCCCG NO:
2278
ADAMTS12 NM_030955.2 GGAGAAGGGTGGAGTGCAGCACCCAGATGGATTCTGACTGTGCGGCCATCCAGAGACCTGA SEQ ID
CCCTG NO:
2279
ADPRT NM_001618.2 TTGACAACCTGCTGGACATCGAGGTGGCCTACAGTCTGCTCAGGGGAGGGTCTGATGATAGC SEQ ID
AGCAAGGATCCCAT NO:
2280
AGXT NM_000030.1 CTTTTCCCTCCAGTGGCACCTCCTGGAAACAGTCCACTTGGGCGCAAAACCCAGTGCCTTCC SEQ ID
AAAT NO:
2281
AKAP12 NM_005100.2 TAGAGAGCCCCTGACAATCCTGAGGCTTCATCAGGAGCTAGAGCCATTTAACATTTCCTCTT SEQ ID
TCCAAGACCAACC NO:
2282
AKT1 NM_005163.1 CGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACTACCTGCACTCGGAGAAGAACGTGGT SEQ ID
GTACCGGGA NO:
2283
AKT2 NM_001626.2 TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGTCGACACAAGGTACTTCGATGATGAA SEQ ID
TTTACCGCC NO:
2284
AKT3 NM_005465.1 TTGTCTCTGCCTTGGACTATCTACATTCCGGAAAGATTGTGTACCGTGATCTCAAGTTGGAGA SEQ ID
ATCTAATGCTGG NO:
2285
AL137428 AL137428.1 CAAGAAGAGGCTCTACCCTGGGACTGGGAATTTCCAAGGCCACCTTTGAGGATCGCAGAGC SEQ ID
TCATTT NO:
2286
ALCAM NM_001627.1 GAGGAATATGGAATCCAAGGGGGCCAGTTCCTGCCGTCTGCTCTTCTGCCTCTTGATCTCCG SEQ ID
CCAC NO:
2287
ALDH1A1 NM_000689.1 GAAGGAGATAAGGAGGATGTTGACAAGGCAGTGAAGGCCGCAAGACAGGCTTTTCAGATTG SEQ ID
GATCTCCGTGGCG NO:
2288
ALDOA NM_000034.2 GCCTGTACGTGCCAGCTCCCCGACTGCCAGAGCCTCAACTGTCTCTGCTTCGAGATCAAGCT SEQ ID
CCGATGA NO:
2289
AMFR NM_001144.2 GATGGTTCAGCTCTGCAAGGATCGATTTGAATATCTTTCCTTCTCGCCCACCACGCCGATGA SEQ ID
GCAGCCACGGTCGA NO:
2290
ANGPT2 NM_001147.1 CCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCTCCCAAGTGAGCAGGACTGTTCTTCCC SEQ ID
ACTGCAA NO:
2291
ANTXR1 NM_032208.1 CTCCAGGTGTACCTCCAACCCTAGCCTTCTCCCACAGCTGCCTACAACAGAGTCTCCCAGCC SEQ ID
TTCTC NO:
2292
ANXA1 NM_000700.1 GCCCCTATCCTACCTTCAATCCATCCTCGGATGTCGCTGCCTTGCATAAGGCCATAATGGTTA SEQ ID
AAGG NO:
2293
ANXA2 NM_004039.1 CAAGACACTAAGGGCGACTACCAGAAAGCGCTGCTGTACCTGTGTGGTGGAGATGACTGAA SEQ ID
GCCCGACACG NO:
2294
ANXA5 NM_001154.2 GCTCAAGCCTGGAAGATGACGTGGTGGGGGACACTTCAGGGTACTACCAGCGGATGTTGGT SEQ ID
GGTTCT NO:
2295
AP-1 (JUN NM_002228.2 GACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCG SEQ ID
official) AGAGCGGACCTTATGGCTA NO:
2296
APC NM_000038.1 GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCAGAAACAAATC SEQ ID
GAGTGGGT NO:
2297
APEX-1 NM_001641.2 GATGAAGCCTTTCGCAAGTTCCTGAAGGGCCTGGCTTCCCGAAAGCCCCTTGTGCTGTGTGG SEQ ID
AGACCT NO:
2298
APG-1 NM_014278.2 ACCCCGGCCTGTATATCATTGGGATCAAGAACTCGAGCCATTGGAAATGCAGCAAAGAGCC SEQ ID
AGATAG NO:
2299
APN NM_001150.1 CCACCTTGGACCAAAGTAAAGCGTGGAATCGTTACCGCCTCCCCAACACGCTGAAACCCGAT SEQ ID
(ANPEP TCCTACCAGGTGACGCTGAGA NO:
official) 2300
APOC1 NM_001645.3 GGAAACACACTGGAGGACAAGGCTCGGGAACTCATCAGCCGCATCAAACAGAGTGAACTTT SEQ ID
CTGCCAAGATGCG NO:
2301
AREG NM_001657.1 TGTGAGTGAAATGCCTTCTAGTAGTGAACCGTCCTCGGGAGCCGACTATGACTACTCAGAAG SEQ ID
AGTATGATAACGAACCACAA NO:
2302
ARG NM_005158.2 CGCAGTGCAGCTGAGTATCTGCTCAGCAGTCTAATCAATGGCAGCTTCCTGGTGCGAGAAAG SEQ ID
TGAGAGTAGCCCTGGGCA NO:
2303
ARHF NM_019034.2 ACTGGCCCACTTAGTCCTCAAGCTCCCAACCTGCTGTCCCTCAAGCCCCGCTTCTACCAGCCT SEQ ID
GTGGAGTTCAG NO:
2304
ATOH1 NM_005172.1 GCAGCCACCTGCAACTTTGCAGGCGAGAGAGCATCCCGTCTACCCGCCTGAGCTGTCCCTCC SEQ ID
TGGA NO:
2305
ATP5A1 NM_004046.3 GATGCTGCCACTCAACAACTTTTGAGTCGTGGCGTGCGTCTAACTGAGTTGCTGAAGCAAGG SEQ ID
ACA NO:
2306
ATP5E NM_006886.2 CCGCTTTCGCTACAGCATGGTGGCCTACTGGAGACAGGCTGGACTCAGCTACATCCGATACT SEQ ID
CCCA NO:
2307
AURKB NM_004217.1 AGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGAACAGCCACGATCATGGAGGAGTTGGC SEQ ID
AGATGC NO:
2308
Axin 2 NM_004655.2 GGCTATGTCTTTGCACCAGCCACCAGCGCCAACGACAGTGAGATATCCAGTGATGCGCTGAC SEQ ID
GGAT NO:
2309
axin1 NM_003502.2 CCGTGTGACAGCATCGTTGTGGCGTACTACTTCTGCGGGGAACCCATCCCCTACCGCACCCT SEQ ID
GGTGAG NO:
2310
B-Catenin NM_001904.1 GGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGGAAGACATCACTGAGCCTGCCATCT SEQ ID
GTGCTCTTCGTCATCTGA NO:
2311
BAD NM_032989.1 GGGTCAGGTGCCTCGAGATCGGGCTTGGGCCCAGAGCATGTTCCAGATCCCAGAGTTTGAGC SEQ ID
CGAGTGAGCAG NO:
2312
BAG1 NM_004323.2 CGTTGTCAGCACTTGGAATACAAGATGGTTGCCGGGTCATGTTAATTGGGAAAAAGAACAG SEQ ID
TCCACAGGAAGAGGTTGAAC NO:
2313
BAG2 NM_004282.2 CTAGGGGCAAAAAGCATGACTGCTTTTTCCTGTCTGGCATGGAATCACGCAGTCACCTTGGG SEQ ID
CATTTAG NO:
2314
BAG3 NM_004281.2 GAAAGTAAGCCAGGCCCAGTTGGACCAGAACTCCCTCCTGGACACATCCCAATTCAAGTGA SEQ ID
TCCGCAAAGAGGT NO:
2315
Bak NM_001188.1 CCATTCCCACCATTCTACCTGAGGCCAGGACGTCTGGGGTGTGGGGATTGGTGGGTCTATGT SEQ ID
TCCC NO:
2316
Bax NM_004324.1 CCGCCGTGGACACAGACTCCCCCCGAGAGGTCTTTTTCCGAGTGGCAGCTGACATGTTTTCT SEQ ID
GACGGCAA NO:
2317
BBC3 NM_014417.1 CCTGGAGGGTCCTGTACAATCTCATCATGGGACTCCTGCCCTTACCCAGGGGCCACAGAGCC SEQ ID
CCCGAGATGGAGCCCAATTAG NO:
2318
BCAS1 NM_003657.1 CCCCGAGACAACGGAGATAAGTGCTGTTGCGGATGCCAACGGAAAGAATCTTGGGAAAGAG SEQ ID
GCCAAACCCGAG NO:
2319
Bcl2 NM_000633.1 CAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAAGGACAGCGATGGGAAAAATGCCC SEQ ID
TTAAATCATAGG NO:
2320
BCL2L10 NM_020396.2 GCTGGGATGGCTTTTGTCACTTCTTCAGGACCCCCTTTCCACTGGCTTTTTGGAGAAAACAGC SEQ ID
TGGTCCAGGC NO:
2321
BCL2L11 NM_138621.1 AATTACCAAGCAGCCGAAGACCACCCACGAATGGTTATCTTACGACTGTTACGTTACATTGT SEQ ID
CCGCCTG NO:
2322
BCL2L12 NM_138639.1 AACCCACCCCTGTCTTGGAGCTCCGGGTAGCTCTCAAACTCGAGGCTGCGCACCCCCTTTCC SEQ ID
CGTCAGCTGAG NO:
2323
Bclx NM_001191.1 CTTTTGTGGAACTCTATGGGAACAATGCAGCAGCCGAGAGCCGAAAGGGCCAGGAACGCTT SEQ ID
CAACCGCTG NO:
2324
BCRP NM_004827.1 TGTACTGGCGAAGAATATTTGGTAAAGCAGGGCATCGATCTCTCACCCTGGGGCTTGTGGAA SEQ ID
GAATCACGTGGC NO:
2325
BFGF NM_007083.1 CCAGGAAGAATGCTTAAGATGTGAGTGGATGGATCTCAATGACCTGGCGAAGACTGAAAAT SEQ ID
ACAACTCCCATCACCA NO:
2326
BGN NM_001711.3 GAGCTCCGCAAGGATGACTTCAAGGGTCTCCAGCACCTCTACGCCCTCGTCCTGGTGAACAA SEQ ID
CAAG NO:
2327
BID NM_001196.2 GGACTGTGAGGTCAACAACGGTTCCAGCCTCAGGGATGAGTGCATCACAAACCTACTGGTG SEQ ID
TTTGGCTTCC NO:
2328
BIK NM_001197.3 ATTCCTATGGCTCTGCAATTGTCACCGGTTAACTGTGGCCTGTGCCCAGGAAGAGCCATTCA SEQ ID
CTCCTGCC NO:
2329
BIN1 NM_004305.1 CCTGCAAAAGGGAACAAGAGCCCTTCGCCTCCAGATGGCTCCCCTGCCGCCACCCCCGAGAT SEQ ID
CAGAGTCAACCACG NO:
2330
BLMH NM_000386.2 GGTTGCTGCCTCCATCAAAGATGGAGAGGCTGTGTGGTTTGGCTGTGATGTTGGAAAACACT SEQ ID
TCAATAGCAAGCTGG NO:
2331
BMP2 NM_001200.1 ATGTGGACGCTCTTTCAATGGACGTGTCCCCGCGTGCTTCTTAGACGGACTGCGGTCTCCTA SEQ ID
AAGGTCGACCATGGT NO:
2332
BMP4 NM_001202.2 GGGCTAGCCATTGAGGTGACTCACCTCCATCAGACTCGGACCCACCAGGGCCAGCATGTCA SEQ ID
GGATTAGC NO:
2333
BMP7 NM_001719.1 TCGTGGAACATGACAAGGAATTCTTCCACCCACGCTACCACCATCGAGAGTTCCGGTTTGAT SEQ ID
CTTTCCA NO:
2334
BMPR1A NM_004329.2 TTGGTTCAGCGAACTATTGCCAAACAGATTCAGATGGTCCGGCAAGTTGGTAAAGGCCGATA SEQ ID
TGGAGA NO:
2335
BRAF NM_004333.1 CCTTCCGACCAGCAGATGAAGATCATCGAAATCAATTTGGGCAACGAGACCGATCCTCATCA SEQ ID
GCTCCCAATGTGCATATAAA NO:
2336
BRCA1 NM_007295.1 TCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACCAACATGCCCACAGATCAACTGGAA SEQ ID
TGG NO:
2337
BRCA2 NM_000059.1 AGTTCGTGCTTTGCAAGATGGTGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAGACCCA SEQ ID
GCTTACCTT NO:
2338
BRK NM_005975.1 GTGCAGGAAAGGTTCACAAATGTGGAGTGTCTGCGTCCAATACACGCGTGTGCTCCTCTCCT SEQ ID
TACTCCATCGTGTGTGC NO:
2339
BTF3 NM_001207.2 CAGTGATCCACTTTAACAACCCTAAAGTTCAGGCATCTCTGGCAGCGAACACTTTCACCATT SEQ ID
ACAGGCCATGCT NO:
2340
BTRC NM_033637.2 GTTGGGACACAGTTGGTCTGCAGTCGGCCCAGGACGGTCTACTCAGCACAACTGACTGCTTCA SEQ ID
NO:
2341
BUB1 NM_004336.1 CCGAGGTTAATCCAGCACGTATGGGGCCAAGTGTAGGCTCCCAGCAGGAACTGAGAGCGCC SEQ ID
ATGTCTT NO:
2342
BUB1B NM_001211.3 TCAACAGAAGGCTGAACCACTAGAAAGACTACAGTCCCAGCACCGACAATTCCAAGCTCGA SEQ ID
GTGTCTCGGCAAACTCTGTTG NO:
2343
BUB3 NM_004725.1 CTGAAGCAGATGGTTCATCATTTCCTGGGCTGTTAAACAAAGCGAGGTTAAGGTTAGACTCT SEQ ID
TGGGAATCAGC NO:
2344
c-abl NM_005157.2 CCATCTCGCTGAGATACGAAGGGAGGGTGTACCATTACAGGATCAACACTGCTTCTGATGGC SEQ ID
AAGCTCTACGTCT NO:
2345
c-kit NM_000222.1 GAGGCAACTGCTTATGGCTTAATTAAGTCAGATGCGGCCATGACTGTCGCTGTAAAGATGCT SEQ ID
CAAGCCGAGTGCC NO:
2346
c-myb (MYB NM_005375.1 AACTCAGACTTGGAAATGCCTTCTTTAACTTCCACCCCCCTCATTGGTCACAAATTGACTGTT SEQ ID
official) ACAACACCATTTCATAGAGACCAG NO:
2347
c-Src NM_005417.3 TGAGGAGTGGTATTTTGGCAAGATCACCAGACGGGAGTCAGAGCGGTTACTGCTCAATGCA SEQ ID
GAGAACCCGAGAG NO:
2348
C20 orf1 NM_012112.2 TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACCTGCTCTTAACCTCAAACCTAGGAC SEQ ID
CGT NO:
2349
C20ORF126 NM_030815.2 CCAGCACTGCTCGTTACTGTCTGCCTTCAGTGGTCTGAGGTCCCAGTATGAACTGCCGTGAA SEQ ID
GTCAA NO:
2350
C8orf4 NM_020130.2 CTACGAGTCAGCCCATCCATCCATGGCTACCACTTCGACACAGCCTCTCGTAAGAAAGCCGT SEQ ID
GGGCA NO:
2351
CA9 NM_001216.1 ATCCTAGCCCTGGTTTTTGGCCTCCTTTTTGCTGTCACCAGCGTCGCGTTCCTTGTGCAGATG SEQ ID
AGAAGGCAG NO:
2352
Cad17 NM_004063.2 GAAGGCCAAGAACCGAGTCAAATTATATTCCAGTTTAAGGCCAATCCTCCTGCTGTGACTTT SEQ ID
TGAACTAACTGGGGA NO:
2353
CALD1 NM_004342.4 CACTAAGGTTTGAGACAGTTCCAGAAAGAACCCAAGCTCAAGACGCAGGACGAGCTCAGTT SEQ ID
GTAGAGGGCTAATTCGC NO:
2354
CAPG NM_001747.1 GATTGTCACTGATGGGGAGGAGCCTGCTGAGATGATCCAGGTCCTGGGCCCCAAGCCTGCTC SEQ ID
TGAAGG NO:
2355
CAPN1 NM_005186.2 CAAGAAGCTGTACGAGCTCATCATCACCCGCTACTCGGAGCCCGACCTGGCGGTCGACTTTG SEQ ID
ACAATTTCGTTTGCTGC NO:
2356
CASP8 NM_033357.1 CCTCGGGGATACTGTCTGATCATCAACAATCACAATTTTGCAAAAGCACGGGAGAAAGTGC SEQ ID
CCAAACTTC NO:
2357
CASP9 NM_001229.2 TGAATGCCGTGGATTGCACGTGGCCTCTTGAGCAGTGGCTGGTCCAGGGCTAGTGACTTGTG SEQ ID
TCCCATGATCCCTGT NO:
2358
CAT NM_001752.1 ATCCATTCGATCTCACCAAGGTTTGGCCTCACAAGGACTACCCTCTCATCCCAGTTGGTAAA SEQ ID
CTGGTCTTAAACCGGA NO:
2359
CAV1 NM_001753.3 GTGGCTCAACATTGTGTTCCCATTTCAGCTGATCAGTGGGCCTCCAAGGAGGGGCTGTAAAA SEQ ID
TGGAGGCCATTG NO:
2360
CBL NM_005188.1 TCATTCACAAACCTGGCAGTTATATCTTCCGGCTGAGCTGTACTCGTCTGGGTCAGTGGGCT SEQ ID
ATTGGGTATG NO:
2361
CCL20 NM_004591.1 CCATGTGCTGTACCAAGAGTTTGCTCCTGGCTGCTTTGATGTCAGTGCTGCTACTCCACCTCT SEQ ID
GCGGCG NO:
2362
CCL3 NM_002983.1 AGCAGACAGTGGTCAGTCCTTTCTTGGCTCTGCTGACACTCGAGCCCACATTCCGTCACCTG SEQ ID
CTCAGAATCATGCAG NO:
2363
CCNA2 NM_001237.2 CCATACCTCAAGTATTTGCCATCAGTTATTGCTGGAGCTGCCTTTCATTTAGCACTCTACACA SEQ ID
GTCACGGGACAAAGCT NO:
2364
CCNB1 NM_031966.1 TTCAGGTTGTTGCAGGAGACCATGTACATGACTGTCTCCATTATTGATCGGTTCATGCAGAA SEQ ID
TAATTGTGTGCCCAAGAAGATG NO:
2365
CCNB2 NM_004701.2 AGGCTTCTGCAGGAGACTCTGTACATGTGCGTTGGCATTATGGATCGATTTTTACAGGTTCA SEQ ID
GCCAGTTTCCC NO:
2366
CCND1 NM_001758.1 GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCCCCCTGACGGCCGAGAAGCTGTGCATC SEQ ID
TACACCG NO:
2367
CCND3 NM_001760.2 CCTCTGTGCTACAGATTATACCTTTGCCATGTACCCGCCATCCATGATCGCCACGGGCAGCA SEQ ID
TTGGGGCTGCAGTG NO:
2368
CCNE1 NM_001238.1 AAAGAAGATGATGACCGGGTTTACCCAAACTCAACGTGCAAGCCTCGGATTATTGCACCATC SEQ ID
CAGAGGCTC NO:
2369
CCNE2 NM_057749.1 ATGCTGTGGCTCCTTCCTAACTGGGGCTTTCTTGACATGTAGGTTGCTTGGTAATAACCTTTT SEQ ID
TGTATATCACAATTTGGGT NO:
2370
CCNE2 NM_057749var1 GGTCACCAAGAAACATCAGTATGAAATTAGGAATTGTTGGCCACCTGTATTATCTGGGGGGA SEQ ID
variant 1 TCAGTCCTTGCATTATCATTGAA NO:
2371
CCR7 NM_001838.2 GGATGACATGCACTCAGCTCTTGGCTCCACTGGGATGGGAGGAGAGGACAAGGGAAATGTC SEQ ID
AGG NO:
2372
CD105 NM_000118.1 GCAGGTGTCAGCAAGTATGATCAGCAATGAGGCGGTGGTCAATATCCTGTCGAGCTCATCAC SEQ ID
CACAGCGGAAAAA NO:
2373
CD134 NM_003327.1 GCCCAGTGCGGAGAACAGGTCCAGCTTGATTCTCGTCTCTGCACTTAAGCTGTTCTCCAGGT SEQ ID
(TNFRSF4 GCGTGTGATT NO:
official) 2374
CD18 NM_000211.1 CGTCAGGACCCACCATGTCTGCCCCATCACGCGGCCGAGACATGGCTTGGCCACAGCTCTTG SEQ ID
AGGATGTCACCAATTAACC NO:
2375
CD24 NM_013230.1 TCCAACTAATGCCACCACCAAGGCGGCTGGTGGTGCCCTGCAGTCAACAGCCAGTCTCTTCG SEQ ID
TGGTCTCACTCTCTC NO:
2376
CD28 NM_006139.1 TGTGAAAGGGAAACACCTTTGTCCAAGTCCCCTATTTCCCGGACCTTCTAAGCCCTTTTGGGT SEQ ID
GCT NO:
2377
CD31 NM_000442.1 TGTATTTCAAGACCTCTGTGCACTTATTTATGAACCTGCCCTGCTCCCACAGAACACAGCAAT SEQ ID
TCCTCAGGCTAA NO:
2378
CD34 NM_001773.1 CCACTGCACACACCTCAGAGGCTGTTCTTGGGGCCCTACACCTTGAGGAGGGGCAGGTAAA SEQ ID
CTCCTG NO:
2379
CD3z NM_000734.1 AGATGAAGTGGAAGGCGCTTTTCACCGCGGCCATCCTGCAGGCACAGTTGCCGATTACAGA SEQ ID
GGCA NO:
2380
CD44E X55150 ATCACCGACAGCACAGACAGAATCCCTGCTACCAATATGGACTCCAGTCATAGTACAACGCT SEQ ID
TCAGCCTACTGCAAATCCAAACACAGGT NO:
2381
CD44s M59040.1 GACGAAGACAGTCCCTGGATCACCGACAGCACAGACAGAATCCCTGCTACCAGAGACCAAG SEQ ID
ACACATTCCACCCCAGT NO:
2382
CD44v3 AJ251595v3 CACACAAAACAGAACCAGGACTGGACCCAGTGGAACCCAAGCCATTCAAATCCGGAAGTGC SEQ ID
TACTTCAG NO:
2383
CD44v6 AJ251595v6 CTCATACCAGCCATCCAATGCAAGGAAGGACAACACCAAGCCCAGAGGACAGTTCCTGGAC SEQ ID
TGATTTCTTCAACCCAA NO:
2384
CD68 NM_001251.1 TGGTTCCCAGCCCTGTGTCCACCTCCAAGCCCAGATTCAGATTCGAGTCATGTACACAACCC SEQ ID
AGGGTGGAGGAG NO:
2385
CD80 NM_005191.2 TTCAGTTGCTTTGCAGGAAGTGTCTAGAGGAATATGGTGGGCACAGAAGTAGCTCTGGTGAC SEQ ID
CTTGATCAA NO:
2386
CD82 NM_002231.2 GTGCAGGCTCAGGTGAAGTGCTGCGGCTGGGTCAGCTTCTACAACTGGACAGACAACGCTG SEQ ID
AGCTCATGAATCGCCCTGAGGTC NO:
2387
CD8A NM_171827.1 AGGGTGAGGTGCTTGAGTCTCCAACGGCAAGGGAACAAGTACTTCTTGATACCTGGGATACT SEQ ID
GTGCCC NO:
2388
CD9 NM_001769.1 GGGCGTGGAACAGTTTATCTCAGACATCTGCCCCAAGAAGGACGTACTCGAAACCTTCACCG SEQ ID
TG NO:
2389
CDC2 NM_001786.2 GAGAGCGACGCGGTTGTTGTAGCTGCCGCTGCGGCCGCCGCGGAATAATAAGCCGGGATCT SEQ ID
ACCATAC NO:
2390
CDC20 NM_001255.1 TGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCACTGGACAACAGTGTGTACCTGTGGAGT SEQ ID
GCAAGC NO:
2391
cdc25A NM_001789.1 TCTTGCTGGCTACGCCTCTTCTGTCCCTGTTAGACGTCCTCCGTCCATATCAGAACTGTGCCA SEQ ID
CAATGCAG NO:
2392
CDC25B NM_021874.1 AAACGAGCAGTTTGCCATCAGACGCTTCCAGTCTATGCCGGTGAGGCTGCTGGGCCACAGCC SEQ ID
CCGTGCTTCGGAACATCACCAAC NO:
2393
CDC25C NM_001790.2 GGTGAGCAGAAGTGGCCTATATCGCTCCCCGTCGATGCCAGAGAACTTGAACAGGCCAAGA SEQ ID
CTGAAG NO:
2394
CDC4 NM_018315.2 GCAGTCCGCTGTGTTCAATATGATGGCAGGAGGGTTGTTAGTGGAGCATATGATTTTATGGT SEQ ID
AAAGGTGTGGGATCC NO:
2395
CDC42 NM_001791.2 TCCAGAGACTGCTGAAAAGCTGGCCCGTGACCTGAAGGCTGTCAAGTATGTGGAGTGTTCTG SEQ ID
CACTTACACA NO:
2396
CDC42BPA NM_003607.2 GAGCTGAAAGACGCACACTGTCAGAGGAAACTGGCCATGCAGGAATTCATGGAGATCAATG SEQ ID
AGCGGC NO:
2397
CDC6 NM_001254.2 GCAACACTCCCCATTTACCTCCTTGTTCTCCACCAAAGCAAGGCAAGAAAGAGAATGGTCCC SEQ ID
CCTCA NO:
2398
CDCA7 v2 NM_145810.1 AAGACCGTGGATGGCTACATGAATGAAGATGACCTGCCCAGAAGCCGTCGCTCCAGATCAT SEQ ID
CCGTGACCCT NO:
2399
CDH1 NM_004360.2 TGAGTGTCCCCCGGTATCTTCCCCGCCCTGCCAATCCCGATGAAATTGGAAATTTTATTGATG SEQ ID
AAAATCTGAAAGCGGCTG NO:
2400
CDH11 NM_001797.2 GTCGGCAGAAGCAGGACTTGTACCTTCTGCCCATAGTGATCAGCGATGGCGGCATCCCGCCC SEQ ID
ATGAGTAG NO:
2401
CDH3 NM_001793.3 ACCCATGTACCGTCCTCGGCCAGCCAACCCAGATGAAATCGGCAACTTTATAATTGAGAACC SEQ ID
TGAAGGCGG NO:
2402
CDK2 NM_001798.2 AATGCTGCACTACGACCCTAACAAGCGGATTTCGGCCAAGGCAGCCCTGGCTCACCCTTTCT SEQ ID
TCCAGGATGTGACCAA NO:
2403
CDX1 NM_001804.1 AGCAACACCAGCCTCCTGGCCACCTCCTCTCCAATGCCTGTGAAAGAGGAGTTTCTGCCATA SEQ ID
GCCC NO:
2404
Cdx2 NM_001265.2 GGGCAGGCAAGGTTTACACTGCGGAAGCCAAAGGCAGCTAAGATAGAAAGCTGGACTGACC SEQ ID
AAAGAC NO:
2405
CEACAM1 NM_001712.2 ACTTGCCTGTTCAGAGCACTCATTCCTTCCCACCCCCAGTCCTGTCCTATCACTCTAATTCGG SEQ ID
ATTTGCCA NO:
2406
CEACAM6 NM_002483.2 CACAGCCTCACTTCTAACCTTCTGGAACCCACCCACCACTGCCAAGCTCACTATTGAATCCA SEQ ID
CGCCATTCAA NO:
2407
CEBPB NM_005194.2 GCAACCCACGTGTAACTGTCAGCCGGGCCCTGAGTAATCGCTTAAAGATGTTCCTACGGGCT SEQ ID
TGT NO:
2408
CEGP1 NM_020974.1 TGACAATCAGCACACCTGCATTCACCGCTCGGAAGAGGGCCTGAGCTGCATGAATAAGGAT SEQ ID
CACGGCTGTAGTCACA NO:
2409
CENPA NM_001809.2 TAAATTCACTCGTGGTGTGGACTTCAATTGGCAAGCCCAGGCCCTATTGGCCCTACAAGAGGC SEQ ID
NO:
2410
CENPE NM_001813.1 GGATGCTGGTGACCTCTTCTTCCCTCACGTTGCAACAGGAATTAAAGGCTAAAAGAAAACGA SEQ ID
AGAGTTACTTGGTGCCTTGGC NO:
2411
CENPF NM_016343.2 CTCCCGTCAACAGCGTTCTTTCCAAACACTGGACCAGGAGTGCATCCAGATGAAGGCCAGAC SEQ ID
TCACCC NO:
2412
CES2 NM_003869.4 ACTTTGCGAGAAATGGGAACCCCAATGGCGAGGGTCTGCCACACTGGCCGCTGTTCGACCA SEQ ID
GGAGGAGCAATACCTG NO:
2413
CGA NM_001275.2 CTGAAGGAGCTCCAAGACCTCGCTCTCCAAGGCGCCAAGGAGAGGGCACATCAGCAGAAGA SEQ ID
(CHGA AACACAGCGGTTTTG NO:
official) 2414
CGB NM_000737.2 CCACCATAGGCAGAGGCAGGCCTTCCTACACCCTACTCCCTGTGCCTCCAGCCTCGACTAGT SEQ ID
CCCTAGCACTCGACGACT NO:
2415
CHAF1B NM_005441.1 GAGGCCAGTGGTGGAAACAGGTGTGGAGCTGATGAGTCTGCCCTACCGCCTGGTGTTTGCTG SEQ ID
TGGCCTCGGA NO:
2416
CHD2 NM_001271.1 CTCTGTGCGAGGCTGTCAGCCACACTAGGTATCAGGGATCCCGAGATGGGTACCAGCCCAC SEQ ID
AGTCCTTACC NO:
2417
CHFR NM_018223.1 AAGGAAGTGGTCCCTCTGTGGCAAGTGATGAAGTCTCCAGCTTTGCCTCAGCTCTCCCAGAC SEQ ID
AGAAAGACTGCGTC NO:
2418
Chk1 NM_001274.1 GATAAATTGGTACAAGGGATCAGCTTTTCCCAGCCCACATGTCCTGATCATATGCTTTTGAA SEQ ID
TAGTCAGTTACTTGGCACCC NO:
2419
Chk2 NM_007194.1 ATGTGGAACCCCCACCTACTTGGCGCCTGAAGTTCTTGTTTCTGTTGGGACTGCTGGGTATAA SEQ ID
CCGTGCTGTGGACTG NO:
2420
CIAP1 NM_001166.2 TGCCTGTGGTGGGAAGCTCAGTAACTGGGAACCAAAGGATGATGCTATGTCAGAACACCGG SEQ ID
AGGCATTTTCC NO:
2421
cIAP2 NM_001165.2 GGATATTTCCGTGGCTCTTATTCAAACTCTCCATCAAATCCTGTAAACTCCAGAGCAAATCA SEQ ID
AGATTTTTCTGCCTTGATGAGAAG NO:
2422
CKS1B NM_001826.1 GGTCCCTAAAACCCATCTGATGTCTGAATCTGAATGGAGGAATCTTGGCGTTCAGCAGAGTC SEQ ID
AGGGATGGGTCCATTA NO:
2423
CKS2 NM_001827.1 GGCTGGACGTGGTTTTGTCTGCTGCGCCCGCTCTTCGCGCTCTCGTTTCATTTTCTGCAGCG SEQ ID
NO:
2424
Claudin 4 NM_001305.2 GGCTGCTTTGCTGCAACTGTCCACCCCGCACAGACAAGCCTTACTCCGCCAAGTATTCTGCT SEQ ID
GCCCGCTCTG NO:
2425
CLDN1 NM_021101.3 TCTGGGAGGTGCCCTACTTTGCTGTTCCTGTCCCCGAAAAACAACCTCTTACCCAACACCAA SEQ ID
GGCCCTATCCA NO:
2426
CLDN7 NM_001307.3 GGTCTGCCCTAGTCATCCTGGGAGGTGCACTGCTCTCCTGTTCCTGTCCTGGGAATGAGAGC SEQ ID
AAGGCTGGGTAC NO:
2427
CLIC1 NM_001288.3 CGGTACTTGAGCAATGCCTACGCCCGGGAAGAATTCGCTTCCACCTGTCCAGATGATGAGGA SEQ ID
GATCGA NO:
2428
CLTC NM_004859.1 ACCGTATGGACAGCCACAGCCTGGCTTTGGGTACAGCATGTGAGATGAAGCGCTGATCCTGT SEQ ID
AGTCA NO:
2429
CLU NM_001831.1 CCCCAGGATACCTACCACTACCTGCCCTTCAGCCTGCCCCACCGGAGGCCTCACTTCTTCTTT SEQ ID
CCCAAGTCCCGCA NO:
2430
cMet NM_000245.1 GACATTTCCAGTCCTGCAGTCAATGCCTCTCTGCCCCACCCTTTGTTCAGTGTGGCTGGTGCC SEQ ID
ACGACAAATGTGTGCGATCGGAG NO:
2431
cMYC NM_002467.1 TCCCTCCACTCGGAAGGACTATCCTGCTGCCAAGAGGGTCAAGTTGGACAGTGTCAGAGTCC SEQ ID
TGAGACAGATCAGCAACAACCG NO:
2432
CNN NM_001299.2 TCCACCCTCCTGGCTTTGGCCAGCATGGCGAAGACGAAAGGAAACAAGGTGAACGTGGGAG SEQ ID
TGA NO:
2433
COL1A1 NM_000088.2 GTGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCACCGAGGCCTCCCAGAACATCACCTA SEQ ID
CCACTG NO:
2434
COL1A2 NM_000089.2 CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGAAACACGTCTGGCTAGGAGAAACTAT SEQ ID
CAATGCTGGCAGCCAGTTT NO:
2435
COPS3 NM_003653.2 ATGCCCAGTGTTCCTGACTTCGAAACGCTATTCTCACAGGTTCAGCTCTTCATCAGCACTTGT SEQ ID
AATGGGGAG NO:
2436
COX2 NM_000963.1 TCTGCAGAGTTGGAAGCACTCTATGGTGACATCGATGCTGTGGAGCTGTATCCTGCCCTTCT SEQ ID
GGTAGAAAAGCCTCGGC NO:
2437
COX3 MITO_COX3 TCGAGTCTCCCTTCACCATTTCCGACGGCATCTACGGCTCAACATTTTTTGTAGCCACAGGCT SEQ ID
TCCACGGACTTCACGTC NO:
2438
CP NM_000096.1 CGTGAGTACACAGATGCCTCCTTCACAAATCGAAAGGAGAGAGGCCCTGAAGAAGAGCATC SEQ ID
TTGGCATCCTGG NO:
2439
CRBP NM_002899.2 TGGTCTGCAAGCAAGTATTCAAGAAGGTGCAGTGAGGCCCAAGCAGACAACCTTGTCCCAA SEQ ID
CCAATCAGC NO:
2440
CREBBP NM_004380.1 TGGGAAGCAGCTGTGTACCATTCCTCGCGATGCTGCCTACTACAGCTATCAGAATAGGTATC SEQ ID
ATTTCTGTGAGAAGTGTTTC NO:
2441
CRIP2 NM_001312.1 GTGCTACGCCACCCTGTTCGGACCCAAAGGCGTGAACATCGGGGGCGCGGGCTCCTACATCT SEQ ID
ACGAGAAGCCCCTG NO:
2442
cripto NM_003212.1 GGGTCTGTGCCCCATGACACCTGGCTGCCCAAGAAGTGTTCCCTGTGTAAATGCTGGCACGG SEQ ID
(TDGF1 TCA NO:
official) 2443
CRK(a) NM_016823.2 CTCCCTAACCTCCAGAATGGGCCCATATATGCCAGGGTTATCCAGAAGCGAGTCCCCAATGC SEQ ID
CTACGACAAGACA NO:
2444
CRMP1 NM_001313.1 AAGGTTTTTGGATTGCAAGGGGTTTCCAGGGGCATGTATGACGGTCCTGTGTACGAGGTACC SEQ ID
AGCTACACCC NO:
2445
CRYAB NM_001885.1 GATGTGATTGAGGTGCATGGAAAACATGAAGAGCGCCAGGATGAACATGGTTTCATCTCCA SEQ ID
GGGAGTTC NO:
2446
CSEL1 NM_001316.2 TTACGCAGCTCATGCTCTTGAACGGCTCTTTACTATGCGAGGGCCTAACAATGCCACTCTCTT SEQ ID
TACAGCTGC NO:
2447
CSF1 NM_000757.3 TGCAGCGGCTGATTGACAGTCAGATGGAGACCTCGTGCCAAATTACATTTGAGTTTGTAGAC SEQ ID
CAGGAACAGTTG NO:
2448
CSK (SRC) NM_004383.1 CCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCATCGGGAAGGGGGAGTTCGGAGACGTG SEQ ID
ATG NO:
2449
CTAG1B NM_001327.1 GCTCTCCATCAGCTCCTGTCTCCAGCAGCTTTCCCTGTTGATGTGGATCACGCAGTGCTTTCT SEQ ID
GCCCGTGTT NO:
2450
CTGF NM_001901.1 GAGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAACATGATGTTCATCAAGACCTGTG SEQ ID
CCTGCCATTACAACT NO:
2451
CTHRC1 NM_138455.2 GCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGA SEQ ID
GCTGA NO:
2452
CTLA4 NM_005214.2 CACTGAGGTCCGGGTGACAGTGCTTCGGCAGGCTGACAGCCAGGTGACTGAAGTCTGTGCG SEQ ID
GCAACCTAC NO:
2453
CTNNBIP1 NM_020248.2 GTTTTCCAGGTCGGAGACGGAAGACCGGAGGCAGTAGCTGCAAAGCCCTTGGAACACCCTG SEQ ID
GATGCT NO:
2454
CTSB NM_001908.1 GGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGCTTTCTCTGTGTATTCGGACTTCCTGC SEQ ID
NO:
2455
CTSD NM_001909.1 GTACATGATCCCCTGTGAGAAGGTGTCCACCCTGCCCGCGATCACACTGAAGCTGGGAGGC SEQ ID
AAAGGCTACAAGCTGTCCC NO:
2456
CTSH NM_004390.1 GCAAGTTCCAACCTGGAAAGGCCATCGGCTTTGTCAAGGATGTAGCCAACATCACAATCTAT SEQ ID
GACGAGGAAGCGATG NO:
2457
CTSL NM_001912.1 GGGAGGCTTATCTCACTGAGTGAGCAGAATCTGGTAGACTGCTCTGGGCCTCAAGGCAATG SEQ ID
AAGGCTGCAATGG NO:
2458
CTSL2 NM_001333.2 TGTCTCACTGAGCGAGCAGAATCTGGTGGACTGTTCGCGTCCTCAAGGCAATCAGGGCTGCA SEQ ID
ATGGT NO:
2459
CUL1 NM_003592.2 ATGCCCTGGTAATGTCTGCATTCAACAATGACGCTGGCTTTGTGGCTGCTCTTGATAAGGCTT SEQ ID
GTGGTCGC NO:
2460
CUL4A NM_003589.1 AAGCATCTTCCTGTTCTTGGACCGCACCTATGTGCTGCAGAACTCCACGCTGCCCTCCATCTG SEQ ID
GGATATGGGATT NO:
2461
CXCL12 NM_000609.3 GAGCTACAGATGCCCATGCCGATTCTTCGAAAGCCATGTTGCCAGAGCCAACGTCAAGCATC SEQ ID
TCAAA NO:
2462
CXCR4 NM_003467.1 TGACCGCTTCTACCCCAATGACTTGTGGGTGGTTGTGTTCCAGTTTCAGCACATCATGGTTGG SEQ ID
CCTTATCCT NO:
2463
CYBA NM_000101.1 GGTGCCTACTCCATTGTGGCGGGCGTGTTTGTGTGCCTGCTGGAGTACCCCCGGGGGAAGAG SEQ ID
GAAGAAGGGCTCCAC NO:
2464
CYP1B1 NM_000104.2 CCAGCTTTGTGCCTGTCACTATTCCTCATGCCACCACTGCCAACACCTCTGTCTTGGGCTACC SEQ ID
ACATTCCC NO:
2465
CYP2C8 NM_000770.2 CCGTGTTCAAGAGGAAGCTCACTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCTTCACCC SEQ ID
TGTGATCCCACT NO:
2466
CYP3A4 NM_017460.3 AGAACAAGGACAACATAGATCCTTACATATACACACCCTTTGGAAGTGGACCCAGAAACTG SEQ ID
CATTGGCATGAGGTTTGC NO:
2467
CYR61 NM_001554.3 TGCTCATTCTTGAGGAGCATTAAGGTATTTCGAAACTGCCAAGGGTGCTGGTGCGGATGGAC SEQ ID
ACTAATGCAGCCAC NO:
2468
DAPK1 NM_004938.1 CGCTGACATCATGAATGTTCCTCGACCGGCTGGAGGCGAGTTTGGATATGACAAAGACACAT SEQ ID
CGTTGCTGAAAGAGA NO:
2469
DCC NM_005215.1 AAATGTCCTCCTCGACTGCTCCGCGGAGTCCGACCGAGGAGTTCCAGTGATCAAGTGGAAG SEQ ID
AAAGATGGCATTCA NO:
2470
DCC_exons18-23 X76132_18-23 GGTCACCGTTGGTGTCATCACAGTGCTGGTAGTGGTCATCGTGGCTGTGATTTGCACCCGAC SEQ ID
GCTC NO:
2471
DCC_exons6-7 X76132_6-7 ATGGAGATGTGGTCATTCCTAGTGATTATTTTCAGATAGTGGGAGGAAGCAACTTACGGATA SEQ ID
CTTGGGGTGGTG NO:
2472
DCK NM_000788.1 GCCGCCACAAGACTAAGGAATGGCCACCCCGCCCAAGAGAAGCTGCCCGTCTTTCTCAGCC SEQ ID
AGCTCTGAGGGGACCCGCATCAAGAAAATCTCCATCGAAGGGAACATCG NO:
2473
DDB1 NM_001923.2 TGCGGATCATCCGGAATGGAATTGGAATCCACGAGCATGCCAGCATTGACTTACCAGGCATC SEQ ID
AAAGGA NO:
2474
DET1 NM_017996.2 CTTGTGGAGATCACCCAATCAGGTTCTATGCCCGGGACTCGGGCCTGCTCAAGTTTGAGATC SEQ ID
CAGGCGGG NO:
2475
DHFR NM_000791.2 TTGCTATAACTAAGTGCTTCTCCAAGACCCCAACTGAGTCCCCAGCACCTGCTACAGTGAGC SEQ ID
TGCCATTCCAC NO:
2476
DHPS NM_013407.1 GGGAGAACGGGATCAATAGGATCGGAAACCTGCTGGTGCCCAATGAGAATTACTGCAAGTT SEQ ID
TGAGGACTGGCTGATGC NO:
2477
DIABLO NM_019887.1 CACAATGGCGGCTCTGAAGAGTTGGCTGTCGCGCAGCGTAACTTCATTCTTCAGGTACAGAC SEQ ID
AGTGTTTGTGT NO:
2478
DIAPH1 NM_005219.2 CAAGCAGTCAAGGAGAACCAGAAGCGGCGGGAGACAGAAGAAAAGATGAGGCGAGCAAA SEQ ID
ACT NO:
2479
DICER1 NM_177438.1 TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGTCTCCCCAGCATACTTTATCGCCTTCA SEQ ID
CTGCC NO:
2480
DKK1 NM_012242.1 TGACAACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGC SEQ ID
GCTAGTCCC NO:
2481
DLC1 NM_006094.3 GATTCAGACGAGGATGAGCCTTGTGCCATCAGTGGCAAATGGACTTTCCAAAGGGACAGCA SEQ ID
AGAGGTG NO:
2482
DPYD NM_000110.2 AGGACGCAAGGAGGGTTTGTCACTGGCAGACTCGAGACTGTAGGCACTGCCATGGCCCCTG SEQ ID
TGCTCAGTAAGGACTCGGCGGACATC NO:
2483
DR4 NM_003844.1 TGCACAGAGGGTGTGGGTTACACCAATGCTTCCAACAATTTGTTTGCTTGCCTCCCATGTAC SEQ ID
AGCTTGTAAATCAGATGAAGA NO:
2484
DR5 NM_003842.2 CTCTGAGACAGTGCTTCGATGACTTTGCAGACTTGGTGCCCTTTGACTCCTGGGAGCCGCTC SEQ ID
ATGAGGAAGTTGGGCCTCATGG NO:
2485
DRG1 NM_004147.3 CCTGGATCTCCCAGGTATCATTGAAGGTGCCAAGGATGGGAAAGGTAGAGGTCGTCAAGTC SEQ ID
ATTGCA NO:
2486
DSP NM_004415.1 TGGCACTACTGCATGATTGACATAGAGAAGATCAGGGCCATGACAATCGCCAAGCTGAAAA SEQ ID
CAATGCGGCAGG NO:
2487
DTYMK NM_012145.1 AAATCGCTGGGAACAAGTGCCGTTAATTAAGGAAAAGTTGAGCCAGGGCGTGACCCTCGTC SEQ ID
GTGGACAGATACGCATT NO:
2488
DUSP1 NM_004417.2 AGACATCAGCTCCTGGTTCAACGAGGCCATTGACTTCATAGACTCCATCAAGAATGCTGGAG SEQ ID
GAAGGGTGTTTGTC NO:
2489
DUSP2 NM_004418.2 TATCCCTGTGGAGGACAACCAGATGGTGGAGATCAGTGCCTGGTTCCAGGAGGCCATAGGC SEQ ID
TTCATTGACTGGGTG NO:
2490
DUT NM_001948.2 ACACATGGAGTGCTTCTGGAACTATCAGCCCACTTGACCACCCAGTTTGTGGAAGCACAGGC SEQ ID
AAGAG NO:
2491
DYRK1B NM_004714.1 AGCATGACACGGAGATGAAGTACTATATAGTACACCTGAAGCGGCACTTCATGTTCCGGAA SEQ ID
CCACCTGTGCCTGGTATT NO:
2492
E2F1 NM_005225.1 ACTCCCTCTACCCTTGAGCAAGGGCAGGGGTCCCTGAGCTGTTCTTCTGCCCCATACTGAAG SEQ ID
GAACTGAGGCCTG NO:
2493
EDN1 NM_001955.1 TGCCACCTGGACATCATTTGGGTCAACACTCCCGAGCACGTTGTTCCGTATGGACTTGGAAG SEQ ID
endothelin CCCTAGGTCCA NO:
2494
EFNA1 NM_004428.2 TACATCTCCAAACCCATCCACCAGCATGAAGACCGCTGCTTGAGGTTGAAGGTGACTGTCAG SEQ ID
TGGCAA NO:
2495
EFNA3 NM_004952.3 ACTACATCTCCACGCCCACTCACAACCTGCACTGGAAGTGTCTGAGGATGAAGGTGTTCGTC SEQ ID
TGCTG NO:
2496
EFNB1 NM_004429.3 GGAGCCCGTATCCTGGAGCTCCCTCAACCCCAAGTTCCTGAGTGGGAAGGGCTTGGTGATCT SEQ ID
ATCC NO:
2497
EFNB2 NM_004093.2 TGACATTATCATCCCGCTAAGGACTGCGGACAGCGTCTTCTGCCCTCACTACGAGAAGGTCA SEQ ID
GCGGGGACTAC NO:
2498
EFP NM_005082.2 TTGAACAGAGCCTGACCAAGAGGGATGAGTTCGAGTTTCTGGAGAAAGCATCAAAACTGCG SEQ ID
AGGAATCTCAACA NO:
2499
EGFR NM_005228.1 TGTCGATGGACTTCCAGAACCACCTGGGCAGCTGCCAAAAGTGTGATCCAAGCTGTCCCAAT SEQ ID
NO:
2500
EGLN1 NM_022051.1 TCAATGGCCGGACGAAAGCCATGGTTGCTTGTTATCCGGGCAATGGAACGGGTTATGTACGT SEQ ID
CATGTTGATAATCCAAA NO:
2501
EGLN3 NM_022073.2 GCTGGTCCTCTACTGCGGGAGCCGGCTGGGCAAATACTACGTCAAGGAGAGGTCTAAGGCA SEQ ID
ATGGTGG NO:
2502
EGR1 NM_001964.2 GTCCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTCCTCACTCGCCCACCATGGACAACTA SEQ ID
CCCTAAGCTGGAG NO:
2503
EGR3 NM_004430.2 CCATGTGGATGAATGAGGTGTCTCCTTTCCATACCCAGTCTCACCTTCTCCCCACCCTACCTC SEQ ID
ACCTCTTCTCAGGCA NO:
2504
EI24 NM_004879.2 AAAGTGGTGAATGCCATTTGGTTTCAGGATATAGCTGACCTGGCATTTGAGGTATCAGGGAG SEQ ID
GAAGCCTCAC NO:
2505
EIF4E NM_001968.1 GATCTAAGATGGCGACTGTCGAACCGGAAACCACCCCTACTCCTAATCCCCCGACTACAGAA SEQ ID
GAGGAGAAAACGGAATCTAA NO:
2506
EIF4EL3 NM_004846.1 AAGCCGCGGTTGAATGTGCCATGACCCTCTCCCTCTCTGGATGGCACCATCATTGAAGCTGG SEQ ID
CGTCA NO:
2507
ELAVL1 NM_001419.2 GACAGGAGGCCTCTATCCTGTCCCTCCACCCCACCCTCCACCTCAATCCCCTCCCATCTTCCC SEQ ID
CAGACCTACCTCAC NO:
2508
EMP1 NM_001423.1 GCTAGTACTTTGATGCTCCCTTGATGGGGTCCAGAGAGCCTCCCTGCAGCCACCAGACTTGG SEQ ID
CCTCCAGCTGTTC NO:
2509
EMR3 NM_032571.2 TGGCCTACCTCTTCACCATCATCAACAGCCTCCAAGGCTTCTTCATCTTCTTGGTCTACTGCC SEQ ID
TCCTCA NO:
2510
EMS1 NM_005231.2 GGCAGTGTCACTGAGTCCTTGAAATCCTCCCCTGCCCCGCGGGTCTCTGGATTGGGACGCAC SEQ ID
AGTGCA NO:
2511
ENO1 NM_001428.2 CAAGGCCGTGAACGAGAAGTCCTGCAACTGCCTCCTGCTCAAAGTCAACCAGATTGGCTCCG SEQ ID
TGACCG NO:
2512
EP300 NM_001429.1 AGCCCCAGCAACTACAGTCTGGGATGCCAAGGCCAGCCATGATGTCAGTGGCCCAGCATGG SEQ ID
TCAACCTTTGAACA NO:
2513
EPAS1 NM_001430.3 AAGCCTTGGAGGGTTTCATTGCCGTGGTGACCCAAGATGGCGACATGATCTTTCTGTCAGAA SEQ ID
AACATCAGCA NO:
2514
EpCAM NM_002354.1 GGGCCCTCCAGAACAATGATGGGCTTTATGATCCTGACTGCGATGAGAGCGGGCTCTTTAAG SEQ ID
GCCAAGCAGTGCA NO:
2515
EPHA2 NM_004431.2 CGCCTGTTCACCAAGATTGACACCATTGCGCCCGATGAGATCACCGTCAGCAGCGACTTCGA SEQ ID
GGCACGCCAC NO:
2516
EPHB2 NM_004442.4 CAACCAGGCAGCTCCATCGGCAGTGTCCATCATGCATCAGGTGAGCCGCACCGTGGACAGC SEQ ID
ATTAC NO:
2517
EPHB4 NM_004444.3 TGAACGGGGTATCCTCCTTAGCCACGGGGCCCGTCCCATTTGAGCCTGTCAATGTCACCACT SEQ ID
GACCGAGAGGTACCT NO:
2518
EphB6 NM_004445.1 ACTGGTCCTCCATCGGCTCCCCAGGAGCTTTGGTTTGAGGTGCAAGGCTCAGCACTCATGCT SEQ ID
ACACTGG NO:
2519
EPM2A NM_005670.2 ACTGTGGCACTTAGGGGAGATGACATTTGCTTTGGGCAGAGGCAGCTAGCCAGGACACATTT SEQ ID
CCACT NO:
2520
ErbB3 NM_001982.1 CGGTTATGTCATGCCAGATACACACCTCAAAGGTACTCCCTCCTCCCGGGAAGGCACCCTTT SEQ ID
CTTCAGTGGGTCTCAGTTC NO:
2521
ERCC1 NM_001983.1 GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCCTCAAGGAGCTGGCTAAGATGTGTATCC SEQ ID
TGGCCG NO:
2522
ERCC2 NM_000400.2 TGGCCTTCTTCACCAGCTACCAGTACATGGAGAGCACCGTGGCCTCCTGGTATGAGCAGGGG SEQ ID
ATCCTTG NO:
2523
EREG NM_001432.1 ATAACAAAGTGTAGCTCTGACATGAATGGCTATTGTTTGCATGGACAGTGCATCTATCTGGT SEQ ID
GGACATGAGTCAAAACTACTGCAGGTGTG NO:
2524
ERK1 Z11696.1 ACGGATCACAGTGGAGGAAGCGCTGGCTCACCCCTACCTGGAGCAGTACTATGACCCGACG SEQ ID
GATGAG NO:
2525
ERK2 NM_002745.1 AGTTCTTGACCCCTGGTCCTGTCTCCAGCCCGTCTTGGCTTATCCACTTTGACTCCTTTGAGC SEQ ID
CGTTT NO:
2526
ESPL1 NM_012291.1 ACCCCCAGACCGGATCAGGCAAGCTGGCCCTCATGTCCCCTTCACGGTGTTTGAGGAAGTCT SEQ ID
GCCCTACA NO:
2527
EstR1 NM_000125.1 CGTGGTGCCCCTCTATGACCTGCTGCTGGAGATGCTGGACGCCCACCGCCTACATGCGCCCA SEQ ID
CTAGCC NO:
2528
ETV4 NM_001986.1 TCCAGTGCCTATGACCCCCCCAGACAAATCGCCATCAAGTCCCCTGCCCCTGGTGCCCTTGG SEQ ID
ACAGT NO:
2529
F3 NM_001993.2 GTGAAGGATGTGAAGCAGACGTACTTGGCACGGGTCTTCTCCTACCCGGCAGGGAATGTGG SEQ ID
AGAGCACCGGTT NO:
2530
FABP4 NM_001442.1 GCTTTGCCACCAGGAAAGTGGCTGGCATGGCCAAACCTAACATGATCATCAGTGTGAATGG SEQ ID
GGATG NO:
2531
FAP NM_004460.2 CTGACCAGAACCACGGCTTATCCGGCCTGTCCACGAACCACTTATACACCCACATGACCCAC SEQ ID
TTCC NO:
2532
fas NM_000043.1 GGATTGCTCAACAACCATGCTGGGCATCTGGACCCTCCTACCTCTGGTTCTTACGTCTGTTGC SEQ ID
TAGATTATCGTCCAAAAGTGTTAATGCC NO:
2533
fasI NM_000639.1 GCACTTTGGGATTCTTTCCATTATGATTCTTTGTTACAGGCACCGAGAATGTTGTATTCAGTG SEQ ID
AGGGTCTTCTTACATGC NO:
2534
FASN NM_004104.4 GCCTCTTCCTGTTCGACGGCTCGCCCACCTACGTACTGGCCTACACCCAGAGCTACCGGGCA SEQ ID
AAGC NO:
2535
FBXO5 NM_012177.2 GGCTATTCCTCATTTTCTCTACAAAGTGGCCTCAGTGAACATGAAGAAGGTAGCCTCCTGGA SEQ ID
GGAGAATTTCGGTGACAGTCTACAATCC NO:
2536
FBXW7 NM_033632.1 CCCCAGTTTCAACGAGACTTCATTTCATTGCTCCCTAAAGAGTTGGCACTCTATGTGCTTTCA SEQ ID
TTCCTGGAAC NO:
2537
FDXR NM_004110.2 GAGATGATTCAGTTACCGGGAGCCCGGCCCATTTTGGATCCTGTGGATTTCTTGGGTCTCCA SEQ ID
GGACAAGAT NO:
2538
FES NM_002005.2 CTCTGCAGGCCTAGGTGCAGCTCCTCAGCGGCTCCAGCTCATATGCTGACAGCTCTTCACAG SEQ ID
TCCTGG NO:
2539
FGF18 NM_003862.1 CGGTAGTCAAGTCCGGATCAAGGGCAAGGAGACGGAATTCTACCTGTGCATGAACCGCAAA SEQ ID
GGCAAGC NO:
2540
FGF2 NM_002006.2 AGATGCAGGAGAGAGGAAGCCTTGCAAACCTGCAGACTGCTTTTTGCCCAATATAGATTGG SEQ ID
GTAAGGCTGCAAAAC NO:
2541
FGFR1 NM_023109.1 CACGGGACATTCACCACATCGACTACTATAAAAAGACAACCAACGGCCGACTGCCTGTGAA SEQ ID
GTGGATGGCACCC NO:
2542
FGFR2 NM_000141.2 GAGGGACTGTTGGCATGCAGTGCCCTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGAC SEQ ID
isoform 1 TTGGATCGAATTCTCACTC NO:
2543
FHIT NM_002012.1 CCAGTGGAGCGCTTCCATGACCTGCGTCCTGATGAAGTGGCCGATTTGTTTCAGACGACCCA SEQ ID
GAGAG NO:
2544
FIGF NM_004469.2 GGTTCCAGCTTTCTGTAGCTGTAAGCATTGGTGGCCACACCACCTCCTTACAAAGCAACTAG SEQ ID
AACCTGCGGC NO:
2545
FLJ12455 NM_022078.1 CCACCAGCATGAAGTTTCGGACAGACATGGCCTTTGTGAGGGGTTCCAGTTGTGCTTCAGAC SEQ ID
AGCC NO:
2546
FLJ20712 AK000719.1 GCCACACAAACATGCTCCTGCTCCTGGCGGAGGCAGAGCTGCTGGGAAAGACATTTCGGAA SEQ ID
GTTTCCTGTGGC NO:
2547
FLT1 NM_002019.1 GGCTCCCGAATCTATCTTTGACAAAATCTACAGCACCAAGAGCGACGTGTGGTCTTACGGAG SEQ ID
TATTGCTGTGGGA NO:
2548
FLT4 NM_002020.1 ACCAAGAAGCTGAGGACCTGTGGCTGAGCCCGCTGACCATGGAAGATCTTGTCTGCTACAG SEQ ID
CTTCCAGG NO:
2549
FOS NM_005252.2 CGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAGGCCCAGTGGCTCTGAGACAGCCC SEQ ID
GCTCC NO:
2550
FOXO3A NM_001455.1 TGAAGTCCAGGACGATGATGCGCCTCTCTCGCCCATGCTCTACAGCAGCTCAGCCAGCCTGT SEQ ID
CACCTTCAGTAAGCAAGCCGT NO:
2551
FPGS NM_004957.3 CAGCCCTGCCAGTTTGACTATGCCGTCTTCTGCCCTAACCTGACAGAGGTGTCATCCACAGG SEQ ID
CAAC NO:
2552
FRP1 NM_003012.2 TTGGTACCTGTGGGTTAGCATCAAGTTCTCCCCAGGGTAGAATTCAATCAGAGCTCCAGTTT SEQ ID
GCATTTGGATGTG NO:
2553
FST NM_006350.2 GTAAGTCGGATGAGCCTGTCTGTGCCAGTGACAATGCCACTTATGCCAGCGAGTGTGCCATG SEQ ID
AAGGAAGCTG NO:
2554
Furin NM_002569.1 AAGTCCTCGATACGCACTATAGCACCGAGAATGACGTGGAGACCATCCGGGCCAGCGTCTG SEQ ID
CGCCCCCTGCCACGCCTCATGTGCCACATGCCAG NO:
2555
FUS NM_004960.1 GGATAATTCAGACAACAACACCATCTTTGTGCAAGGCCTGGGTGAGAATGTTACAATTGAGT SEQ ID
CTGTGGCTGATTACTTCA NO:
2556
FUT1 NM_000148.1 CCGTGCTCATTGCTAACCACTGTCTGTCCCTGAACTCCCAGAACCACTACATCTGGCTTTGGG SEQ ID
CAG NO:
2557
FUT3 NM_000149.1 CAGTTCGGTCCAACAGAGAAAGCAGGCAACCACCATGTCATTTGAAAACAGTTTCATCGGG SEQ ID
ATATAATTCGCA NO:
2558
FUT6 NM_000150.1 CGTGTGTCTCAAGACGATCCCACTGTGTACCCTAATGGGTCCCGCTTCCCAGACAGCACAGG SEQ ID
GACC NO:
2559
FXYD5 NM_014164.4 AGAGCACCAAAGCAGCTCATCCCACTGATGACACCACGACGCTCTCTGAGAGACCATCCCC SEQ ID
AAGCAC NO:
2560
FYN NM_002037.3 GAAGCGCAGATCATGAAGAAGCTGAAGCACGACAAGCTGGTCCAGCTCTATGCAGTGGTGT SEQ ID
CTGAGGAG NO:
2561
FZD1 NM_003505.1 GGTGCACCAGTTCTACCCTCTAGTGAAAGTGCAGTGTTCCGCTGAGCTCAAGTTCTTCCTGTG SEQ ID
CTCCATGTACGC NO:
2562
FZD2 NM_001466.2 TGGATCCTCACCTGGTCGGTGCTGTGCTGCGCTTCCACCTTCTTCACTGTCACCACGTACTTG SEQ ID
GTAGACATGCAGCGC NO:
2563
FZD6 NM_003506.2 AATGAGAGAGGTGAAAGCGGACGGAGCTAGCACCCCCAGGTTAAGAGAACAGGACTGTGG SEQ ID
TGAACCT NO:
2564
G-Catenin NM_002230.1 TCAGCAGCAAGGGCATCATGGAGGAGGATGAGGCCTGCGGGCGCCAGTACACGCTCAAGAA SEQ ID
AACCACC NO:
2565
G1P2 NM_005101.1 CAACGAATTCCAGGTGTCCCTGAGCAGCTCCATGTCGGTGTCAGAGCTGAAGGCGCAGATC SEQ ID
NO:
2566
GADD45 NM_001924.2 GTGCTGGTGACGAATCCACATTCATCTCAATGGAAGGATCCTGCCTTAAGTCAACTTATTTG SEQ ID
TTTTTGCCGGG NO:
2567
GADD45B NM_015675.1 ACCCTCGACAAGACCACACTTTGGGACTTGGGAGCTGGGGCTGAAGTTGCTCTGTACCCATG SEQ ID
AACTCCCA NO:
2568
GADD45G NM_006705.2 CGCGCTGCAGATCCATTTTACGCTGATCCAGGCTTTCTGCTGCGAGAACGACATCGACATAG SEQ ID
TGCG NO:
2569
GAGE4 NM_001474.1 GGAACAGGGTCACCCACAGACTGGGTGTGAGTGTGAAGATGGTCCTGATGGGCAGGAGATG SEQ ID
GACCCGCCAAATC NO:
2570
GBP1 NM_002053.1 TTGGGAAATATTTGGGCATTGGTCTGGCCAAGTCTACAATGTCCCAATATCAAGGACAACCA SEQ ID
CCCTAGCTTCT NO:
2571
GBP2 NM_004120.2 GCATGGGAACCATCAACCAGCAGGCCATGGACCAACTTCACTATGTGACAGAGCTGACAGA SEQ ID
TCGAATCAAGGCAAACTCCTCA NO:
2572
GCLC NM_001498.1 CTGTTGCAGGAAGGCATTGATCATCTCCTGGCCCAGCATGTTGCTCATCTCTTTATTAGAGAC SEQ ID
CCACTGAC NO:
2573
GCLM NM_002061.1 TGTAGAATCAAACTCTTCATCATCAACTAGAAGTGCAGTTGACATGGCCTGTTCAGTCCTTG SEQ ID
GAGTTGCACAGCTGGATTCTGTG NO:
2574
GCNT1 NM_001490.3 TGGTGCTTGGAGCATAGAAGACTGCCCTTCACAAAGGAAATCCCTGATTATTGTTTGAAATG SEQ ID
CTGAGGACGTTGC NO:
2575
GDF15 NM_004864.1 CGCTCCAGACCTATGATGACTTGTTAGCCAAAGACTGCCACTGCATATGAGCAGTCCTGGTC SEQ ID
CTTCCACTGT NO:
2576
GIT1 NM_014030.2 GTGTATGACGAGGTGGATCGAAGAGAAAATGATGCAGTGTGGCTGGCTACCCAAAACCACA SEQ ID
GCACTCTGGT NO:
2577
GJA1 NM_000165.2 GTTCACTGGGGGTGTATGGGGTAGATGGGTGGAGAGGGAGGGGATAAGAGAGGTGCATGTT SEQ ID
GGTATTT NO:
2578
GJB2 NM_004004.3 TGTCATGTACGACGGCTTCTCCATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCA SEQ ID
ACACTGTGGACT NO:
2579
GPX1 NM_000581.2 GCTTATGACCGACCCCAAGCTCATCACCTGGTCTCCGGTGTGTCGCAACGATGTTGCCTGGA SEQ ID
ACTTT NO:
2580
GPX2 NM_002083.1 CACACAGATCTCCTACTCCATCCAGTCCTGAGGAGCCTTAGGATGCAGCATGCCTTCAGGAG SEQ ID
ACACTGCTGGACC NO:
2581
Grb10 NM_005311.2 CTTCGCCTTTGCTGATTGCCTCTCCAAACGCCTGCCTGACGACTGCCTTGGAGCATGTGCGTT SEQ ID
ATGG NO:
2582
GRB14 NM_004490.1 TCCCACTGAAGCCCTTTCAGTTGCGGTTGAAGAAGGACTCGCTTGGAGGAAAAAAGGATGTT SEQ ID
TACGCCTGGGCACT NO:
2583
GRB2 NM_002086.2 GTCCATCAGTGCATGACGTTTAAGGCCACGTATAGTCCTAGCTGACGCCAATAATAAAAAAC SEQ ID
AAGAAACCAAGTGGGCT NO:
2584
GRB7 NM_005310.1 CCATCTGCATCCATCTTGTTTGGGCTCCCCACCCTTGAGAAGTGCCTCAGATAATACCCTGGT SEQ ID
GGCC NO:
2585
GRIK1 NM_000830.2 GTTGGGTGCATCTCTCGGGCGTCCGGCAGCGGCTGTATCTCGGCATGAATTAAGAAGCTAGG SEQ ID
AAGATGGAGCACG NO:
2586
GRO1 NM_001511.1 CGAAAAGATGCTGAACAGTGACAAATCCAACTGACCAGAAGGGAGGAGGAAGCTCACTGG SEQ ID
TGGCTGTTCCTGA NO:
2587
GRP NM_002091.1 CTGGGTCTCATAGAAGCAAAGGAGAACAGAAACCACCAGCCACCTCAACCCAAGGCCTTGG SEQ ID
GCAATCAGCAGCCTTCGTGG NO:
2588
GRPR NM_005314.1 ATGCTGCTGGCCATTCCAGAGGCCGTGTTTTCTGACCTCCATCCCTTCCATGAGGAAAGCAC SEQ ID
CAACCAGACCT NO:
2589
GSK3B NM_002093.2 GACAAGGACGGCAGCAAGGTGACAACAGTGGTGGCAACTCCTGGGCAGGGTCCAGACAGG SEQ ID
CCACAA NO:
2590
GSTA3 NM_000847.3 TCTCCAACTTCCCTCTGCTGAAGGCCCTGAAAACCAGAATCAGCAACCTGCCCACGGTGAAG SEQ ID
AAGT NO:
2591
GSTM1 NM_000561.1 AAGCTATGAGGAAAAGAAGTACACGATGGGGGACGCTCCTGATTATGACAGAAGCCAGTGG SEQ ID
CTGAATGAAAAATTCAAGCTGGGCC NO:
2592
GSTM3 NM_000849.3 CAATGCCATCTTGCGCTACATCGCTCGCAAGCACAACATGTGTGGTGAGACTGAAGAAGAA SEQ ID
AAGATTCGAGTGGAC NO:
2593
GSTp NM_000852.2 GAGACCCTGCTGTCCCAGAACCAGGGAGGCAAGACCTTCATTGTGGGAGACCAGATCTCCTT SEQ ID
CGCTGACTACAACC NO:
2594
GSTT1 NM_000853.1 CACCATCCCCACCCTGTCTTCCACAGCCGCCTGAAAGCCACAATGAGAATGATGCACACTGA SEQ ID
GGCC NO:
2595
H2AFZ NM_002106.2 CCGGAAAGGCCAAGACAAAGGCGGTTTCCCGCTCGCAGAGAGCCGGCTTGCAGTTCCCAGT SEQ ID
GGGCCGTATT NO:
2596
HB-EGF NM_001945.1 GACTCCTTCGTCCCCAGTTGCCGTCTAGGATTGGGCCTCCCATAATTGCTTTGCCAAAATACC SEQ ID
AGAGCCTTCAAGTGCCA NO:
2597
hCRA a U78556.1 TGACACCCTTACCTTCCTGAGAAATACCCCCTGGGAGCGCGGAAAGCAGAGCGGACAGGTC SEQ ID
AGTGACTTCTATTTTTGACTCGTGTTTTT NO:
2598
HDAC1 NM_004964.2 CAAGTACCACAGCGATGACTACATTAAATTCTTGCGCTCCATCCGTCCAGATAACATGTCGG SEQ ID
AGTACAGCAAGC NO:
2599
HDAC2 NM_001527.1 GGTGGCTACACAATCCGTAATGTTGCTCGATGTTGGACATATGAGACTGCAGTTGCCCTTGA SEQ ID
TTGTGAGATTCCCA NO:
2600
HDGF NM_004494.1 TCCTAGGCATTCTGGACCTCTGGGTTGGGATCAGGGGTAGGAATGGAAGGATGGAGCATCA SEQ ID
ACAGC NO:
2601
hENT1 NM_004955.1 AGCCGTGACTGTTGAGGTCAAGTCCAGCATCGCAGGCAGCAGCACCTGGGAACGTTACTT SEQ ID
NO:
2602
Hepsin NM_002151.1 AGGCTGCTGGAGGTCATCTCCGTGTGTGATTGCCCCAGAGGCCGTTTCTTGGCCGCCATCTG SEQ ID
CCAAGACTGTGGCCGCAGGAAG NO:
2603
HER2 NM_004448.1 CGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTGTGCTATGGTCTGGGCATGGAGCACTT SEQ ID
GCGAGAGG NO:
2604
Herstatin AF177761.2 CACCCTGTCCTATCCTTCCTCAGACCCTCTTGGGACCTAGTCTCTGCCTTCTACTCTCTACCCC SEQ ID
TGGCC NO:
2605
HES6 NM_018645.3 TTAGGGACCCTGCAGCTCTGGAGTGGGTGGAGGGAGGGAGCTACGGGCAGGAGGAAGAATT SEQ ID
TTGTAG NO:
2606
HGF M29145.1 CCGAAATCCAGATGATGATGCTCATGGACCCTGGTGCTACACGGGAAATCCACTCATTCCTT SEQ ID
GGG NO:
2607
HIF1A NM_001530.1 TGAACATAAAGTCTGCAACATGGAAGGTATTGCACTGCACAGGCCACATTCACGTATATGAT SEQ ID
ACCAACAGTAACCAACCTCA NO:
2608
HK1 NM_000188.1 TACGCACAGAGGCAAGCAGCTAAGAGTCCGGGATCCCCAGCCTACTGCCTCTCCAGCACTTC SEQ ID
TCTC NO:
2609
HLA-DPB1 NM_002121.4 TCCATGATGGTTCTGCAGGTTTCTGCGGCCCCCCGGACAGTGGCTCTGACGGCGTTACTGAT SEQ ID
GGTGCTGCTCA NO:
2610
HLA-DRA NM_019111.3 GACGATTTGCCAGCTTTGAGGCTCAAGGTGCATTGGCCAACATAGCTGTGGACAAAGCCAA SEQ ID
CCTGGA NO:
2611
HLA-DRB1 NM_002124.1 GCTTTCTCAGGACCTGGTTGCTACTGGTTCGGCAACTGCAGAAAATGTCCTCCCTTGTGGCTT SEQ ID
CCT NO:
2612
HLA-G NM_002127.2 CCTGCGCGGCTACTACAACCAGAGCGAGGCCAGTTCTCACACCCTCCAGTGGATGATTGGCT SEQ ID
GCGACCTG NO:
2613
HMGB1 NM_002128.3 TGGCCTGTCCATTGGTGATGTTGCGAAGAAACTGGGAGAGATGTGGAATAACACTGCTGCA SEQ ID
GATGACAAGC NO:
2614
hMLH NM_000249.2 CTACTTCCAGCAACCCCAGAAAGAGACATCGGGAAGATTCTGATGTGGAAATGGTGGAAGA SEQ ID
TGATTCCCGAAAG NO:
2615
HNRPAB NM_004499.2 CAAGGGAGCGACCAACTGATCGCACACATGCTTTGTTTGGATATGGAGTGAACACAATTATG SEQ ID
TACCAAATTTAACTTGGCAAAC NO:
2616
HNRPD NM_031370.2 GCCAGTAAGAACGAGGAGGATGAAGGCCATTCAAACTCCTCCCCACGACACTCTGAAGCAG SEQ ID
CGACG NO:
2617
HoxA1 NM_005522.3 AGTGACAGATGGACAATGCAAGAATGAACTCCTTCCTGGAATACCCCATACTTAGCAGTGG SEQ ID
CGACTCGG NO:
2618
HoxA5 NM_019102.2 TCCCTTGTGTTCCTTCTGTGAAGAAGCCCTGTTCTCGTTGCCCTAATTCATCTTTTAATCATGA SEQ ID
GCCTGTTTATTGCC NO:
2619
HOXB13 NM_006361.2 CGTGCCTTATGGTTACTTTGGAGGCGGGTACTACTCCTGCCGAGTGTCCCGGAGCTCGCTGA SEQ ID
AACCCTGTG NO:
2620
HOXB7 NM_004502.2 CAGCCTCAAGTTCGGTTTTCGCTACCGGAGCCTTCCCAGAACAAACTTCTTGTGCGTTTGCTT SEQ ID
CCAAC NO:
2621
HRAS NM_005343.2 GGACGAATACGACCCCACTATAGAGGATTCCTACCGGAAGCAGGTGGTCATTGATGGGGAG SEQ ID
ACGTGC NO:
2622
HSBP1 NM_001537.1 GGAGATGGCCGAGACTGACCCCAAGACCGTGCAGGACCTCACCTCGGTGGTGCAGACACTC SEQ ID
CTGCAG NO:
2623
HSD17B1 NM_000413.1 CTGGACCGCACGGACATCCACACCTTCCACCGCTTCTACCAATACCTCGCCCACAGCAAGCA SEQ ID
AGTCTTTCGCGAGGCG NO:
2624
HSD17B2 NM_002153.1 GCTTTCCAAGTGGGGAATTAAAGTTGCTTCCATCCAACCTGGAGGCTTCCTAACAAATATCG SEQ ID
CAGGCA NO:
2625
HSPA1A NM_005345.4 CTGCTGCGACAGTCCACTACCTTTTTCGAGAGTGACTCCCGTTGTCCCAAGGCTTCCCAGAG SEQ ID
CGAACCTG NO:
2626
HSPA1B NM_005346.3 GGTCCGCTTCGTCTTTCGAGAGTGACTCCCGCGGTCCCAAGGCTTTCCAGAGCGAACCTGTGC SEQ ID
NO:
2627
HSPA4 NM_002154.3 TTCAGTGTGTCCAGTGCATCTTTAGTGGAGGTTCACAAGTCTGAGGAAAATGAGGAGCCAAT SEQ ID
GGAAACAGAT NO:
2628
HSPA5 NM_005347.2 GGCTAGTAGAACTGGATCCCAACACCAAACTCTTAATTAGACCTAGGCCTCAGCTGCACTGC SEQ ID
CCGAAAAGCATTTGGGCAGACC NO:
2629
HSPA8 NM_006597.3 CCTCCCTCTGGTGGTGCTTCCTCAGGGCCCACCATTGAAGAGGTTGATTAAGCCAACCAAGT SEQ ID
GTAGATGTAGC NO:
2630
HSPB1 NM_001540.2 CCGACTGGAGGAGCATAAAAGCGCAGCCGAGCCCAGCGCCCCGCACTTTTCTGAGCAGACG SEQ ID
TCCAGAGCAGAGTCAGCCAGCAT NO:
2631
HSPCA NM_005348.2 CAAAAGGCAGAGGCTGATAAGAACGACAAGTCTGTGAAGGATCTGGTCATCTTGCTTTATG SEQ ID
AAACTGCGCT NO:
2632
HSPE1 NM_002157.1 GCAAGCAACAGTAGTCGCTGTTGGATCGGGTTCTAAAGGAAAGGGTGGAGAGATTCAACCA SEQ ID
GTTAGCGTGAAAGTTGG NO:
2633
HSPG2 NM_005529.2 GAGTACGTGTGCCGAGTGTTGGGCAGCTCCGTGCCTCTAGAGGCCTCTGTCCTGGTCACCAT SEQ ID
TGAG NO:
2634
ICAM1 NM_000201.1 GCAGACAGTGACCATCTACAGCTTTCCGGCGCCCAACGTGATTCTGACGAAGCCAGAGGTCT SEQ ID
CAGAAG NO:
2635
ICAM2 NM_000873.2 GGTCATCCTGACACTGCAACCCACTTTGGTGGCTGTGGGCAAGTCCTTCACCATTGAGTGCA SEQ ID
NO:
2636
ID1 NM_002165.1 AGAACCGCAAGGTGAGCAAGGTGGAGATTCTCCAGCACGTCATCGACTACATCAGGGACCT SEQ ID
TCAGTTGGA NO:
2637
ID2 NM_002166.1 AACGACTGCTACTCCAAGCTCAAGGAGCTGGTGCCCAGCATCCCCCAGAACAAGAAGGTGA SEQ ID
GCAAGATGGAAATCC NO:
2638
ID3 NM_002167.2 CTTCACCAAATCCCTTCCTGGAGACTAAACCTGGTGCTCAGGAGCGAAGGACTGTGAACTTG SEQ ID
TAGCCTGAAGAGCCAGAG NO:
2639
ID4 NM_001546.2 TGGCCTGGCTCTTAATTTGCTTTTGTTTTGCCCAGTATAGACTCGGAAGTAAGAGTTATAGCT SEQ ID
AGTGGTCTTGCATGATTGCA NO:
2640
IFIT1 NM_001548.1 TGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTGGGGCAACTTTGCCTGGATGTATTACC SEQ ID
ACATGGGCAGACTG NO:
2641
IGF1 NM_000618.1 TCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATTGCGCACCCCTCAAGCCTGCCAAGTCA SEQ ID
GCTCGCTCTGTCCG NO:
2642
IGF1R NM_000875.2 GCATGGTAGCCGAAGATTTCACAGTCAAAATCGGAGATTTTGGTATGACGCGAGATATCTAT SEQ ID
GAGACAGACTATTACCGGAAA NO:
2643
IGF2 NM_000612.2 CCGTGCTTCCGGACAACTTCCCCAGATACCCCGTGGGCAAGTTCTTCCAATATGACACCTGG SEQ ID
AAGCAGTCCA NO:
2644
IGFBP2 NM_000597.1 GTGGACAGCACCATGAACATGTTGGGCGGGGGAGGCAGTGCTGGCCGGAAGCCCCTCAAGT SEQ ID
CGGGTATGAAGG NO:
2645
IGFBP3 NM_000598.1 ACGCACCGGGTGTCTGATCCCAAGTTCCACCCCCTCCATTCAAAGATAATCATCATCAAGAA SEQ ID
AGGGCA NO:
2646
IGFBP5 NM_000599.1 TGGACAAGTACGGGATGAAGCTGCCAGGCATGGAGTACGTTGACGGGGACTTTCAGTGCCA SEQ ID
CACCTTCG NO:
2647
IGFBP6 NM_002178.1 TGAACCGCAGAGACCAACAGAGGAATCCAGGCACCTCTACCACGCCCTCCCAGCCCAATTC SEQ ID
TGCGGGTGTCCAAGAC NO:
2648
IGFBP7 NM_001553 GGGTCACTATGGAGTTCAAAGGACAGAACTCCTGCCTGGTGACCGGGACAACCTGGCCATT SEQ ID
CAGACCC NO:
2649
IHH NM_002181.1 AAGGACGAGGAGAACACAGGCGCCGACCGCCTCATGACCCAGCGCTGCAAGGACCGCCTGA SEQ ID
ACTCGCTGGCTATCT NO:
2650
IL-8 NM_000584.2 AAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGCTGGCCGTGGCTCTCTTGGCAGCC SEQ ID
TTCCTGAT NO:
2651
IL10 NM_000572.1 GGCGCTGTCATCGATTTCTTCCCTGTGAAAACAAGAGCAAGGCCGTGGAGCAGGTGAAGAA SEQ ID
TGCCTTTAATAAGCTCCA NO:
2652
IL1B NM_000576.2 AGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCTTCCAGGAGAATGACCTGAGCACCTTC SEQ ID
TTTCC NO:
2653
IL6 NM_000600.1 CCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATGCTTCCAATCTGGATTCAATGAGGAG SEQ ID
ACTTGCCTGGT NO:
2654
IL6ST NM_002184.2 GGCCTAATGTTCCAGATCCTTCAAAGAGTCATATTGCCCAGTGGTCACCTCACACTCCTCCA SEQ ID
AGGCACAATTTT NO:
2655
ILT-2 NM_006669.1 AGCCATCACTCTCAGTGCAGCCAGGTCCTATCGTGGCCCCTGAGGAGACCCTGACTCTGCAGT SEQ ID
NO:
2656
IMP-1 NM_006546.2 GAAAGTGTTTGCGGAGCACAAGATCTCCTACAGCGGCCAGTTCTTGGTCAAATCCGGCTACG SEQ ID
CCTTC NO:
2657
IMP2 NM_006548.3 CAATCTGATCCCAGGGTTGAACCTCAGCGCACTTGGCATCTTTTCAACAGGACTGTCCGTGC SEQ ID
TATCTCCACCAGCAGGGCC NO:
2658
ING1L NM_001564.1 TGTTTCCAAGATCCTGCTGAAAGTGAACGAGCCTCAGATAAAGCAAAGATGGATTCCAGCC SEQ ID
AACCAGAAAGA NO:
2659
ING5 NM_032329.4 CCTACAGCAAGTGCAAGGAATACAGTGACGACAAAGTGCAGCTGGCCATGCAGACCTACGA SEQ ID
GATG NO:
2660
INHA NM_002191.2 CCTCCCAGTTTCATCTTCCACTACTGTCATGGTGGTTGTGGGCTGCAGATCCCACCAAACCTG SEQ ID
TCCCTTCCAGTCCCT NO:
2661
INHBA NM_002192.1 GTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTCACTGTCCTTCCACTCAACAGTCATCA SEQ ID
ACCACTACCG NO:
2662
INHBB NM_002193.1 AGCCTCCAGGATACCAGCAAATGGATGCGGTGACAAATGGCAGCTTAGCTACAAATGCCTG SEQ ID
TCAGTCGGAGA NO:
2663
IRS1 NM_005544.1 CCACAGCTCACCTTCTGTCAGGTGTCCATCCCAGCTCCAGCCAGCTCCCAGAGAGGAAGAGA SEQ ID
CTGGCACTGAGG NO:
2664
ITGA3 NM_002204.1 CCATGATCCTCACTCTGCTGGTGGACTATACACTCCAGACCTCGCTTAGCATGGTAAATCAC SEQ ID
CGGCTACAAAGCTTC NO:
2665
ITGA4 NM_000885.2 CAACGCTTCAGTGATCAATCCCGGGGCGATTTACAGATGCAGGATCGGAAAGAATCCCGGC SEQ ID
CAGAC NO:
2666
ITGA5 NM_002205.1 AGGCCAGCCCTACATTATCAGAGCAAGAGCCGGATAGAGGACAAGGCTCAGATCTTGCTGG SEQ ID
ACTGTGGAGAAGAC NO:
2667
ITGA6 NM_000210.1 CAGTGACAAACAGCCCTTCCAACCCAAGGAATCCCACAAAAGATGGCGATGACGCCCATGA SEQ ID
GGCTAAAC NO:
2668
ITGA7 NM_002206.1 GATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCTGGCCATCCGGGATGAGTTGGATGG SEQ ID
TGGGGAATGGAAGTTCT NO:
2669
ITGAV NM_002210.2 ACTCGGACTGCACAAGCTATTTTTGATGACAGCTATTTGGGTTATTCTGTGGCTGTCGGAGAT SEQ ID
TTCAATGGTGATGGCA NO:
2670
ITGB1 NM_002211.2 TCAGAATTGGATTTGGCTCATTTGTGGAAAAGACTGTGATGCCTTACATTAGCACAACACCA SEQ ID
GCTAAGCTCAGG NO:
2671
ITGB3 NM_000212.1 ACCGGGAGCCCTACATGACCGAAAATACCTGCAACCGTTACTGCCGTGACGAGATTGAGTC SEQ ID
AGTGAAAGAGCTTAAGG NO:
2672
ITGB4 NM_000213.2 CAAGGTGCCCTCAGTGGAGCTCACCAACCTGTACCCGTATTGCGACTATGAGATGAAGGTGT SEQ ID
GCGC NO:
2673
ITGB5 NM_002213.3 TCGTGAAAGATGACCAGGAGGCTGTGCTATGTTTCTACAAAACCGCCAAGGACTGCGTCATG SEQ ID
ATGTTCACC NO:
2674
K-ras NM_033360.2 GTCAAAATGGGGAGGGACTAGGGCAGTTTGGATAGCTCAACAAGATACAATCTCACTCTGT SEQ ID
GGTGGTCCTG NO:
2675
KCNH2 iso NM_000238.2 GAGCGCAAAGTGGAAATCGCCTTCTACCGGAAAGATGGGAGCTGCTTCCTATGTCTGGTGG SEQ ID
a/b ATGTGGTGCCCGTGAAGA NO:
2676
KCNH2 iso NM_172057.1 TCCTGCTGCTGGTCATCTACACGGCTGTCTTCACACCCTACTCGGCTGCCTTCCTGCTGAAGG SEQ ID
a/c AGACGGAAGAAGG NO:
2677
KCNK4 NM_016611.2 CCTATCAGCCGCTGGTGTGGTTCTGGATCCTGCTCGGCCTGGCTTACTTCGCCTCAGTGCTCA SEQ ID
CCACCA NO:
2678
KDR NM_002253.1 GAGGACGAAGGCCTCTACACCTGCCAGGCATGCAGTGTTCTTGGCTGTGCAAAAGTGGAGG SEQ ID
CATTTTT NO:
2679
Ki-67 NM_002417.1 CGGACTTTGGGTGCGACTTGACGAGCGGTGGTTCGACAAGTGGCCTTGCGGGCCGGATCGTC SEQ ID
CCAGTGGAAGAGTTGTAA NO:
2680
KIAA0125 NM_014792.2 GTGTCCTGGTCCATGTGGTGCACGTGTCTCCACCTCCAAGGAGAGGCTCCTCAGTGTGCACC SEQ ID
TCCC NO:
2681
KIF22 NM_007317.1 CTAAGGCACTTGCTGGAAGGGCAGAATGCCAGTGTGCTTGCCTATGGACCCACAGGAGCTG SEQ ID
GGAAGA NO:
2682
KIF2C NM_006845.2 AATTCCTGCTCCAAAAGAAAGTCTTCGAAGCCGCTCCACTCGCATGTCCACTGTCTCAGAGC SEQ ID
TTCGCATCACG NO:
2683
KIFC1 XM_371813.1 CCACAGGGTTGAAGAACCAGAAGCCAGTTCCTGCTGTTCCTGTCCAGAAGTCTGGCACATCA SEQ ID
GGTG NO:
2684
Kitlng NM_000899.1 GTCCCCGGGATGGATGTTTTGCCAAGTCATTGTTGGATAAGCGAGATGGTAGTACAATTGTC SEQ ID
AGACAGCTTGACTGATC NO:
2685
KLF5 NM_001730.3 GTGCAACCGCAGCTTCTCGCGCTCTGACCACCTGGCCCTGCATATGAAGAGGCACCAGAACT SEQ ID
GAGCACTGCCCG NO:
2686
KLF6 NM_001300.4 CACGAGACCGGCTACTTCTCGGCGCTGCCGTCTCTGGAGGAGTACTGGCAACAGACCTGCCT SEQ ID
AGAGC NO:
2687
KLK10 NM_002776.1 GCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCAGTCGGCTGAACTCTCCCCTTGTCTGCA SEQ ID
CTGTTCAAACCTCTG NO:
2688
KLK6 NM_002774.2 GACGTGAGGGTCCTGATTCTCCCTGGTTTTACCCCAGCTCCATCCTTGCATCACTGGGGAGG SEQ ID
ACGTGATGAGTGAGGA NO:
2689
KLRK1 NM_007360.1 TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATACAGCAAAGAGG SEQ ID
ACCAGGAT NO:
2690
KNTC2 NM_006101.1 ATGTGCCAGTGAGCTTGAGTCCTTGGAGAAACACAAGCACCTGCTAGAAAGTACTGTTAACC SEQ ID
AGGGGCTCA NO:
2691
KRAS2 NM_004985.3 GAGACCAAGGTTGCAAGGCCAGGCCCTGTGTGAACCTTTGAGCTTTCATAGAGAGTTTCACA SEQ ID
GCATGGACTG NO:
2692
KRT19 NM_002276.1 TGAGCGGCAGAATCAGGAGTACCAGCGGCTCATGGACATCAAGTCGCGGCTGGAGCAGGAG SEQ ID
ATTGCCACCTACCGCA NO:
2693
KRT8 NM_002273.1 GGATGAAGCTTACATGAACAAGGTAGAGCTGGAGTCTCGCCTGGAAGGGCTGACCGACGAG SEQ ID
ATCAACTTCCTCAGGCAGCTATATG NO:
2694
LAMA3 NM_000227.2 CAGATGAGGCACATGGAGACCCAGGCCAAGGACCTGAGGAATCAGTTGCTCAACTACCGTT SEQ ID
CTGCCATTTCAA NO:
2695
LAMB3 NM_000228.1 ACTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCGAGTGGCAGATGAAATGCTGCAAG SEQ ID
TGTGAC NO:
2696
LAMC2 NM_005562.1 ACTCAAGCGGAAATTGAAGCAGATAGGTCTTATCAGCACAGTCTCCGCCTCCTGGATTCAGT SEQ ID
GTCTCGGCTTCAGGGAGT NO:
2697
LAT NM_014387.2 GTGAACGTTCCGGAGAGCGGGGAGAGCGCAGAAGCGTCTCTGGATGGCAGCCGGGAGTATG SEQ ID
TGAATGT NO:
2698
LCN2 NM_005564.2 CGCTGGGCAACATTAAGAGTTACCCTGGATTAACGAGTTACCTCGTCCGAGTGGTGAGCACC SEQ ID
AACTACAACCAGCATGCT NO:
2699
LDLRAP1 NM_015627.1 CAGTGCCTCTCGCCTGTCGACTGGGACAAGCCTGACAGCAGCGGCACAGAGCAGGATGACC SEQ ID
TCTTCA NO:
2700
LEF NM_016269.2 GATGACGGAAAGCATCCAGATGGAGGCCTCTACAACAAGGGACCCTCCTACTCGAGTTATT SEQ ID
CCGGG NO:
2701
LGALS3 NM_002306.1 AGCGGAAAATGGCAGACAATTTTTCGCTCCATGATGCGTTATCTGGGTCTGGAAACCCAAAC SEQ ID
CCTCAAG NO:
2702
LGMN NM_001008530.1 TTGGTGCCGTTCCTATAGATGATCCTGAAGATGGAGGCAAGCACTGGGTGGTGATCGTGGCA SEQ ID
GGTTC NO:
2703
LILRB3 NM_006864.1 CACCTGGTCTGGGAAGATACCTGGAGGTTTTGATTGGGGTCTCGGTGGCCTTCGTCCTGCTG SEQ ID
CTCTT NO:
2704
LMNB1 NM_005573.1 TGCAAACGCTGGTGTCACAGCCAGCCCCCCAACTGACCTCATCTGGAAGAACCAGAACTCGT SEQ ID
GGGG NO:
2705
LMYC NM_012421.1 CCCATCCAGAACACTGATTGCTGTCATTCAAGTGAAAGGGATGGAGGTCAGAAAGGGTGCA SEQ ID
TAGAAAGCAG NO:
2706
LOX NM_002317.3 CCAATGGGAGAACAACGGGCAGGTGTTCAGCTTGCTGAGCCTGGGCTCACAGTACCAGCCT SEQ ID
CAGCG NO:
2707
LOXL2 NM_002318.1 TCAGCGGGCTCTTAAACAACCAGCTGTCCCCGCAGTAAAGAAGCCTGCGTGGTCAACTCCTG SEQ ID
TCTT NO:
2708
LRP5 NM_002335.1 CGACTATGACCCACTGGACAAGTTCATCTACTGGGTGGATGGGCGCCAGAACATCAAGCGA SEQ ID
GCCAAG NO:
2709
LRP6 NM_002336.1 GGATGTAGCCATCTCTGCCTCTATAGACCTCAGGGCCTTCGCTGTGCTTGCCCTATTGGCTTT SEQ ID
GAACT NO:
2710
LY6D NM_003695.2 AATGCTGATGACTTGGAGCAGGCCCCACAGACCCCACAGAGGATGAAGCCACCCCACAGAG SEQ ID
GATGCAG NO:
2711
MAD NM_002357.1 TGGTTCTGATTAGGTAACGTATTGGACCTGCCCACAACTCCCTTGCACGTAAACTTCAGTGTC SEQ ID
CCACCTTGACC NO:
2712
MAD1L1 NM_003550.1 AGAAGCTGTCCCTGCAAGAGCAGGATGCAGCGATTGTGAAGAACATGAAGTCTGAGCTGGT SEQ ID
ACGGCT NO:
2713
MAD2L1 NM_002358.2 CCGGGAGCAGGGAATCACCCTGCGCGGGAGCGCCGAAATCGTGGCCGAGTTCTTCTCATTC SEQ ID
GGCATCAACAGCAT NO:
2714
MADH2 NM_005901.2 GCTGCCTTTGGTAAGAACATGTCGTCCATCTTGCCATTCACGCCGCCAGTTGTGAAGAGACT SEQ ID
GCTGGGAT NO:
2715
MADH4 NM_005359.3 GGACATTACTGGCCTGTTCACAATGAGCTTGCATTCCAGCCTCCCATTTCCAATCATCCTGCT SEQ ID
CCTGAGTATTGGT NO:
2716
MADH7 NM_005904.1 TCCATCAAGGCTTTCGACTACGAGAAGGCGTACAGCCTGCAGCGGCCCAATGACCACGAGT SEQ ID
TTATGCAGCAG NO:
2717
MAP2 NM_031846.1 CGGACCACCAGGTCAGAGCCAATTCGCAGAGCAGGGAAGAGTGGTACCTCAACACCCACTA SEQ ID
CCCCTG NO:
2718
MAP2K1 NM_002755.2 GCCTTTCTTACCCAGAAGCAGAAGGTGGGAGAACTGAAGGATGACGACTTTGAGAAGATCA SEQ ID
GTGAGCTGGGGGCTG NO:
2719
MAP3K1 XM_042066.8 GGTTGGCATCAAAAGGAACTGGTGCAGGAGAGTTTCAGGGACAATTACTGGGGACAATTGC SEQ ID
ATTTATGGCA NO:
2720
MAPK14 NM_139012.1 TGAGTGGAAAAGCCTGACCTATGATGAAGTCATCAGCTTTGTGCCACCACCCCTTGACCAAG SEQ ID
AAGAGATGGAGTCC NO:
2721
Maspin NM_002639.1 CAGATGGCCACTTTGAGAACATTTTAGCTGACAACAGTGTGAACGACCAGACCAAAATCCTT SEQ ID
GTGGTTAATGCTGCC NO:
2722
MAX NM_002382.3 CAAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT SEQ ID
CACAGTTTGCGGGA NO:
2723
MCM2 NM_004526.1 GACTTTTGCCCGCTACCTTTCATTCCGGCGTGACAACAATGAGCTGTTGCTCTTCATACTGAA SEQ ID
GCAGTTAGTGGC NO:
2724
MCM3 NM_002388.2 GGAGAACAATCCCCTTGAGACAGAATATGGCCTTTCTGTCTACAAGGATCACCAGACCATCA SEQ ID
CCATCCAGGAGAT NO:
2725
MCM6 NM_005915.2 TGATGGTCCTATGTGTCACATTCATCACAGGTTTCATACCAACACAGGCTTCAGCACTTCCTT SEQ ID
TGGTGTGTTTCCTGTCCCA NO:
2726
MCP1 NM_002982.1 CGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCTGTTATAACTTCACCAATAGGAAGA SEQ ID
TCTCAGTGC NO:
2727
MDK NM_002391.2 GGAGCCGACTGCAAGTACAAGTTTGAGAACTGGGGTGCGTGTGATGGGGGCACAGGCACCA SEQ ID
AAGTC NO:
2728
MDM2 NM_002392.1 CTACAGGGACGCCATCGAATCCGGATCTTGATGCTGGTGTAAGTGAACATTCAGGTGATTGG SEQ ID
TTGGAT NO:
2729
MGAT5 NM_002410.2 GGAGTCGAAGGTGGACAATCTTGTTGTCAATGGCACCGGAACAAACTCAACCAACTCCACT SEQ ID
ACAGCTGTTCCCA NO:
2730
MGMT NM_002412.1 GTGAAATGAAACGCACCACACTGGACAGCCCTTTGGGGAAGCTGGAGCTGTCTGGTTGTGA SEQ ID
GCAGGGTC NO:
2731
mGST1 NM_020300.2 ACGGATCTACCACACCATTGCATATTTGACACCCCTTCCCCAGCCAAATAGAGCTTTGAGTT SEQ ID
TTTTTGTTGGATATGGA NO:
2732
MMP1 NM_002421.2 GGGAGATCATCGGGACAACTCTCCTTTTGATGGACCTGGAGGAAATCTTGCTCATGCTTTTC SEQ ID
AACCAGGCCC NO:
2733
MMP12 NM_002426.1 CCAACGCTTGCCAAATCCTGACAATTCAGAACCAGCTCTCTGTGACCCCAATTTGAGTTTTG SEQ ID
ATGCTGTCACTACCGT NO:
2734
MMP2 NM_004530.1 CCATGATGGAGAGGCAGACATCATGATCAACTTTGGCCGCTGGGAGCATGGCGATGGATAC SEQ ID
CCCTTTGACGGTAAGGACGGACTCC NO:
2735
MMP7 NM_002423.2 GGATGGTAGCAGTCTAGGGATTAACTTCCTGTATGCTGCAACTCATGAACTTGGCCATTCTTT SEQ ID
GGGTATGGGACATTCC NO:
2736
MMP9 NM_004994.1 GAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGAATACCTGTACCGCTATGGTTACACT SEQ ID
CGGGTG NO:
2737
MRP1 NM_004996.2 TCATGGTGCCCGTCAATGCTGTGATGGCGATGAAGACCAAGACGTATCAGGTGGCCCACAT SEQ ID
GAAGAGCAAAGACAATCG NO:
2738
MRP2 NM_000392.1 AGGGGATGACTTGGACACATCTGCCATTCGACATGACTGCAATTTTGACAAAGCCATGCAGT SEQ ID
TTT NO:
2739
MRP3 NM_003786.2 TCATCCTGGCGATCTACTTCCTCTGGCAGAACCTAGGTCCCTCTGTCCTGGCTGGAGTCGCTT SEQ ID
TCATGGTCTTGCTGATTCCACTCAACGG NO:
2740
MRP4 NM_005845.1 AGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTTGTCATCTTCTCTCCAGGGGC SEQ ID
TCT NO:
2741
MRPL40 NM_003776.2 ACTTGCAGGCTGCTATCCTTAACATGCTGCCCCTGAGAGTAGGAATGACCAGGGTTCAAGTC SEQ ID
TGCT NO:
2742
MSH2 NM_000251.1 GATGCAGAATTGAGGCAGACTTTACAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCG SEQ ID
ACTTGCCAAGA NO:
2743
MSH3 NM_002439.1 TGATTACCATCATGGCTCAGATTGGCTCCTATGTTCCTGCAGAAGAAGCGACAATTGGGATT SEQ ID
GTGGATGGCATTTTCACAAG NO:
2744
MSH6 NM_000179.1 TCTATTGGGGGATTGGTAGGAACCGTTACCAGCTGGAAATTCCTGAGAATTTCACCACTCGC SEQ ID
AATTTG NO:
2745
MT3 NM_005954.1 GTGTGAGAAGTGTGCCAAGGACTGTGTGTGCAAAGGCGGAGAGGCAGCTGAGGCAGAAGC SEQ ID
AGAGAAGTGCAG NO:
2746
MTA1 NM_004689.2 CCGCCCTCACCTGAAGAGAAACGCGCTCCTTGGCGGACACTGGGGGAGGAGAGGAAGAAGC SEQ ID
GCGGCTAACTTATTCC NO:
2747
MUC1 NM_002456.1 GGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCAC SEQ ID
GACGTGGAG NO:
2748
MUC2 NM_002457.1 CTATGAGCCATGTGGGAACCGGAGCTTCGAGACCTGCAGGACCATCAACGGCATCCACTCC SEQ ID
AACAT NO:
2749
MUC5B XM_039877.11 TGCCCTTGCACTGTCCTAACGGCTCAGCCATCCTGCACACCTACACCCACGTGGATGAGTGT SEQ ID
GGCTG NO:
2750
MUTYH NM_012222.1 GTACGACCAAGAGAAACGGGACCTACCATGGAGAAGACGGGCAGAAGATGAGATGGACCT SEQ ID
GGACAGG NO:
2751
MVP NM_017458.1 ACGAGAACGAGGGCATCTATGTGCAGGATGTCAAGACCGGAAAGGTGCGCGCTGTGATTGG SEQ ID
AAGCACCTACATGC NO:
2752
MX1 NM_002462.2 GAAGGAATGGGAATCAGTCATGAGCTAATCACCCTGGAGATCAGCTCCCGAGATGTCCCGG SEQ ID
ATCTGACTCTAATAGAC NO:
2753
MXD4 NM_006454.2 AGAAACTGGAGGAGCAGGACCGCCGGGCACTGAGCATCAAGGAGCAGCTGCAGCAGGAGC SEQ ID
ATCGTTTCCTGAAG NO:
2754
MYBL2 NM_002466.1 GCCGAGATCGCCAAGATGTTGCCAGGGAGGACAGACAATGCTGTGAAGAATCACTGGAACT SEQ ID
CTACCATCAAAAG NO:
2755
MYH11 NM_002474.1 CGGTACTTCTCAGGGCTAATATATACGTACTCTGGCCTCTTCTGCGTGGTGGTCAACCCCTAT SEQ ID
AAACACCTGCCCATCTACTCGG NO:
2756
MYLK NM_053025.1 TGACGGAGCGTGAGTGCATCAAGTACATGCGGCAGATCTCGGAGGGAGTGGAGTACATCCA SEQ ID
CAAGCAGGGCAT NO:
2757
NAT2 NM_000015.1 TAACTGACATTCTTGAGCACCAGATCCGGGCTGTTCCCTTTGAGAACCTTAACATGCATTGT SEQ ID
GGGCAAGCCAT NO:
2758
NAV2 NM_182964.3 CTCTCCCAGCACAGCTTGAACCTCACTGAGTCAACCAGCCTGGACATGTTGCTGGATGACAC SEQ ID
TGGTG NO:
2759
NCAM1 NM_000615.1 TAGTTCCCAGCTGACCATCAAAAAGGTGGATAAGAACGACGAGGCTGAGTACATCTGCATT SEQ ID
GCTGAGAACAAGGCTG NO:
2760
NDE1 NM_017668.1 CTACTGCGGAAAGTCGGGGCACTGGAGTCCAAACTCGCTTCCTGCCGGAACCTCGTGTACGA SEQ ID
TCAGTCC NO:
2761
NDRG1 NM_006096.2 AGGGCAACATTCCACAGCTGCCCTGGCTGTGATGAGTGTCCTTGCAGGGGCCGGAGTAGGA SEQ ID
GCACTG NO:
2762
NDUFS3 NM_004551.1 TATCCATCCTGATGGCGTCATCCCAGTGCTGACTTTCCTCAGGGATCACACCAATGCACAGT SEQ ID
TCAA NO:
2763
NEDD8 NM_006156.1 TGCTGGCTACTGGGTGTTAGTTTGCAGTCCTGTGTGCTTCCCTCTCTTATGACTGTGTCCCTG SEQ ID
GTTGTC NO:
2764
NEK2 NM_002497.1 GTGAGGCAGCGCGACTCTGGCGACTGGCCGGCCATGCCTTCCCGGGCTGAGGACTATGAAG SEQ ID
TGTTGTACACCATTGGCA NO:
2765
NF2 NM_000268.2 ACTCCAGAGCTGACCTCCACCGCCCAGCCTGGGAAGTCATTGTAGGGAGTGAGACACTGAA SEQ ID
GCCCTGA NO:
2766
NFKBp50 NM_003998.1 CAGACCAAGGAGATGGACCTCAGCGTGGTGCGGCTCATGTTTACAGCTTTTCTTCCGGATAG SEQ ID
CACTGGCAGCT NO:
2767
NFKBp65 NM_021975.1 CTGCCGGGATGGCTTCTATGAGGCTGAGCTCTGCCCGGACCGCTGCATCCACAGTTTCCAGA SEQ ID
ACCTGG NO:
2768
NISCH NM_007184.1 CCAAGGAATCATGTTCGTTCAGGAGGAGGCCCTGGCCAGCAGCCTCTCGTCCACTGACAGTC SEQ ID
TGACTCCCGAGCACCA NO:
2769
Nkd-1 NM_033119.3 GAGAGAGTGAGCGAACCCTGCCCAGGCTCCAAGAAGCAGCTGAAGTTTGAAGAGCTCCAGT SEQ ID
GCGACG NO:
2770
NMB NM_021077.1 GGCTGCTGGTACAAATACTGCAGAAATGACACCAATAATAGGGGCAGACACAACAGCGTGG SEQ ID
CTTAGATTG NO:
2771
NMBR NM_002511.1 TGATCCATCTCTAGGCCACATGATTGTCACCTTAGTTGCCCGGGTTCTCAGTTTTGGCAATTC SEQ ID
TTGTGTCAACCCATTTGCTC NO:
2772
NME1 NM_000269.1 CCAACCCTGCAGACTCCAAGCCTGGGACCATCCGTGGAGACTTCTGCATACAAGTTGGCAGG SEQ ID
AACATTATACAT NO:
2773
NOS3 NM_000603.2 ATCTCCGCCTCGCTCATGGGCACGGTGATGGCGAAGCGAGTGAAGGCGACAATCCTGTATG SEQ ID
GCTCCGA NO:
2774
NOTCH1 NM_017617.2 CGGGTCCACCAGTTTGAATGGTCAATGCGAGTGGCTGTCCCGGCTGCAGAGCGGCATGGTGC SEQ ID
CGAACCAATACAAC NO:
2775
NOTCH2 NM_024408.2 CACTTCCCTGCTGGGATTATATCAACAACCAGTGTGATGAGCTGTGCAACACGGTCGAGTGC SEQ ID
CTGTTTGACAACT NO:
2776
NPM1 NM_002520.2 AATGTTGTCCAGGTTCTATTGCCAAGAATGTGTTGTCCAAAATGCCTGTTTAGTTTTTAAAGA SEQ ID
TGGAACTCCACCCTTTGCTTG NO:
2777
NR4A1 NM_002135.2 CACAGCTTGCTTGTCGATGTCCCTGCCTTCGCCTGCCTCTCTGCCCTTGTCCTCATCACCGAC SEQ ID
CGGCAT NO:
2778
NRG1 NM_013957.1 CGAGACTCTCCTCATAGTGAAAGGTATGTGTCAGCCATGACCACCCCGGCTCGTATGTCACC SEQ ID
TGTAGATTTCCACACGCCAAG NO:
2779
NRP1 NM_003873.1 CAGCTCTCTCCACGCGATTCATCAGGATCTACCCCGAGAGAGCCACTCATGGCGGACTGGGG SEQ ID
CTCAGAATGGAGCTGCTGGG NO:
2780
NRP2 NM_003872.1 CTACAGCCTAAACGGCAAGGACTGGGAATACATTCAGGACCCCAGGACCCAGCAGCCAAAG SEQ ID
CTGTTCGAAGGGAAC NO:
2781
NTN1 NM_004822.1 AGAAGGACTATGCCGTCCAGATCCACATCCTGAAGGCGGACAAGGCGGGGGACTGGTGGAA SEQ ID
GTTCACGG NO:
2782
NUFIP1 NM_012345.1 GCTTCCACATCGTGGTATTGGAGACAGTCTTCTGATAGGTTTCCTCGGCATCAGAAGTCCTTC SEQ ID
AACCCTGCAGTT NO:
2783
ODC1 NM_002539.1 AGAGATCACCGGCGTAATCAACCCAGCGTTGGACAAATACTTTCCGTCAGACTCTGGAGTGA SEQ ID
GAATCATAGCTGAGCCCG NO:
2784
OPN, NM_000582.1 CAACCGAAGTTTTCACTCCAGTTGTCCCCACAGTAGACACATATGATGGCCGAGGTGATAGT SEQ ID
osteopontin GTGGTTTATGGACTGAGG NO:
2785
ORC1L NM_004153.2 TCCTTGACCATACCGGAGGGTGCATGTACATCTCCGGTGTCCCTGGGACAGGGAAGACTGCC SEQ ID
ACTG NO:
2786
OSM NM_020530.3 GTTTCTGAAGGGGAGGTCACAGCCTGAGCTGGCCTCCTATGCCTCATCATGTCCCAAACCAG SEQ ID
ACACCT NO:
2787
OSMR NM_003999.1 GCTCATCATGGTCATGTGCTACTTGAAAAGTCAGTGGATCAAGGAGACCTGTTATCCTGACA SEQ ID
TCCCTGACCCTTACA NO:
2788
P14ARF S78535.1 CCCTCGTGCTGATGCTACTGAGGAGCCAGCGTCTAGGGCAGCAGCCGCTTCCTAGAAGACCA SEQ ID
GGTCATGATG NO:
2789
p16-INK4 L27211.1 GCGGAAGGTCCCTCAGACATCCCCGATTGAAAGAACCAGAGAGGCTCTGAGAAACCTCGGG SEQ ID
AAACTTAGATCATCA NO:
2790
p21 NM_000389.1 TGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAGCATGACAGATTTCTACCACTCCAAA SEQ ID
CGCC NO:
2791
p27 NM_004064.1 CGGTGGACCACGAAGAGTTAACCCGGGACTTGGAGAAGCACTGCAGAGACATGGAAGAGG SEQ ID
CGAGCC NO:
2792
P53 NM_000546.2 CTTTGAACCCTTGCTTGCAATAGGTGTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTC SEQ ID
CCGGG NO:
2793
p53R2 AB036063.1 CCCAGCTAGTGTTCCTCAGAACAAAGATTGGAAAAAGCTGGCCGAGAACCATTTATACATA SEQ ID
GAGGAAGGGCTTACGG NO:
2794
PADI4 NM_012387.1 AGCAGTGGCTTGCTTTCTTCTCCTGTGATGTCCCAGTTTCCCACTCTGAAGATCCCAACATGG SEQ ID
TCCTAGCA NO:
2795
PAI1 NM_000602.1 CCGCAACGTGGTTTTCTCACCCTATGGGGTGGCCTCGGTGTTGGCCATGCTCCAGCTGACAA SEQ ID
CAGGAGGAGAAACCCAGCA NO:
2796
Pak1 NM_002576.3 GAGCTGTGGGTTGTTATGGAATACTTGGCTGGAGGCTCCTTGACAGATGTGGTGACAGAAAC SEQ ID
TTGCATGG NO:
2797
PARC NM_015089.1 GGAGCTGACCTGCTTCCTACATCGCCTGGCCTCGATGCATAAGGACTATGCTGTGGTGCTCT SEQ ID
GCT NO:
2798
PCAF NM_003884.3 AGGTGGCTGTGTTACTGCAACGTGCCACAGTTCTGCGACAGTCTACCTCGGTACGAAACCAC SEQ ID
ACAGGTG NO:
2799
PCNA NM_002592.1 GAAGGTGTTGGAGGCACTCAAGGACCTCATCAACGAGGCCTGCTGGGATATTAGCTCCAGC SEQ ID
GGTGTAAACC NO:
2800
PDGFA NM_002607.2 TTGTTGGTGTGCCCTGGTGCCGTGGTGGCGGTCACTCCCTCTGCTGCCAGTGTTTGGACAGA SEQ ID
ACCCA NO:
2801
PDGFB NM_002608.1 ACTGAAGGAGACCCTTGGAGCCTAGGGGCATCGGCAGGAGAGTGTGTGGGCAGGGTTATTTA SEQ ID
NO:
2802
PDGFC NM_016205.1 AGTTACTAAAAAATACCACGAGGTCCTTCAGTTGAGACCAAAGACCGGTGTCAGGGGATTG SEQ ID
CACAAATCACTCACCGAC NO:
2803
PDGFD NM_025208.2 TATCGAGGCAGGTCATACCATGACCGGAAGTCAAAAGTTGACCTGGATAGGCTCAATGATG SEQ ID
ATGCCAAGCGTTA NO:
2804
PDGFRa NM_006206.2 GGGAGTTTCCAAGAGATGGACTAGTGCTTGGTCGGGTCTTGGGGTCTGGAGCGTTTGGGAAG SEQ ID
GTGGTTGAAG NO:
2805
PDGFRb NM_002609.2 CCAGCTCTCCTTCCAGCTACAGATCAATGTCCCTGTCCGAGTGCTGGAGCTAAGTGAGAGCC SEQ ID
ACCC NO:
2806
PFN1 NM_005022.2 GGAAAACGTTCGTCAACATCACGCCAGCTGAGGTGGGTGTCCTGGTTGGCAAAGACCGGTC SEQ ID
AAGTTTT NO:
2807
PFN2 NM_053024.1 TCTATACGTCGATGGTGACTGCACAATGGACATCCGGACAAAGAGTCAAGGTGGGGAGCCA SEQ ID
ACATACAATGTGGCTGTCGGC NO:
2808
PGK1 NM_000291.1 AGAGCCAGTTGCTGTAGAACTCAAATCTCTGCTGGGCAAGGATGTTCTGTTCTTGAAGGACT SEQ ID
GTGTAGGCCCAG NO:
2809
PI3K NM_002646.2 TGCTACCTGGACAGCCCGTTGGTGCGCTTCCTCCTGAAACGAGCTGTGTCTGACTTGAGAGT SEQ ID
GACTCACTACTTCTTCTGGTTACTGAAGGACGGCCT NO:
2810
PI3KC2A NM_002645.1 ATACCAATCACCGCACAAACCCAGGCTATTTGTTAAGTCCAGTCACAGCGCAAAGAAACAT SEQ ID
ATGCGGAGAAAATGCTAGTGTG NO:
2811
PIK3CA NM_006218.1 GTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGAGAAGCAGGATTTAGCTATTCCCACGC SEQ ID
AGGAC NO:
2812
PIM1 NM_002648.2 CTGCTCAAGGACACCGTCTACACGGACTTCGATGGGACCCGAGTGTATAGCCCTCCAGAGTG SEQ ID
GATCC NO:
2813
Pin1 NM_006221.1 GATCAACGGCTACATCCAGAAGATCAAGTCGGGAGAGGAGGACTTTGAGTCTCTGGCCTCA SEQ ID
CAGTTCA NO:
2814
PKD1 NM_000296.2 CAGCACCAGCGATTACGACGTTGGCTGGGAGAGTCCTCACAATGGCTCGGGGACGTGGGCC SEQ ID
TATTCAG NO:
2815
PKR2 NM_002654.3 CCGCCTGGACATTGATTCACCACCCATCACAGCCCGGAACACTGGCATCATCTGTACCATTG SEQ ID
GCCCAG NO:
2816
PLA2G2A NM_000300.2 GCATCCCTCACCCATCCTAGAGGCCAGGCAGGAGCCCTTCTATACCCACCCAGAATGAGACA SEQ ID
TCCAGCAGATTTCCAGC NO:
2817
PLAUR NM_002659.1 CCCATGGATGCTCCTCTGAAGAGACTTTCCTCATTGACTGCCGAGGCCCCATGAATCAATGT SEQ ID
CTGGTAGCCACCGG NO:
2818
PLK NM_005030.2 AATGAATACAGTATTCCCAAGCACATCAACCCCGTGGCCGCCTCCCTCATCCAGAAGATGCT SEQ ID
TCAGACA NO:
2819
PLK3 NM_004073.2 TGAAGGAGACGTACCGCTGCATCAAGCAGGTTCACTACACGCTGCCTGCCAGCCTCTCACTG SEQ ID
CCTG NO:
2820
PLOD2 NM_000935.2 CAGGGAGGTGGTTGCAAATTTCTAAGGTACAATTGCTCTATTGAGTCACCACGAAAAGGCTG SEQ ID
GAGCTTCATGCATCCTGGGAGA NO:
2821
PMS1 NM_000534.2 CTTACGGTTTTCGTGGAGAAGCCTTGGGGTCAATTTGTTGTATAGCTGAGGTTTTAATTACAA SEQ ID
CAAGAACGGCTGCT NO:
2822
PMS2 NM_000535.2 GATGTGGACTGCCATTCAAACCAGGAAGATACCGGATGTAAATTTCGAGTTTTGCCTCAGCC SEQ ID
AACTAATCTCGCA NO:
2823
PPARG NM_005037.3 TGACTTTATGGAGCCCAAGTTTGAGTTTGCTGTGAAGTTCAATGCACTGGAATTAGATGACA SEQ ID
GCGACTTGGC NO:
2824
PPID NM_005038.1 TCCTCATTTGGATGGGAAACATGTGGTGTTTGGCCAAGTAATTAAAGGAATAGGAGTGGCA SEQ ID
AGGATATTGG NO:
2825
PPM1D NM_003620.1 GCCATCCGCAAAGGCTTTCTCGCTTGTCACCTTGCCATGTGGAAGAAACTGGCGGAATGGCC SEQ ID
NO:
2826
PPP2R4 NM_178001.1 GGCTCAGAGCATAAGGCTTCAGGGCCCAAGTTGGGAGAAGTGACCAAAGTGTAGCCAGTTT SEQ ID
TCTGAGTTCCCGT NO:
2827
PR NM_000926.2 GCATCAGGCTGTCATTATGGTGTCCTTACCTGTGGGAGCTGTAAGGTCTTCTTTAAGAGGGC SEQ ID
AATGGAAGGGCAGCACAACTACT NO:
2828
PRDX2 NM_005809.4 GGTGTCCTTCGCCAGATCACTGTTAATGATTTGCCTGTGGGACGCTCCGTGGATGAGGCTCT SEQ ID
GCGGCTG NO:
2829
PRDX3 NM_006793.2 TGACCCCAATGGAGTCATCAAGCATTTGAGCGTCAACGATCTCCCAGTGGGCCGAAGCGTG SEQ ID
GAAGAAACCCTCCGCTTGG NO:
2830
PRDX4 NM_006406.1 TTACCCATTTGGCCTGGATTAATACCCCTCGAAGACAAGGAGGACTTGGGCCAATAAGGATT SEQ ID
CCACTTCTTTCAG NO:
2831
PRDX6 NM_004905.2 CTGTGAGCCAGAGGATGTCAGCTGCCAATTGTGTTTTCCTGCAGCAATTCCATAAACACATC SEQ ID
CTGGTGTCATCACA NO:
2832
PRKCA NM_002737.1 CAAGCAATGCGTCATCAATGTCCCCAGCCTCTGCGGAATGGATCACACTGAGAAGAGGGGG SEQ ID
CGGATTTAC NO:
2833
PRKCB1 NM_002738.5 GACCCAGCTCCACTCCTGCTTCCAGACCATGGACCGCCTGTACTTTGTGATGGAGTACGTGA SEQ ID
ATGGG NO:
2834
PRKCD NM_006254.1 CTGACACTTGCCGCAGAGAATCCCTTTCTCACCCACCTCATCTGCACCTTCCAGACCAAGGA SEQ ID
CCACCT NO:
2835
PRKR NM_002759.1 GCGATACATGAGCCCAGAACAGATTTCTTCGCAAGACTATGGAAAGGAAGTGGACCTCTAC SEQ ID
GCTTTGGGGCTAATTCTTGCTGA NO:
2836
pS2 NM_003225.1 GCCCTCCCAGTGTGCAAATAAGGGCTGCTGTTTCGACGACACCGTTCGTGGGGTCCCCTGGT SEQ ID
GCTTCTATCCTAATACCATCGACG NO:
2837
PTCH NM_000264.2 CCACGACAAAGCCGACTACATGCCTGAAACAAGGCTGAGAATCCCGGCAGCAGAGCCCATC SEQ ID
GAGTA NO:
2838
PTEN NM_000314.1 TGGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCACTGTAAAGCTGGAAAGGGACGAA SEQ ID
CTGGTGTAATGATATGTGCA NO:
2839
PTGER3 NM_000957.2 TAACTGGGGCAACCTTTTCTTCGCCTCTGCCTTTGCCTTCCTGGGGCTCTTGGCGCTGACAGT SEQ ID
CACCTTTTCCTGCAA NO:
2840
PTHLH NM_002820.1 AGTGACTGGGAGTGGGCTAGAAGGGGACCACCTGTCTGACACCTCCACAACGTCGCTGGAG SEQ ID
CTCGATTCACGGTAACAGGCTT NO:
2841
PTHR1 NM_000316.1 CGAGGTACAAGCTGAGATCAAGAAATCTTGGAGCCGCTGGACACTGGCACTGGACTTCAAG SEQ ID
CGAAAGGCACGC NO:
2842
PTK2 NM_005607.3 GACCGGTCGAATGATAAGGTGTACGAGAATGTGACGGGCCTGGTGAAAGCTGTCATCGAGA SEQ ID
TGTCCAG NO:
2843
PTK2B NM_004103.3 CAAGCCCAGCCGACCTAAGTACAGACCCCCTCCGCAAACCAACCTCCTGGCTCCAAAGCTG SEQ ID
CAGTTCCAGGTTC NO:
2844
PTP4A3 NM_007079.2 AATATTTGTGCGGGGTATGGGGGTGGGTTTTTAAATCTCGTTTCTCTTGGACAAGCACAGGG SEQ ID
ATCTCGTT NO:
2845
PTP4A3 v2 NM_032611.1 CCTGTTCTCGGCACCTTAAATTATTAGACCCCGGGGCAGTCAGGTGCTCCGGACACCCGAAG SEQ ID
GCAATA NO:
2846
PTPD1 NM_007039.2 CGCTTGCCTAACTCATACTTTCCCGTTGACACTTGATCCACGCAGCGTGGCACTGGGACGTA SEQ ID
AGTGGCGCAGTCTGAATGG NO:
2847
PTPN1 NM_002827.2 AATGAGGAAGTTTCGGATGGGGCTGATCCAGACAGCCGACCAGCTGCGCTTCTCCTACCTGG SEQ ID
CTGTGATCGAAG NO:
2848
PTPRF NM_002840.2 TGTTTTAGCTGAGGGACGTGGTGCCGACGTCCCCAAACCTAGCTAGGCTAAGTCAAGATCAA SEQ ID
CATTCCAGGGTTGGTA NO:
2849
PTPRJ NM_002843.2 AACTTCCGGTACCTCGTTCGTGACTACATGAAGCAGAGTCCTCCCGAATCGCCGATTCTGGT SEQ ID
GCATTGCAGTGCT NO:
2850
PTPRO NM_030667.1 CATGGCCTGATCATGGTGTGCCCACAGCAAATGCTGCAGAAAGTATCCTGCAGTTTGTACAC SEQ ID
ATGG NO:
2851
PTTG1 NM_004219.2 GGCTACTCTGATCTATGTTGATAAGGAAAATGGAGAACCAGGCACCCGTGTGGTTGCTAAG SEQ ID
GATGGGCTGAAGC NO:
2852
RAB32 NM_006834.2 CCTGCAGCTGTGGGACATCGCGGGGCAGGAGCGATTTGGCAACATGACCCGAGTATACTAC SEQ ID
AAGGAAGCTGTTGGTGCT NO:
2853
RAB6C NM_032144.1 GCGACAGCTCCTCTAGTTCCACCATGTCCGCGGGCGGAGACTTCGGGAATCCGCTGAGGAA SEQ ID
ATTCAAGCTGGTGTTCC NO:
2854
RAC1 NM_006908.3 TGTTGTAAATGTCTCAGCCCCTCGTTCTTGGTCCTGTCCCTTGGAACCTTTGTACGCTTTGCTC SEQ ID
AA NO:
2855
RAD51C NM_058216.1 GAACTTCTTGAGCAGGAGCATACCCAGGGCTTCATAATCACCTTCTGTTCAGCACTAGATGA SEQ ID
TATTCTTGGGGGTGGA NO:
2856
RAD54L NM_003579.2 AGCTAGCCTCAGTGACACACATGACAGGTTGCACTGCCGACGTTGTGTCAACAGCCGTCAGA SEQ ID
TCCGG NO:
2857
RAF1 NM_002880.1 CGTCGTATGCGAGAGTCTGTTTCCAGGATGCCTGTTAGTTCTCAGCACAGATATTCTACACCT SEQ ID
CACGCCTTCA NO:
2858
RALBP1 NM_006788.2 GGTGTCAGATATAAATGTGCAAATGCCTTCTTGCTGTCCTGTCGGTCTCAGTACGTTCACTTT SEQ ID
ATAGCTGCTGGCAATATCGAA NO:
2859
RANBP2 NM_006267.3 TCCTTCAGCTTTCACACTGGGCTCAGAAATGAAGTTGCATGACTCTTCTGGAAGTCAGGTGG SEQ ID
GAACAGGATTT NO:
2860
ranBP7 NM_006391.1 AACATGATTATCCAAGCCGCTGGACTGCCATTGTGGACAAAATTGGCTTTTATCTTCAGTCC SEQ ID
GATAACAGTGCTTGTTGGC NO:
2861
RANBP9 NM_005493.2 CAAGTCAGTTGAGACGCCAGTTGTGTGGAGGAAGTCAGGCCGCCATAGAAAGAATGATCCA SEQ ID
CTTTGGACGAGAGCTGCA NO:
2862
RAP1GDS1 NM_021159.3 TGTGGATGCTGGATTGATTTCACCACTGGTGCAGCTGCTAAATAGCAAAGACCAGGAAGTGC SEQ ID
TGCTT NO:
2863
RARA NM_000964.1 AGTCTGTGAGAAACGACCGAAACAAGAAGAAGAAGGAGGTGCCCAAGCCCGAGTGCTCTG SEQ ID
AGAGCTACACGCTGACGCCG NO:
2864
RARB NM_016152.2 TGCCTGGACATCCTGATTCTTAGAATTTGCACCAGGTATACCCCAGAACAAGACACCATGAC SEQ ID
TTTCTCAGACGGCCTT NO:
2865
RASSF1 NM_007182.3 AGTGGGAGACACCTGACCTTTCTCAAGCTGAGATTGAGCAGAAGATCAAGGAGTACAATGC SEQ ID
CCAGATCA NO:
2866
RBM5 NM_005778.1 CGAGAGGGAGAGCAAGACCATCATGCTGCGCGGCCTTCCCATCACCATCACAGAGAGCGAT SEQ ID
ATTCGAGA NO:
2867
RBX1 NM_014248.2 GGAACCACATTATGGATCTTTGCATAGAATGTCAAGCTAACCAGGCGTCCGCTACTTCAGAA SEQ ID
GAGTGTACTGTCGCATG NO:
2868
RCC1 NM_001269.2 GGGCTGGGTGAGAATGTGATGGAGAGGAAGAAGCCGGCCCTGGTATCCATTCCGGAGGATG SEQ ID
TTGTG NO:
2869
REG4 NM_032044.2 TGCTAACTCCTGCACAGCCCCGTCCTCTTCCTTTCTGCTAGCCTGGCTAAATCTGCTCATTAT SEQ ID
TTCAGAGGGGAAACCTAGCA NO:
2870
RFC NM_003056.1 TCAAGACCATCATCACTTTCATTGTCTCGGACGTGCGGGGCCTGGGCCTCCCGGTCCGCAAG SEQ ID
CAGTTCCAGTTATACTCCGTGTACTTCCTGATCC NO:
2871
RhoB NM_004040.2 AAGCATGAACAGGACTTGACCATCTTTCCAACCCCTGGGGAAGACATTTGCAACTGACTTGG SEQ ID
GGAGG NO:
2872
rhoC NM_175744.1 CCCGTTCGGTCTGAGGAAGGCCGGGACATGGCGAACCGGATCAGTGCCTTTGGCTACCTTGA SEQ ID
GTGCTC NO:
2873
RIZ1 NM_012231.1 CCAGACGAGCGATTAGAAGCGGCAGCTTGTGAGGTGAATGATTTGGGGGAAGAGGAGGAG SEQ ID
GAGGAAGAGGAGGA NO:
2874
RNF11 NM_014372.3 ACCCTGGAAGAGATGGATCAGAAAAAAAGATCCGGGAGTGTGTGATCTGTATGATGGACTT SEQ ID
TGTTTATGGGGACCCAAT NO:
2875
ROCK1 NM_005406.1 TGTGCACATAGGAATGAGCTTCAGATGCAGTTGGCCAGCAAAGAGAGTGATATTGAGCAAT SEQ ID
TGCGTGCTAAAC NO:
2876
ROCK2 NM_004850.3 GATCCGAGACCCTCGCTCCCCCATCAACGTGGAGAGCTTGCTGGATGGCTTAAATTCCTTGG SEQ ID
TCCT NO:
2877
RPLPO NM_001002.2 CCATTCTATCATCAACGGGTACAAACGAGTCCTGGCCTTGTCTGTGGAGACGGATTACACCT SEQ ID
TCCCACTTGCTGA NO:
2878
RPS13 NM_001017.2 CAGTCGGCTTTACCCTATCGACGCAGCGTCCCCACTTGGTTGAAGTTGACATCTGACGACGT SEQ ID
GAAGGAGCAGA NO:
2879
RRM1 NM_001033.1 GGGCTACTGGCAGCTACATTGCTGGGACTAATGGCAATTCCAATGGCCTTGTACCGATGCTG SEQ ID
AGAG NO:
2880
RRM2 NM_001034.1 CAGCGGGATTAAACAGTCCTTTAACCAGCACAGCCAGTTAAAAGATGCAGCCTCACTGCTTC SEQ ID
AACGCAGAT NO:
2881
RTN4 NM_007008.1 GACTGGAGTGGTGTTTGGTGCCAGCCTATTCCTGCTGCTTTCATTGACAGTATTCAGCATTGT SEQ ID
GAGCGTAACAG NO:
2882
RUNX1 NM_001754.2 AACAGAGACATTGCCAACCATATTGGATCTGCTTGCTGTCCAAACCAGCAAACTTCCTGGGC SEQ ID
AAATCAC NO:
2883
RXRA NM_002957.3 GCTCTGTTGTGTCCTGTTGCCGGCTCTGGCCTTCCTGTGACTGACTGTGAAGTGGCTTCTCCG SEQ ID
TAC NO:
2884
S100A1 NM_006271.1 TGGACAAGGTGATGAAGGAGCTAGACGAGAATGGAGACGGGGAGGTGGACTTCCAGGAGT SEQ ID
ATGTGGTGCT NO:
2885
S100A2 NM_005978.2 TGGCTGTGCTGGTCACTACCTTCCACAAGTACTCCTGCCAAGAGGGCGACAAGTTCAAGCTG SEQ ID
AGTAAGGGGGA NO:
2886
S100A4 NM_002961.2 GACTGCTGTCATGGCGTGCCCTCTGGAGAAGGCCCTGGATGTGATGGTGTCCACCTTCCACA SEQ ID
AGTACTCG NO:
2887
S100A8 NM_002964.3 ACTCCCTGATAAAGGGGAATTTCCATGCCGTCTACAGGGATGACCTGAAGAAATTGCTAGA SEQ ID
GACCGAGTGTCCTCA NO:
2888
S100A9 NM_002965.2 CTTTGGGACAGAGTGCAAGACGATGACTTGCAAAATGTCGCAGCTGGAACGCAACATAGAG SEQ ID
ACCA NO:
2889
S100P NM_005980.2 AGACAAGGATGCCGTGGATAAATTGCTCAAGGACCTGGACGCCAATGGAGATGCCCAGGTG SEQ ID
GACTTC NO:
2890
SAT NM_002970.1 CCTTTTACCACTGCCTGGTTGCAGAAGTGCCGAAAGAGCACTGGACTCCGGAAGGACACAG SEQ ID
CATTGT NO:
2891
SBA2 NM_018639.3 GGACTCAACGATGGGCAGATCAAGATCTGGGAGGTGCAGACAGGGCTCCTGCTTTTGAATC SEQ ID
TTTCCG NO:
2892
SDC1 NM_002997.1 GAAATTGACGAGGGGTGTCTTGGGCAGAGCTGGCTCTGAGCGCCTCCATCCAAGGCCAGGT SEQ ID
TCTCCGTTAGCTCCT NO:
2893
SEMA3B NM_004636.1 GCTCCAGGATGTGTTTCTGTTGTCCTCGCGGGACCACCGGACCCCGCTGCTCTATGCCGTCTT SEQ ID
CTCCACGT NO:
2894
SEMA3F NM_004186.1 CGCGAGCCCCTCATTATACACTGGGCAGCCTCCCCACAGCGCATCGAGGAATGCGTGCTCTC SEQ ID
AGGCAAGGATGTCAACGGCGAGTG NO:
2895
SEMA4B NM_020210.1 TTCCAGCCCAACACAGTGAACACTTTGGCCTGCCCGCTCCTCTCCAACCTGGCGACCCGACTC SEQ ID
NO:
2896
SFRP2 NM_003013.2 CAAGCTGAACGGTGTGTCCGAAAGGGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGC SEQ ID
TTGCA NO:
2897
SFRP4 NM_003014.2 TACAGGATGAGGCTGGGCATTGCCTGGGACAGCCTATGTAAGGCCATGTGCCCCTTGCCCTA SEQ ID
ACAAC NO:
2898
SGCB NM_000232.1 CAGTGGAGACCAGTTGGGTAGTGGTGACTGGGTACGCTACAAGCTCTGCATGTGTGCTGATG SEQ ID
GGACGCTCTTCAAGG NO:
2899
SHC1 NM_003029.3 CCAACACCTTCTTGGCTTCTGGGACCTGTGTTCTTGCTGAGCACCCTCTCCGGTTTGGGTTGG SEQ ID
GATAACAG NO:
2900
SHH NM_000193.2 GTCCAAGGCACATATCCACTGCTCGGTGAAAGCAGAGAACTCGGTGGCGGCCAAATCGGGA SEQ ID
GGCTGCTTC NO:
2901
SI NM_001041.1 AACGGACTCCCTCAATTTGTGCAAGATTTGCATGACCATGGACAGAAATATGTCATCATCTT SEQ ID
GGACCCTGCAATTTC NO:
2902
Siah-1 NM_003031.2 TTGGCATTGGAACTACATTCAATCCGCGGTATCCTCGGATTAGTTCTAGGACCCCCTTCTCCA SEQ ID
TACC NO:
2903
SIAT4A NM_003033.2 AACCACAGTTGGAGGAGGACGGCAGAGACAGTTTCCCTCCCCGCTATACCAACACCCTTCCT SEQ ID
TCG NO:
2904
SIAT7B NM_006456.1 TCCAGCCCAAATCCTCCTGGTGGCACATCCTACCCCAGATGCTAAAGTGATTCAAGGACTCC SEQ ID
AGGACACC NO:
2905
SIM2 NM_005069.2 GATGGTAGGAAGGGATGTGCCCGCCTCTCCACGCACTCAGCTATACCTCATTCACAGCTCCT SEQ ID
TGTG NO:
2906
SIN3A NM_015477.1 CCAGAGTCATGCTCATCCAGCCCCACCAGTTGCACCAGTGCAGGGACAGCAGCAATTTCAG SEQ ID
AGGCTGAAGGTGG NO:
2907
SIR2 NM_012238.3 AGCTGGGGTGTCTGTTTCATGTGGAATACCTGACTTCAGGTCAAGGGATGGTATTTATGCTC SEQ ID
GCCTTGCTGT NO:
2908
SKP1A NM_006930.2 CCATTGCCTTTGCTTTGTTCATAATTTCAGCAGGGCAGAATAAAAACCATGGGAGGCAAAGA SEQ ID
AAGGAAATCCGGAA NO:
2909
SKP2 NM_005983.2 AGTTGCAGAATCTAAGCCTGGAAGGCCTGCGGCTTTCGGATCCCATTGTCAATACTCTCGCA SEQ ID
AAAAACTCA NO:
2910
SLC25A3 NM_213611.1 TCTGCCAGTGCTGAATTCTTTGCTGACATTGCCCTGGCTCCTATGGAAGCTGCTAAGGTTCGAA SEQ ID
NO:
2911
SLC2A1 NM_006516.1 GCCTGAGTCTCCTGTGCCCACATCCCAGGCTTCACCCTGAATGGTTCCATGCCTGAGGGTGG SEQ ID
AGACT NO:
2912
SLC31A1 NM_001859.2 CCGTTCGAAGAGTCGTGAGGGGGTGACGGGTTAAGATTCGGAGAGAGAGGTGCTAGTGGCT SEQ ID
GGACT NO:
2913
SLC5A8 NM_145913.2 CCTGCTTTCAACCACATTGAATTGAACTCAGATCAGAGTGGCAAGAGCAATGGGACTCGTTT SEQ ID
GTGAAGCTGCTCT NO:
2914
SLC7A5 NM_003486.4 GCGCAGAGGCCAGTTAAAGTAGATCACCTCCTCGAACCCACTCCGGTTCCCCGCAACCCACA SEQ ID
GCTCAGCT NO:
2915
SLPI NM_003064.2 ATGGCCAATGTTTGATGCTTAACCCCCCCAATTTCTGTGAGATGGATGGCCAGTGCAAGCGT SEQ ID
GACTTGAAGTGT NO:
2916
SMARCA3 NM_003071.2 AGGGACTGTCCTGGCACATTATGCAGATGTCCTGGGTCTTTTGCTTAGACTGCGGCAAATTT SEQ ID
GTTG NO:
2917
SNAI1 NM_005985.2 CCCAATCGGAAGCCTAACTACAGCGAGCTGCAGGACTCTAATCCAGAGTTTACCTTCCAGCA SEQ ID
GCCCTAC NO:
2918
SNAI2 NM_003068.3 GGCTGGCCAAACATAAGCAGCTGCACTGCGATGCCCAGTCTAGAAAATCTTTCAGCTGTAAA SEQ ID
TACTGTGACAAGGA NO:
2919
SNRPF NM_003095.1 GGCTGGTCGGCAGAGAGTAGCCTGCAACATTCGGCCGTGGTTTACATGAGTTTACCCCTCAA SEQ ID
TCCCAAACCTTTCCTCA NO:
2920
SOD1 NM_000454.3 TGAAGAGAGGCATGTTGGAGACTTGGGCAATGTGACTGCTGACAAAGATGGTGTGGCCGAT SEQ ID
GTGTCTATT NO:
2921
SOD2 NM_000636.1 GCTTGTCCAAATCAGGATCCACTGCAAGGAACAACAGGCCTTATTCCACTGCTGGGGATTGA SEQ ID
TGTGTGGGAGCACGCT NO:
2922
SOS1 NM_005633.2 TCTGCACCAAATTCTCCAAGAACACCGTTAACACCTCCGCCTGCTTCTGGTGCTTCCAGTACC SEQ ID
AC NO:
2923
SOX17 NM_022454.2 TCGTGTGCAAGCCTGAGATGGGCCTCCCCTACCAGGGGCATGACTCCGGTGTGAATCTCCCC SEQ ID
GACAG NO:
2924
SPARC NM_003118.1 TCTTCCCTGTACACTGGCAGTTCGGCCAGCTGGACCAGCACCCCATTGACGGGTACCTCTCC SEQ ID
CACACCGAGCT NO:
2925
SPINT2 NM_021102.1 AGGAATGCAGCGGATTCCTCTGTCCCAAGTGCTCCCAGAAGGCAGGATTCTGAAGACCACTC SEQ ID
CAGCGA NO:
2926
SPRY1 AK026960.1 CAGACCAGTCCCTGGTCATAGGTCTGAAAGGGCAATCCGGACCCAGCCCAAGCAACTGATT SEQ ID
GTGGATGACTTGAAGG NO:
2927
SPRY2 NM_005842.1 TGTGGCAAGTGCAAATGTAAGGAGTGCACCTACCCAAGGCCTCTGCCATCAGACTGGATCTG SEQ ID
CGAC NO:
2928
SR-A1 NM_021228.1 AGATGGAAGAAGCCAACCTGGCGAGCCGAGCGAAGGCCCAGGAGCTGATCCAGGCCACCA SEQ ID
ACCAGATCCTCAGCCACAG NO:
2929
ST14 NM_021978.2 TGACTGCACATGGAACATTGAGGTGCCCAACAACCAGCATGTGAAGGTGCGCTTCAAATTCTT SEQ ID
NO:
2930
STAT1 NM_007315.1 GGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTTCTGTCACCAAAAGAGGTCTCAAT SEQ ID
GTGGACCAGCTGAACATGT NO:
2931
STAT3 NM_003150.1 TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAGAGATTGACCAGCAGTATAGCCGCTT SEQ ID
CCTGCAAG NO:
2932
STAT5A NM_003152.1 GAGGCGCTCAACATGAAATTCAAGGCCGAAGTGCAGAGCAACCGGGGCCTGACCAAGGAG SEQ ID
AACCTCGTGTTCCTGGC NO:
2933
STAT5B NM_012448.1 CCAGTGGTGGTGATCGTTCATGGCAGCCAGGACAACAATGCGACGGCCACTGTTCTCTGGGA SEQ ID
CAATGCTTTTGC NO:
2934
STC1 NM_003155.1 CTCCGAGGTGAGGAGGACTCTCCCTCCCACATCAAACGCACATCCCATGAGAGTGCATAACC SEQ ID
AGGGAGAGGT NO:
2935
STK11 NM_000455.3 GGACTCGGAGACGCTGTGCAGGAGGGCCGTCAAGATCCTCAAGAAGAAGAAGTTGCGAAG SEQ ID
GATCCC NO:
2936
STK15 NM_003600.1 CATCTTCCAGGAGGACCACTCTCTGTGGCACCCTGGACTACCTGCCCCCTGAAATGATTGAA SEQ ID
GGTCGGA NO:
2937
STMN1 NM_005563.2 AATACCCAACGCACAAATGACCGCACGTTCTCTGCCCCGTTTCTTGCCCCAGTGTGGTTTGC SEQ ID
ATTGTCTCC NO:
2938
STMY3 NM_005940.2 CCTGGAGGCTGCAACATACCTCAATCCTGTCCCAGGCCGGATCCTCCTGAAGCCCTTTTCGC SEQ ID
AGCACTGCTATCCTCCAAAGCCATTGTA NO:
2939
STS NM_000351.2 GAAGATCCCTTTCCTCCTACTGTTCTTTCTGTGGGAAGCCGAGAGCCACGAAGCATCAAGGC SEQ ID
CGAACATCATCC NO:
2940
SURV NM_001168.1 TGTTTTGATTCCCGGGCTTACCAGGTGAGAAGTGAGGGAGGAAGAAGGCAGTGTCCCTTTTG SEQ ID
CTAGAGCTGACAGCTTTG NO:
2941
TAGLN NM_003186.2 GATGGAGCAGGTGGCTCAGTTCCTGAAGGCGGCTGAGGACTCTGGGGTCATCAAGACTGAC SEQ ID
ATGTTCCAGACT NO:
2942
TBP NM_003194.1 GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTAATCATGAGGATAAGAGAGC SEQ ID
CACG NO:
2943
TCF-1 NM_000545.3 GAGGTCCTGAGCACTGCCAGGAGGGACAAAGGAGCCTGTGAACCCAGGACAAGCATGGTCC SEQ ID
CACATC NO:
2944
TCF-7 NM_003202.2 GCAGCTGCAGTCAACAGTTCAAAGAAGTCATGGCCCAAATCCAGTGTGCACCCCTCCCCATT SEQ ID
CACAG NO:
2945
TCF7L1 NM_031283.1 CCGGGACACTTTCCAGAAGCCGCGGGACTATTTCGCCGAAGTGAGAAGGCCTCAGGACAGC SEQ ID
GCGTTCT NO:
2946
TCF7L2 NM_030756.1 CCAATCACGACAGGAGGATTCAGACACCCCTACCCCACAGCTCTGACCGTCAATGCTTCCGT SEQ ID
GTCCA NO:
2947
TCFL4 NM_170607.2 CTGACTGCTCTGCTTAAAGGTGAAAGTAGCAGGAACAACAACAAAAGCCAACCAAAAACAA SEQ ID
GGTAGCCAGTGCAAGACAT NO:
2948
TEK NM_000459.1 ACTTCGGTGCTACTTAACAACTTACATCCCAGGGAGCAGTACGTGGTCCGAGCTAGAGTCAA SEQ ID
CACCAAGGCCCAGG NO:
2949
TERC U86046.1 AAGAGGAACGGAGCGAGTCCCCGCGCGCGGCGCGATTCCCTGAGCTGTGGGACGTGCACCC SEQ ID
AGGACTCGGCTCACACAT NO:
2950
TERT NM_003219.1 GACATGGAGAACAAGCTGTTTGCGGGGATTCGGCGGGACGGGCTGCTCCTGCGTTTGGTGG SEQ ID
ATGATTTCTTGTTGGTGACACCTC NO:
2951
TFF3 NM_003226.1 AGGCACTGTTCATCTCAGTTTTTCTGTCCCTTTGCTCCCGGCAAGCTTTCTGCTGAAAGTTCA SEQ ID
TATCTGGAGCCTGATG NO:
2952
TGFA NM_003236.1 GGTGTGCCACAGACCTTCCTACTTGGCCTGTAATCACCTGTGCAGCCTTTTGTGGGCCTTCAA SEQ ID
AACTCTGTCAAGAACTCCGT NO:
2953
TGFB2 NM_003238.1 ACCAGTCCCCCAGAAGACTATCCTGAGCCCGAGGAAGTCCCCCCGGAGGTGATTTCCATCTA SEQ ID
CAACAGCACCAGG NO:
2954
TGFB3 NM_003239.1 GGATCGAGCTCTTCCAGATCCTTCGGCCAGATGAGCACATTGCCAAACAGCGCTATATCGGT SEQ ID
GGC NO:
2955
TGFBI NM_000358.1 GCTACGAGTGCTGTCCTGGATATGAAAAGGTCCCTGGGGAGAAGGGCTGTCCAGCAGCCCT SEQ ID
ACCACT NO:
2956
TGFBR1 NM_004612.1 GTCATCACCTGGCCTTGGTCCTGTGGAACTGGCAGCTGTCATTGCTGGACCAGTGTGCTTCGT SEQ ID
CTGC NO:
2957
TGFBR2 NM_003242.2 AACACCAATGGGTTCCATCTTTCTGGGCTCCTGATTGCTCAAGCACAGTTTGGCCTGATGAA SEQ ID
GAGG NO:
2958
THBS1 NM_003246.1 CATCCGCAAAGTGACTGAAGAGAACAAAGAGTTGGCCAATGAGCTGAGGCGGCCTCCCCTA SEQ ID
TGCTATCACAACGGAGTTCAGTAC NO:
2959
THY1 NM_006288.2 GGACAAGACCCTCTCAGGCTGTCCCAAGCTCCCAAGAGCTTCCAGAGCTCTGACCCACAGCC SEQ ID
TCCAA NO:
2960
TIMP1 NM_003254.1 TCCCTGCGGTCCCAGATAGCCTGAATCCTGCCCGGAGTGGAACTGAAGCCTGCACAGTGTCC SEQ ID
ACCCTGTTCCCAC NO:
2961
TIMP2 NM_003255.2 TCACCCTCTGTGACTTCATCGTGCCCTGGGACACCCTGAGCACCACCCAGAAGAAGAGCCTG SEQ ID
AACCACA NO:
2962
TIMP3 NM_000362.2 CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCGACATGCTCTCCAATTT SEQ ID
CGGT NO:
2963
TJP1 NM_003257.1 ACTTTGCTGGGACAAAGGTCAACTGAAGAAGTGGGCAGGCCCGAGGCAGGAGAGATGCTGA SEQ ID
GGAGTCCATGTG NO:
2964
TK1 NM_003258.1 GCCGGGAAGACCGTAATTGTGGCTGCACTGGATGGGACCTTCCAGAGGAAGCCATTTGGGG SEQ ID
CCATCCTGAACCTGGTGCCGCTG NO:
2965
TLN1 NM_006289.2 AAGCAGAAGGGAGAGCGTAAGATCTTCCAGGCACACAAGAATTGTGGGCAGATGAGTGAG SEQ ID
ATTGAGGCCAAGG NO:
2966
TMEPAI NM_020182.3 CAGAAGGATGCCTGTGGCCCTCGGAGAGCACAGTGTCAGGCAACGGAATCCCAGAGCCGCA SEQ ID
GGTCTAC NO:
2967
TMSB10 NM_021103.2 GAAATCGCCAGCTTCGATAAGGCCAAGCTGAAGAAAACGGAGACGCAGGAAAAGAACACC SEQ ID
CTGCCGAC NO:
2968
TMSB4X NM_021109.2 CACATCAAAGAACTACTGACAACGAAGGCCGCGCCTGCCTTTCCCATCTGTCTATCTATCTG SEQ ID
GCTGGCAGG NO:
2969
TNC NM_002160.1 AGCTCGGAACCTCACCGTGCCTGGCAGCCTTCGGGCTGTGGACATACCGGGCCTCAAGGCTG SEQ ID
CTAC NO:
2970
TNF NM_000594.1 GGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCGGCCCGACTATCTCGACTTTGCCGAG SEQ ID
TCTGGGCA NO:
2971
TNFRSF5 NM_001250.3 TCTCACCTCGCTATGGTTCGTCTGCCTCTGCAGTGCGTCCTCTGGGGCTGCTTGCTGACCGCT SEQ ID
GTCCATC NO:
2972
TNFRSF6B NM_003823.2 CCTCAGCACCAGGGTACCAGGAGCTGAGGAGTGTGAGCGTGCCGTCATCGACTTTGTGGCTT SEQ ID
TCCAGGACA NO:
2973
TNFSF4 NM_003326.2 CTTCATCTTCCCTCTACCCAGATTGTGAAGATGGAAAGGGTCCAACCCCTGGAAGAGAATGT SEQ ID
GGGAAATGCAGC NO:
2974
TOP2A NM_001067.1 AATCCAAGGGGGAGAGTGATGACTTCCATATGGACTTTGACTCAGCTGTGGCTCCTCGGGCA SEQ ID
AAATCTGTAC NO:
2975
TOP2B NM_001068.1 TGTGGACATCTTCCCCTCAGACTTCCCTACTGAGCCACCTTCTCTGCCACGAACCGGTCGGGC SEQ ID
TAG NO:
2976
TP NM_001953.2 CTATATGCAGCCAGAGATGTGACAGCCACCGTGGACAGCCTGCCACTCATCACAGCCTCCAT SEQ ID
TCTCAGTAAGAAACTCGTGG NO:
2977
TP53BP1 NM_005657.1 TGCTGTTGCTGAGTCTGTTGCCAGTCCCCAGAAGACCATGTCTGTGTTGAGCTGTATCTGTGA SEQ ID
AGCCAGGCAAG NO:
2978
TP53BP2 NM_005426.1 GGGCCAAATATTCAGAAGCTTTTATATCAGAGGACCACCATAGCGGCCATGGAGACCATCTC SEQ ID
TGTCCCATCATACCCATCC NO:
2979
TP53I3 NM_004881.2 GCGGACTTAATGCAGAGACAAGGCCAGTATGACCCACCTCCAGGAGCCAGCAACATTTTGG SEQ ID
GACTTGA NO:
2980
TRAG3 NM_004909.1 GACGCTGGTCTGGTGAAGATGTCCAGGAAACCACGAGCCTCCAGCCCATTGTCCAACAACC SEQ ID
ACCCA NO:
2981
TRAIL NM_003810.1 CTTCACAGTGCTCCTGCAGTCTCTCTGTGTGGCTGTAACTTACGTGTACTTTACCAACGAGCT SEQ ID
GAAGCAGATG NO:
2982
TS NM_001071.1 GCCTCGGTGTGCCTTTCAACATCGCCAGCTACGCCCTGCTCACGTACATGATTGCGCACATC SEQ ID
ACG NO:
2983
TST NM_003312.4 GGAGCCGGATGCAGTAGGACTGGACTCGGGCCATATCCGTGGTGCCGTCAACATGCCTTTCA SEQ ID
TGGACTT NO:
2984
TUBA1 NM_006000.1 TGTCACCCCGACTCAACGTGAGACGCACCGCCCGGACTCACCATGCGTGAATGCATCTCAGT SEQ ID
CCACGT NO:
2985
TUBB NM_001069.1 CGAGGACGAGGCTTAAAAACTTCTCAGATCAATCGTGCATCCTTAGTGAACTTCTGTTGTCC SEQ ID
TCAAGCATGGT NO:
2986
TUFM NM_003321.3 GTATCACCATCAATGCGGCTCATGTGGAGTATAGCACTGCCGCCCGCCACTACGCCCACACA SEQ ID
GACTG NO:
2987
TULP3 NM_003324.2 TGTGTATAGTCCTGCCCCTCAAGGTGTCACAGTAAGATGTCGGATAATCCGGGATAAAAGGG SEQ ID
GAATGGATCGGG NO:
2988
tusc4 NM_006545.4 GGAGGAGCTAAATGCCTCAGGCCGGTGCACTCTGCCCATTGATGAGTCCAACACCATCCACT SEQ ID
TGAAGG NO:
2989
UBB NM_018955.1 GAGTCGACCCTGCACCTGGTCCTGCGTCTGAGAGGTGGTATGCAGATCTTCGTGAAGACCCT SEQ ID
GACCGGCAAGACCATCACCCTGGAAGTGGAGCCCAGTGACACCATCGAAAATGTGAAGGCC NO:
AAGATCCAGGATAAAGAAGGCATCCCTCCCGACCAGCAGAGGCTCATCTTTGCAGGCAAGC 2990
AGCTGGAAGATGGCCGCACTCTTTCTGACTACAACATCCAGAAGGAGTCGACCCTGCACCTG
GTCCTGCGTCTGAGAGGTGGTATGCAGATCTTCGTGAAGACCCTGACCGGCAAGACCATCAC
TCTGGAAGTGGAGCCCAGTGACACCATCGAAAATGTGAAGGCCAAGATCCAAGATAAAGAA
GGCATCCCTCCCGACCAGCAGAGGCTCATCTTTGCAGGCAAGCAGCTGGAAGATGGCCGCA
CTCTTTCTGACTACAACATCCAGAAGGAGTCGACCCTGCACCTGGTCCTGCGCCTGAGGGGT
GGCTGTTAATTCTTCAGTCATGGCATTCGC
UBC NM_021009.2 ACGCACCCTGTCTGACTACAACATCCAGAAAGAGTCCACCCTGCACCTGGTGCTCCGTCTTA SEQ ID
GAGGT NO:
2991
UBE2C NM_007019.2 TGTCTGGCGATAAAGGGATTTCTGCCTTCCCTGAATCAGACAACCTTTTCAAATGGGTAGGG SEQ ID
ACCAT NO:
2992
UBE2M NM_003969.1 CTCCATAATTTATGGCCTGCAGTATCTCTTCTTGGAGCCCAACCCCGAGGACCCACTGAACA SEQ ID
AGGAGGCCGCA NO:
2993
UBL1 NM_003352.3 GTGAAGCCACCGTCATCATGTCTGACCAGGAGGCAAAACCTTCAACTGAGGACTTGGGGGA SEQ ID
TAAGAAGGAAGG NO:
2994
UCP2 NM_003355.2 ACCATGCTCCAGAAGGAGGGGCCCCGAGCCTTCTACAAAGGGTTCATGCCCTCCTTTCTCCG SEQ ID
CTTGGGTT NO:
2995
UGT1A1 NM_000463.2 CCATGCAGCCTGGAATTTGAGGCTACCCAGTGCCCCAACCCATTCTCCTACGTGCCCAGGCC SEQ ID
TCTC NO:
2996
UMPS NM_000373.1 TGCGGAAATGAGCTCCACCGGCTCCCTGGCCACTGGGGACTACACTAGAGCAGCGGTTAGA SEQ ID
ATGGCTGAGG NO:
2997
UNC5A XM_030300.7 GACAGCTGATCCAGGAGCCACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCT SEQ ID
ATCCAT NO:
2998
UNC5B NM_170744.2 AGAACGGAGGCCGTGACTGCAGCGGGACGCTGCTCGACTCTAAGAACTGCACAGATGGGCT SEQ ID
GTGCATG NO:
2999
UNC5C NM_003728.2 CTGAACACAGTGGAGCTGGTTTGCAAACTCTGTGTGCGGCAGGTGGAAGGAGAAGGGCAGA SEQ ID
TCTTCCAG NO:
3000
upa NM_002658.1 GTGGATGTGCCCTGAAGGACAAGCCAGGCGTCTACACGAGAGTCTCACACTTCTTACCCTGG SEQ ID
ATCCGCAG NO:
3001
UPP1 NM_003364.2 ACGGGTCCTGCCTCAGTTGGCGGAATGGCGGCCACGGGAGCCAATGCAGAGAAAGCTGAAA SEQ ID
GTCACAATGATTGCCCCG NO:
3002
VCAM1 NM_001078.2 TGGCTTCAGGAGCTGAATACCCTCCCAGGCACACACAGGTGGGACACAAATAAGGGTTTTG SEQ ID
GAACCACTATTTTCTCATCACGACAGCA NO:
3003
VCL NM_003373.2 GATACCACAACTCCCATCAAGCTGTTGGCAGTGGCAGCCACGGCGCCTCCTGATGCGCCTAA SEQ ID
CAGGGA NO:
3004
VCP NM_007126.2 GGCTTTGGCAGCTTCAGATTCCCTTCAGGGAACCAGGGTGGAGCTGGCCCCAGTCAGGGCA SEQ ID
GTGGAG NO:
3005
VDAC1 NM_003374.1 GCTGCGACATGGATTTCGACATTGCTGGGCCTTCCATCCGGGGTGCTCTGGTGCTAGGTTAC SEQ ID
GAGGGCTGG NO:
3006
VDAC2 NM_003375.2 ACCCACGGACAGACTTGCGCGCGTCCAATGTGTATTCCTCCATCATATGCTGACCTTGGCAA SEQ ID
AGCT NO:
3007
VDR NM_000376.1 GCCCTGGATTTCAGAAAGAGCCAAGTCTGGATCTGGGACCCTTTCCTTCCTTCCCTGGCTTGT SEQ ID
AACT NO:
3008
VEGF NM_003376.3 CTGCTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGCTCTACCTCCACCATGCCAAGTGGTCC SEQ ID
CAGGCTGC NO:
3009
VEGF_altsplice1 AF486837.1 TGTGAATGCAGACCAAAGAAAGATAGAGCAAGACAAGAAAATCCCTGTGGGCCTTGCTCAG SEQ ID
AGCGGAGAAAGC NO:
3010
VEGF_altsplice2 AF214570.1 AGCTTCCTACAGCACAACAAATGTGAATGCAGACCAAAGAAAGATAGAGCAAGACAAGAA SEQ ID
AAATGTGACAAGCCGAG NO:
3011
VEGFB NM_003377.2 TGACGATGGCCTGGAGTGTGTGCCCACTGGGCAGCACCAAGTCCGGATGCAGATCCTCATG SEQ ID
ATCCGGTACC NO:
3012
VEGFC NM_005429.2 CCTCAGCAAGACGTTATTTGAAATTACAGTGCCTCTCTCTCAAGGCCCCAAACCAGTAACAA SEQ ID
TCAGTTTTGCCAATCACACTT NO:
3013
VIM NM_003380.1 TGCCCTTAAAGGAACCAATGAGTCCCTGGAACGCCAGATGCGTGAAATGGAAGAGAACTTT SEQ ID
GCCGTTGAAGC NO:
3014
WIF NM_007191.2 TACAAGCTGAGTGCCCAGGCGGGTGCCGAAATGGAGGCTTTTGTAATGAAAGACGCATCTG SEQ ID
CGAGTG NO:
3015
WISP1 NM_003882.2 AGAGGCATCCATGAACTTCACACTTGCGGGCTGCATCAGCACACGCTCCTATCAACCCAAGT SEQ ID
ACTGTGGAGTTTG NO:
3016
Wnt-3a NM_033131.2 ACAAAGCTACCAGGGAGTCGGCCTTTGTCCACGCCATTGCCTCAGCCGGTGTGGCCTTTGCA SEQ ID
GTGACACGCTCA NO:
3017
Wnt-5a NM_003392.2 GTATCAGGACCACATGCAGTACATCGGAGAAGGCGCGAAGACAGGCATCAAAGAATGCCA SEQ ID
GTATCAATTCCGACA NO:
3018
Wnt-5b NM_032642.2 TGTCTTCAGGGTCTTGTCCAGAATGTAGATGGGTTCCGTAAGAGGCCTGGTGCTCTCTTACTC SEQ ID
TTTCATCCACGTGCAC NO:
3019
WNT2 NM_003391.1 CGGTGGAATCTGGCTCTGGCTCCCTCTGCTCTTGACCTGGCTCACCCCCGAGGTCAACTCTTC SEQ ID
ATGG NO:
3020
WWOX NM_016373.1 ATCGCAGCTGGTGGGTGTACACACTGCTGTTTACCTTGGCGAGGCCTTTCACCAAGTCCATG SEQ ID
CAACAGGGAGCT NO:
3021
XPA NM_000380.2 GGGTAGAGGGAAAAGGGTTCAACAAAGGCTGAACTGGATTCTTAACCAAGAAACAAATAAT SEQ ID
AGCAATGGTGGTGCA NO:
3022
XPC NM_004628.2 GATACATCGTCTGCGAGGAATTCAAAGACGTGCTCCTGACTGCCTGGGAAAATGAGCAGGC SEQ ID
AGTCATTGAAAG NO:
3023
XRCC1 NM_006297.1 GGAGATGAAGCCCCCAAGCTTCCTCAGAAGCAACCCCAGACCAAAACCAAGCCCACTCAGG SEQ ID
CAGCTGGAC NO:
3024
YB-1 NM_004559.1 AGACTGTGGAGTTTGATGTTGTTGAAGGAGAAAAGGGTGCGGAGGCAGCAAATGTTACAGG SEQ ID
TCCTGGTGGTGTTCC NO:
3025
YWHAH NM_003405.2 CATGGCCTCCGCTATGAAGGCGGTGACAGAGCTGAATGAACCTCTCTCCAATGAAGATCGA SEQ ID
AATCTCC NO:
3026
zbtb7 NM_015898.2 CTGCGTTCACACCCCAGTGTCACAGGGCGAGCTGTTCTGGAGAGAAAACCATCTGTCGTGGC SEQ ID
TGAG NO:
3027
ZG16 NM_152338.1 TGCTGAGCCTCCTCTCCTTGGCAGGGGCACTGTGATGAGGAGTAAGAACTCCCTTATCACTA SEQ ID
ACCCCCATCC NO:
3028
TABLE 4
Most Highly Correlated Genes
Variable Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10
ADAMTS12 SPARC TIMP2 COL1A1 ANTXR1 BGN LOXL2 THY1 CDH11 IGFBP7 COL1A2
0.7317 0.7177 0.7077 0.7022 0.6962 0.6679 0.6665 0.647 0.6433 0.6393
ANTXR1 TIMP2 BGN COL1A1 THY1 FAP SFRP4 SPARC TGFB3 ADAMTS12 PDGFC
0.8358 0.8159 0.7796 0.7696 0.7261 0.7154 0.7138 0.7119 0.7022 0.6992
BGN COL1A1 SPARC TIMP2 FAP ANTXR1 TGFB3 SFRP2 INHBA WISP1 CTHRC1
0.8986 0.8711 0.8446 0.8177 0.8159 0.8147 0.811 0.7854 0.7682 0.7668
CALD1 IGFBP5 TAGLN CDH11 TIMP2 MYLK PDGFC DLC1 ANTXR1 IGFBP7 SPARC
0.7483 0.7452 0.7339 0.691 0.6846 0.6822 0.6707 0.6524 0.6494 0.649
CDH11 SPARC TIMP2 IGFBP7 CALD1 TAGLN IGFBP5 COL1A2 BGN MMP2 PDGFC
0.7831 0.7629 0.7587 0.7339 0.7338 0.7319 0.7272 0.7265 0.7019 0.6845
COL1A1 BGN SPARC TIMP2 FAP ANTXR1 LOXL2 COL1A2 CTHRC1 TGFB3 WISP1
0.8986 0.8713 0.8071 0.7833 0.7796 0.7724 0.7642 0.7496 0.7491 0.7442
COL1A2 SPARC MMP2 COL1A1 THBS1 BGN CDH11 LOXL2 ITGA5 CTHRC1 INHBA
0.8549 0.7886 0.7642 0.7409 0.7368 0.7272 0.7248 0.7243 0.7112 0.7005
CTGF CYR61 THBS1 INHBA BGN COL1A2 SPARC PAI1 VIM SFRP2 CXCL12
0.8028 0.7694 0.7078 0.6912 0.6893 0.6886 0.6763 0.6747 0.6688 0.6683
CTHRC1 FAP BGN COL1A1 INHBA COL1A2 TIMP3 SFRP2 SPARC TIMP2 LOXL2
0.7713 0.7668 0.7496 0.7348 0.7112 0.7078 0.699 0.6964 0.6853 0.67
CTSL TP SOD2 ITGA5 UPA TIMP1 THBS1 PAI1 COL1A2 DPYD CD68
0.6975 0.6913 0.6748 0.6558 0.6448 0.636 0.6296 0.6152 0.6151 0.6148
CXCL12 BGN CTGF SFRP2 TIMP2 TGFB3 VIM COL1A1 SPARC CYR61 MCP1
0.6838 0.6683 0.6649 0.6334 0.6254 0.6212 0.6206 0.6173 0.6149 0.6022
CYR61 CTGF DUSP1 THBS1 PAI1 COL1A2 INHBA CXCL12 CTHRC1 VIM GADD45B
0.8028 0.7338 0.6623 0.6477 0.6272 0.6257 0.6149 0.5918 0.576 0.573
DLC1 TIMP2 CALD1 IGFBP5 TGFB3 BGN ANTXR1 TAGLN THY1 HSPG2 TLN1
0.6783 0.6707 0.653 0.6465 0.6399 0.6378 0.6075 0.6065 0.6047 0.5982
DUSP1 CYR61 FOS CTGF PAI1 EGR1 NR4A1 GADD45B THBS1 CXCL12 EGR3
0.7338 0.7183 0.6632 0.6545 0.6357 0.5993 0.5877 0.5827 0.5262 0.5184
FAP BGN COL1A1 CTHRC1 TIMP2 INHBA ANTXR1 SFRP2 WISP1 TIMP3 TGFB3
0.8177 0.7833 0.7713 0.7364 0.7286 0.7261 0.7189 0.7147 0.7027 0.7001
HSPG2 TIMP2 THY1 IGFBP7 SPARC TAGLN ANTXR1 BGN IGFBP5 COL1A1 CDH11
0.7455 0.7425 0.7246 0.6959 0.6857 0.6678 0.6625 0.6259 0.608 0.6052
IGFBP5 TAGLN IGFBP7 CALD1 CDH11 TIMP2 SPARC MYLK DLC1 TIMP1 BGN
0.7829 0.764 0.7483 0.7319 0.6893 0.6781 0.6532 0.653 0.6403 0.6374
IGFBP7 TAGLN SPARC IGFBP5 CDH11 THY1 HSPG2 TIMP2 SFRP4 ANTXR1 PDGFC
0.8225 0.7715 0.764 0.7587 0.7428 0.7246 0.7139 0.6558 0.6541 0.6538
INHBA BGN SPARC CTHRC1 FAP COL1A1 CTGF COL1A2 CDH11 THBS1 LOXL2
0.7854 0.774 0.7348 0.7286 0.7202 0.7078 0.7005 0.6744 0.6685 0.6613
ITGA5 COL1A2 THBS1 MMP2 SPARC CTSL PAI1 TIMP1 UPA NRP2 SNAI2
0.7243 0.7058 0.6969 0.6772 0.6748 0.671 0.6374 0.6357 0.6301 0.623
LOXL2 COL1A1 SPARC BGN COL1A2 TIMP2 ANTXR1 CTHRC1 ADAMTS12 INHBA FAP
0.7724 0.7606 0.7415 0.7248 0.7174 0.6829 0.67 0.6679 0.6613 0.6439
LOX SPARC COL1A1 BGN COL1A2 INHBA LOXL2 UPA THY1 GJB2 SFRP2
0.7433 0.7065 0.695 0.62 0.604 0.5981 0.5865 0.5672 0.5664 0.5599
MMP2 COL1A2 SPARC THBS1 CDH11 ITGA5 TAGLN PDGFRA VIM CALD1 NRP2
0.7886 0.7229 0.7172 0.7019 0.6969 0.6663 0.6662 0.6556 0.6356 0.6188
MYLK TAGLN MYH11 CALD1 IGFBP5 IGFBP7 CDH11 TLN1 CRYAB NRP2 PDGFRA
0.7671 0.7329 0.6846 0.6532 0.6456 0.6347 0.6335 0.6075 0.6057 0.5934
NRP2 TAGLN SPARC TIMP2 BGN THBS1 CDH11 COL1A2 VIM PDGFC CALD1
0.6954 0.6845 0.668 0.6663 0.6638 0.6615 0.6601 0.6532 0.6436 0.6417
PAI1 THBS1 CTGF ITGA5 DUSP1 CYR61 CTSL INHBA SPARC TIMP1 COL1A2
0.6802 0.6763 0.671 0.6545 0.6477 0.6296 0.6138 0.6079 0.6019 0.59
PDGFC TIMP2 ANTXR1 SPARC CDH11 CALD1 BGN COL1A2 TAGLN IGFBP7 SFRP4
0.707 0.6992 0.6961 0.6845 0.6822 0.6788 0.6684 0.654 0.6538 0.6487
SFRP2 BGN TGFB3 COL1A1 FAP SPARC CTHRC1 TIMP2 CTGF CXCL12 COL1A2
0.811 0.7782 0.7263 0.7189 0.6994 0.699 0.6864 0.6688 0.6649 0.6536
SFRP4 ANTXR1 CDH11 TIMP2 BGN IGFBP7 PDGFC SFRP2 SPARC FAP CTHRC1
0.7154 0.6734 0.6702 0.6662 0.6558 0.6487 0.6397 0.6291 0.6256 0.6103
SPARC COL1A1 BGN COL1A2 TIMP2 CDH11 INHBA IGFBP7 TAGLN LOXL2 THY1
0.8713 0.8711 0.8549 0.7967 0.7831 0.774 0.7715 0.7667 0.7606 0.7512
TAGLN IGFBP7 IGFBP5 MYLK SPARC CALD1 CDH11 TIMP2 NRP2 HSPG2 MYH11
0.8225 0.7829 0.7671 0.7667 0.7452 0.7338 0.7004 0.6954 0.6857 0.6706
TGFB3 BGN SFRP2 COL1A1 TIMP2 ANTXR1 SPARC FAP WISP1 THY1 DLC1
0.8147 0.7782 0.7491 0.7331 0.7119 0.7095 0.7001 0.6652 0.6538 0.6465
THBS1 CTGF COL1A2 SPARC MMP2 ITGA5 PAI1 VIM INHBA NRP2 CDH11
0.7694 0.7409 0.7207 0.7172 0.7058 0.6802 0.6723 0.6685 0.6638 0.6635
THY1 ANTXR1 SPARC IGFBP7 HSPG2 BGN TIMP2 COL1A1 ADAMTS12 TGFB3 TAGLN
0.7696 0.7512 0.7428 0.7425 0.7365 0.7327 0.7241 0.6665 0.6538 0.6334
TIMP1 SPARC BGN THBS1 COL1A2 CDH11 CTSL IGFBP5 ITGA5 NRP2 NRP1
0.7068 0.6713 0.6534 0.6518 0.6452 0.6448 0.6403 0.6374 0.6172 0.6172
TIMP2 BGN ANTXR1 COL1A1 SPARC CDH11 HSPG2 FAP TGFB3 THY1 WISP1
0.8446 0.8358 0.8071 0.7967 0.7629 0.7455 0.7364 0.7331 0.7327 0.7263
TIMP3 CTHRC1 BGN FAP TIMP2 ANTXR1 INHBA COL1A1 LOXL2 PDGFC SFRP2
0.7078 0.7053 0.7027 0.6967 0.6644 0.6364 0.6306 0.6125 0.6098 0.6064
TK1 MAD2L1 SURV H2AFZ RRM2 ENO1 KI_67 CDC2 NME1 TGFBR2 NEK2
0.6019 0.5979 0.5314 0.5176 0.5122 0.5071 0.4933 0.4871 −0.481 0.4805
TLN1 VIM THBS1 TAGLN MYLK NRP2 IGFBP5 CALD1 CTGF COL1A2 DLC1
0.6549 0.64 0.6343 0.6335 0.6271 0.6221 0.6219 0.616 0.6146 0.5982
TMEPAI NKD TGFBI ATP5E TS REG4 ATP5A1 VEGFB PTCH STMY3 IGFBP7
0.5264 0.5239 0.4626 −0.4341 −0.4322 −0.4302 0.4282 0.4207 0.4173 0.4093
TMSB10 ENO1 ANXA2 PKR2 TLN1 UBE2M RHOC C20ORF126 SBA2 TP P21
0.6212 0.5169 0.5159 0.478 0.4447 0.4332 −0.4296 0.427 0.422 0.4205
TOP2A CDC6 CENPF BRCA1 NME1 SURV KIFC1 MYBL2 BUB1 AURKB C20_ORF1
0.6143 0.4655 0.4571 0.4544 0.4375 0.429 0.4194 0.4151 0.3996 0.3958
TP CTSL GBP2 CD18 SOD2 DPYD CIAP2 CTSB UPA CD68 TIMP1
0.6975 0.6434 0.6321 0.6191 0.598 0.5636 0.5461 0.5406 0.538 0.5303
TS ATP5A1 CDC20 AURKB DHFR PKR2 TMEPAI ATP5E RAD54L REG4 LMNB1
0.5525 0.4872 0.4854 0.4849 0.4591 −0.4341 −0.4303 0.4291 0.4205 0.417
UBE2C CSEL1 STK15 MYBL2 C20_ORF1 E2F1 MCM2 CDC2 EREG C20ORF126 ATP5E
0.6581 0.6551 0.5006 0.4835 0.4385 0.411 0.4031 0.3927 0.3874 0.378
UNC5B THY1 BGN ANTXR1 TGFB3 TIMP2 SPARC IGFBP7 HSPG2 COL1A1 ADAMTS12
0.5755 0.5594 0.5589 0.5417 0.5283 0.5236 0.5191 0.5055 0.4997 0.4958
UPA CTSL INHBA THBS1 ITGA5 COL1A2 SPARC CTHRC1 BGN COL1A1 TIMP1
0.6558 0.6399 0.639 0.6357 0.629 0.6223 0.6173 0.6109 0.6014 0.6013
VCL TAGLN SPARC TIMP2 TLN1 NRP2 CDH11 COL1A2 HSPG2 THBS1 IGFBP7
0.6246 0.6024 0.5972 0.581 0.5726 0.5583 0.5515 0.5512 0.5494 0.544
VCP CAPG BAD NOTCH1 GSK3B H2AFZ MAD2L1 TUFM KI_67 IGFBP7 RCC1
0.5823 0.5384 0.4991 0.4936 0.4724 0.4564 0.437 0.4343 0.4286 0.4176
VDAC2 HDAC1 SLC25A3 HNRPAB PKR2 TS SEMA4B CHK1 CKS2 CDC2 CCNB1
0.5109 0.4867 0.4316 0.4196 0.3748 0.3683 0.364 0.3575 0.353 0.3506
VEGFB IGFBP7 TAGLN THY1 PTP4A3_V2 IGFBP5 PTCH CDH11 BAD CAPG TMEPAI
0.6369 0.5024 0.4866 0.478 0.4614 0.4445 0.4398 0.4357 0.4327 0.4282
VEGF VEGF_ALTSPLICE1 VEGF_ALTSPLICE2 HSPA1B EFNA1 CLAUDIN_4 STC1 AXIN1 TERC MGAT5 CDCA7_V2
0.6894 0.5931 0.3855 0.358 0.3175 0.3044 0.2826 0.2711 0.258 0.2354
VEGF_ALTSPLICE1 VEGF_ALTSPLICE2 VEGF CMYC THBS1 EFNA1 NEDD8 CLIC1 NOTCH1 CDCA7_V2 TMSB10
0.7502 0.6894 0.3686 0.3599 0.3577 −0.3552 0.3464 0.3459 0.3414 0.3389
VEGF_ALTSPLICE2 VEGF_ALTSPLICE1 VEGF ITGB1 THBS1 CTGF TP53BP2 CLIC1 MGAT5 EFNA1 HIF1A
0.7502 0.5931 0.4269 0.4235 0.407 0.402 0.3923 0.3788 0.3739 0.3704
VIM COL1A2 SPARC CTGF THBS1 BGN MMP2 TLN1 NRP2 TAGLN CDH11
0.6897 0.6773 0.6747 0.6723 0.6625 0.6556 0.6549 0.6532 0.6463 0.6376
WISP1 BGN COL1A1 TIMP2 FAP SPARC ANTXR1 CTHRC1 TGFB3 INHBA SFRP2
0.7682 0.7442 0.7263 0.7147 0.694 0.6679 0.666 0.6652 0.6599 0.6292
WNT2 THY1 ANTXR1 BGN SFRP4 CDH11 TIMP2 IGFBP7 SPARC COL1A1 ADAMTS12
0.5223 0.5044 0.4897 0.4823 0.4823 0.4699 0.4484 0.4412 0.4381 0.4268
TABLE 5
Results of Identification of Genes Through Gene Module/Clique Analysis of
Validated Gene Biomarkers
Validated
Gene Co-expressed genes (Pearson co-expression coefficient)
AXIN2 NKD (0.72) CDX2 CRIPTO EPHB2 PTCH ROCK2 CAD17
(0.66) [TDGF1] (0.56) (0.50) (0.49) (0.45)
(0.64)
CDCA7 MGAT5 PTP4A3
(0.45) (0.41) (0.40)
BGN COL1A1 SPARC TIMP2 FAP ANTXR1 TGFB3 SFRP2
(0.90) (0.87) (0.84) (0.82) (0.82) (0.81) (0.81)
INHBA WISP1 CTHRC1 LOXL2 COL1A2 THY1 CDH11
(0.79) (0.77) (0.77) (0.74) (0.74) (0.74) (0.73)
TIMP3 ADAMTS12 LOX CTGF CXCL12 PDGFC
(0.71) (0.70) (0.70) (0.69) (0.68) (0.68)
cMYC HSPE1 NME1 TERC EREG AREG NOTCH1 MYBL2
(0.55) (0.49) (0.48) (0.47) (.046) (0.46) (0.45)
CSEL1 C_SRC SNRPF E2F1 (0.44) ATP5E UMPS PRDX4
(0.45) (0.44) (0.44) (0.44) (0.43) (0.40)
CDX2 MAD2L1
(0.40) (0.40)
EFNB2 LAMC2 KLF5 SPRY2
(0.46) (0.43) (0.42)
FAP BGN COL1A1 CTHRC1 TIMP2 INHBA ANTXR1 SFRP2
(0.82) (0.78) (0.77) (0.74) (0.73) (0.73) (0.72)
WISP1 TIMP3 TGFB3 SPARC LOXL2 SFRP4 COL1A2
(0.72) (0.70) (0.70) (0.67) (0.64) (0.63) (0.62)
CYP1B1 CDH11 CTSB PDGFC CXCL12 MCP1
(0.62) (0.61) (0.61) (0.59) (0.59) (0.59)
GADD45B DUSP1 PAI1 CTGF CYR61 INHBA BGN SPARC
(0.59) (0.58) (0.58) (0.53) (0.56) (0.52) (0.51)
UPA THBS1 PLK3 TIMP1 SFRP2 CYP1B1 VIM
(0.50) (0.50) (0.49) (0.49) (0.48) (0.47) (0.47)
LOX TAGLN CXCL12 WISP1 TGFB3 STC1
(0.46) (0.46) (0.46) (0.46) (0.45) (0.45)
HSPE1 CCNB1 CMYC NME1 SNRPF HNRPAB RRM2 RBX1
(0.57) (0.55) (0.53) (0.52) (0.50) (0.48) (0.48)
ODC1 MAD2L1 MSH2 AREG HSPA8 CD44E THY1
(0.47) (0.46) (0.41) (0.41) (0.41) (0.40) (0.40)
INHBA BGN SPARC CTHRC1 FAP COL1A1 CTGF COL1A2
(0.79) (0.77) (0.74) (0.73) (0.72) (0.71) (0.72)
CDH11 THBS1 LOXL2 TIMP2 WISP1 SFRP2 UPA
(0.67) (0.67) (0.66) (0.66) (0.66) (0.64) (0.64)
TIMP3 ANTXR1 CYR61 PAI1 PDGFC ADAMTS12
(0.64) (0.64) (0.63) (0.61) (0.61) (0.61)
Ki67 CDC2 MAD2L1 H2AFZ BUB1 CDC20 SURV TK1
(0.69) (0.60) (0.58) (0.54) (0.52) (0.51) (0.51)
NEK2 LMNB1 RRM2 SNRPF CCNB1 KIFC1 RAD54L
(0.51) (0.50) (0.48) (0.47) (0.47) (0.46) (0.46)
ESPL1 PCNA KIF22 CDC25C VCP MCM3
(0.46) (0.45) (0.44) (0.44) (0.43) (0.43)
MAD2L1 H2AFZ CDC2 SNRPF TK1 KI_67 SURV CCNB1
(0.64) (0.62) (0.61) (0.60) (0.60) (0.58) (0.57)
RRM2 NEK2 BUB1 NME1 MCM3 BAD HSPE1
(0.56) (0.55) (0.53) (0.51) (0.49) (0.47) (0.46)
VCP TGFBR2 KRT8 PCNA CDC20 RCC1
(0.46) (0.45) (0.44) (0.44) (0.44) (0.43)
MYBL2 C20_ORF1 E2F1 UBE2C STK15 CSEL1 CMYC ATP5E
(0.56) (0.55) (0.50) (0.46) (0.46) (0.52) (0.42)
TOP2A CDCA7
(0.42) (0.41)
RUNX1 CDH11 TIMP2 PDGFC ANTXR1 BGN CALD1 FZD1
(0.57) (0.55) (0.54) (0.53) (0.52) (0.52) (0.51)
SPARC IGFBP7 INHBA NRP2 AKT3 SFRP4 COL1A2
(0.50) (0.50) (0.50) (0.49) (0.49) (0.49) (0.49)
CTHRC1 FAP WISP1 TGFB3 TAGLN TIMP3
(0.48) (0.48) (0.48) (0.47) (0.47) (0.47)
TABLE 6
Gene Cliques Identified for Validated Genes
Seeding Spearman
Gene AffyProbeID Weight Cliqued Gene Cutoff
FAP 9441 19 FAP 0.5
FAP 13949 4 DKFZp434K191 0.5
FAP 13949 4 POM121L1 0.5
FAP 13949 4 LOC646074 0.5
FAP 13949 4 LOC100133536 0.5
FAP 13949 4 LOC651452 0.5
FAP 13949 4 LOC729915 0.5
FAP 13949 4 DKFZP434P211 0.5
FAP 13949 4 LOC728093 0.5
FAP 7405 3 CALCR 0.5
FAP 9568 3 TPSAB1 0.5
FAP 10493 3 TLX2 0.5
FAP 15164 3 — 0.5
FAP 15197 3 NUDT7 0.5
FAP 16536 3 IGHA1 0.5
FAP 20381 3 LRRC3 0.5
FAP 4496 2 RDX 0.5
FAP 4839 2 SPI1 0.5
FAP 6242 2 UMOD 0.5
FAP 9590 2 RDH5 0.5
FAP 15576 2 COMT 0.5
FAP 16692 2 — 0.5
FAP 18423 2 LYVE1 0.5
FAP 6479 1 LPHN2 0.5
FAP 10429 1 HLA-DRA 0.5
FAP 16097 1 STK38 0.5
FAP 19846 1 SERGEF 0.5
FAP 20724 1 OMP 0.5
HSPE1 4660 569 HSPE1 0.5
HSPE1 15676 338 YME1L1 0.5
HSPE1 746 302 CTBP2 0.5
HSPE1 1358 265 NET1 0.5
HSPE1 1697 174 AASDHPPT 0.5
HSPE1 17578 146 C11orf10 0.5
HSPE1 18720 139 CHMP5 0.5
HSPE1 12550 138 SP3 0.5
HSPE1 10354 133 PDCD10 0.5
HSPE1 879 132 YME1L1 0.5
HSPE1 8855 123 MED21 0.5
HSPE1 1181 102 CNIH 0.5
HSPE1 17414 98 MRPL13 0.5
HSPE1 471 97 HMGN1 0.5
HSPE1 17704 96 MRPL22 0.5
HSPE1 13816 95 SHMT2 0.5
HSPE1 10513 85 SUMO1 0.5
HSPE1 22252 81 — 0.5
HSPE1 8637 79 CLNS1A 0.5
HSPE1 9151 74 CETN3 0.5
HSPE1 92 73 SMNDC1 0.5
HSPE1 437 72 RPLP2 0.5
HSPE1 3713 63 PPID 0.5
HSPE1 3111 62 TTC35 0.5
HSPE1 20668 60 UGT1A9 0.5
HSPE1 20668 60 UGT1A6 0.5
HSPE1 20668 60 UGT1A8 0.5
HSPE1 11526 54 PDS5A 0.5
HSPE1 108 53 TMED2 0.5
HSPE1 12094 52 NUP160 0.5
HSPE1 8110 48 PDIA3 0.5
HSPE1 17336 48 MAP2K1IP1 0.5
HSPE1 11983 47 WDFY3 0.5
HSPE1 17192 45 SPG21 0.5
HSPE1 495 39 PPIB 0.5
HSPE1 17591 39 NDUFB4 0.5
HSPE1 17591 39 LOC727762 0.5
HSPE1 9287 37 PRKAA1 0.5
HSPE1 31 35 RPL11 0.5
HSPE1 19126 30 RPL36 0.5
HSPE1 166 29 YWHAZ 0.5
HSPE1 8914 29 MSH2 0.5
HSPE1 1060 28 PSMA3 0.5
HSPE1 21589 26 LOC441533 0.5
HSPE1 1241 25 RANBP2 0.5
HSPE1 7592 24 ITGB6 0.5
HSPE1 20791 24 TBL1XR1 0.5
HSPE1 2992 23 MRPL19 0.5
HSPE1 4412 23 MSLN 0.5
HSPE1 801 22 hCG_1781062 0.5
HSPE1 801 22 SRP9 0.5
HSPE1 17967 22 FAM29A 0.5
HSPE1 8189 20 PRKDC 0.5
HSPE1 15646 18 SEC11A 0.5
HSPE1 120 16 RPS3A 0.5
HSPE1 120 16 LOC439992 0.5
HSPE1 112 14 RPS25 0.5
HSPE1 395 14 ZNF313 0.5
HSPE1 8347 14 CANX 0.5
HSPE1 11315 14 TUT1 0.5
HSPE1 11315 14 EEF1G 0.5
HSPE1 8766 13 NAB1 0.5
HSPE1 18447 13 SHQ1 0.5
HSPE1 1170 12 IFNGR2 0.5
HSPE1 19696 12 CLDN16 0.5
HSPE1 17528 11 MCTS1 0.5
HSPE1 38 10 RPS27A 0.5
HSPE1 38 10 UBC 0.5
HSPE1 38 10 UBB 0.5
HSPE1 309 10 RPS15A 0.5
HSPE1 10762 10 EEF1G 0.5
HSPE1 10762 10 TUT1 0.5
HSPE1 4819 9 HNRNPA2B1 0.5
HSPE1 10894 9 RPS17 0.5
HSPE1 20002 9 CBLC 0.5
HSPE1 4294 8 FEN1 0.5
HSPE1 417 7 SSR1 0.5
HSPE1 3271 6 HMGB3 0.5
HSPE1 7814 6 C7orf28A 0.5
HSPE1 7814 6 C7orf28B 0.5
HSPE1 11918 6 WEE1 0.5
HSPE1 3474 5 CSTF3 0.5
HSPE1 19605 5 TMCO3 0.5
HSPE1 231 4 DYNLL1 0.5
HSPE1 296 4 MAT2A 0.5
HSPE1 863 4 ARHGEF12 0.5
HSPE1 4185 4 TRA2A 0.5
HSPE1 18483 4 LSM8 0.5
HSPE1 21253 3 ADCK2 0.5
HSPE1 926 2 LOC100130862 0.5
HSPE1 926 2 TRAM1 0.5
HSPE1 4761 2 SLC16A4 0.5
HSPE1 19884 2 NUP62CL 0.5
HSPE1 47 1 RPL34 0.5
HSPE1 1155 1 INSIG1 0.5
HSPE1 2415 1 DDIT4 0.5
HSPE1 3473 1 ARG2 0.5
HSPE1 11997 1 RCOR1 0.5
HSPE1 16678 1 — 0.5
INHBA 9981 4 INHBA 0.5
INHBA 1386 2 SRGN 0.5
INHBA 21897 2 COL11A1 0.5
INHBA 1320 1 AEBP1 0.5
INHBA 5099 1 ANGPT2 0.5
INHBA 5939 1 TCL6 0.5
INHBA 5939 1 TCL1B 0.5
INHBA 9047 1 CD36 0.5
MAD2L1 2889 5 MAD2L1 0.5
MAD2L1 4862 3 SRP19 0.5
MAD2L1 3962 2 NUPL1 0.5
MAD2L1 4484 2 ORC5L 0.5
MAD2L1 12103 2 PAPOLA 0.5
MAD2L1 2863 1 ITGB1BP1 0.5
KI67 11408 15 KI67 0.5
KI67 11409 15 KI67 0.5
KI67 11406 14 KI67 0.5
KI67 986 13 BUB3 0.5
KI67 9460 10 BUB3 0.5
KI67 8882 9 DBI 0.5
KI67 320 8 XRCC6 0.5
KI67 1717 8 PTBP1 0.5
KI67 7951 8 XPNPEP1 0.5
KI67 8574 7 GLRX3 0.5
KI67 11181 7 SFRS1 0.5
KI67 11407 7 KI67 0.5
KI67 17827 7 BXDC5 0.5
KI67 100 5 KARS 0.5
KI67 2694 5 CFDP1 0.5
KI67 12471 5 DNAJC9 0.5
KI67 484 4 SSRP1 0.5
KI67 791 4 TARS 0.5
KI67 1005 4 RRM1 0.5
KI67 1622 4 BIRC5 0.5
KI67 17411 4 MRPS16 0.5
KI67 424 3 HDGF 0.5
KI67 1083 3 MCM3 0.5
KI67 2427 3 SFRS3 0.5
KI67 2738 3 RFC5 0.5
KI67 3271 3 HMGB3 0.5
KI67 8303 3 HMGB2 0.5
KI67 9311 3 UCK2 0.5
KI67 12916 3 UBE2I 0.5
KI67 17225 3 NDUFA10 0.5
KI67 17225 3 LOC732160 0.5
KI67 17720 3 KIF4A 0.5
KI67 19014 3 ERCC6L 0.5
KI67 1298 2 SNRPA 0.5
KI67 1302 2 NCAPD2 0.5
KI67 1424 2 PSRC1 0.5
KI67 3779 2 CDK2 0.5
KI67 6025 2 SNHG3-RCC1 0.5
KI67 6025 2 RCC1 0.5
KI67 8746 2 HARS2 0.5
KI67 17338 2 DCXR 0.5
KI67 17441 2 ARHGAP17 0.5
KI67 17907 2 CEP55 0.5
KI67 18151 2 CWF19L1 0.5
KI67 899 1 CUL3 0.5
KI67 1381 1 CDC25B 0.5
KI67 3033 1 MED12 0.5
KI67 8957 1 AURKB 0.5
KI67 9538 1 TAF5 0.5
KI67 11401 1 PTBP1 0.5
KI67 13174 1 NGDN 0.5
KI67 18311 1 PAPD1 0.5
KI67 19342 1 NUSAP1 0.5
RUNX1 10265 38 RUNX1 0.6
RUNX1 10621 21 RUNX1 0.6
RUNX1 10624 11 RUNX1 0.6
RUNX1 16111 11 — 0.6
RUNX1 15586 10 — 0.6
RUNX1 7955 9 GABRD 0.6
RUNX1 13947 9 TPSD1 0.6
RUNX1 16761 9 — 0.6
RUNX1 6124 8 INS 0.6
RUNX1 9341 8 KLK2 0.6
RUNX1 15333 8 F12 0.6
RUNX1 15717 8 SEC14L3 0.6
RUNX1 19749 8 JPH2 0.6
RUNX1 2021 7 CSH1 0.6
RUNX1 2021 7 CSH2 0.6
RUNX1 2021 7 GH1 0.6
RUNX1 2021 7 FCHO2 0.6
RUNX1 14776 7 APPBP2 0.6
RUNX1 16935 7 — 0.6
RUNX1 13242 6 PNPLA2 0.6
RUNX1 17026 6 SIX5 0.6
RUNX1 7844 5 CSH1 0.6
RUNX1 7844 5 GH1 0.6
RUNX1 7844 5 CSH2 0.6
RUNX1 7907 5 GRAP2 0.6
RUNX1 10097 5 SGCA 0.6
RUNX1 4397 4 PCSK2 0.6
RUNX1 8058 4 KCNA10 0.6
RUNX1 9957 4 CLEC4M 0.6
RUNX1 14240 4 DOT1L 0.6
RUNX1 20209 4 ACOXL 0.6
RUNX1 7167 3 CDY2A 0.6
RUNX1 7167 3 CDY1 0.6
RUNX1 7167 3 CDY2B 0.6
RUNX1 7167 3 CDY1B 0.6
RUNX1 7985 3 LMX1B 0.6
RUNX1 8006 3 OR2J2 0.6
RUNX1 8070 3 HIST3H3 0.6
RUNX1 11037 3 IGHG1 0.6
RUNX1 11044 3 IGHG1 0.6
RUNX1 11044 3 LOC100133862 0.6
RUNX1 11044 3 IGHA1 0.6
RUNX1 13294 3 NKG7 0.6
RUNX1 14153 3 IGKV4-1 0.6
RUNX1 14518 3 — 0.6
RUNX1 16170 3 — 0.6
RUNX1 16401 3 KRT84 0.6
RUNX1 19748 3 TXNDC3 0.6
RUNX1 19870 3 GUCY1B2 0.6
RUNX1 6932 2 LECT2 0.6
RUNX1 9485 2 SOCS1 0.6
RUNX1 10358 2 ID2B 0.6
RUNX1 11241 2 PVRL1 0.6
RUNX1 11266 2 PCDHGA11 0.6
RUNX1 14875 2 — 0.6
RUNX1 15862 2 IGHM 0.6
RUNX1 16087 2 FAM48A 0.6
RUNX1 16200 2 LOC390561 0.6
RUNX1 16200 2 LOC730909 0.6
RUNX1 16568 2 RASAL2 0.6
RUNX1 16937 2 — 0.6
RUNX1 18968 2 ZNF3 0.6
RUNX1 20168 2 TP73 0.6
RUNX1 21214 2 PKP1 0.6
RUNX1 3849 1 GOLIM4 0.6
RUNX1 5706 1 ZNF747 0.6
RUNX1 7412 1 SRY 0.6
RUNX1 7412 1 LOC100130809 0.6
RUNX1 13490 1 OPCML 0.6
RUNX1 13739 1 SMARCA4 0.6
RUNX1 13844 1 ORM1 0.6
RUNX1 13844 1 ORM2 0.6
RUNX1 15714 1 PCDHGA3 0.6
RUNX1 19633 1 ZBBX 0.6
RUNX1 20562 1 GFRA4 0.6
RUNX1 21537 1 SCAND2 0.6
RUNX1 21554 1 LOC100132923 0.6
TABLE 7
Datasets used for gene clique analysis of
prognostic and predictive genes
GEO Accession Number of
Number Tumor Samples
GSE1323 6
GSE2138 20
GSE2509 6
GSE2742 27
GSE5364 9
TABLE 8
Association of gene expression and risk of recurrence in
surgery alone patients from the QUASAR study
HR LR
Gene N HR 95% CI p-value
Axin_2 711 1.13 (1.00, 1.28) 0.046
BIK 711 0.61 (0.47, 0.80) 0.0002
EFNB2 711 1.71 (1.40, 2.08) 3.9E−07
HSPE1 711 0.75 (0.56, 1.00) 0.054
MAD2L1 711 0.66 (0.52, 0.84) 0.0006
RUNX1 711 1.76 (1.37, 2.26) 7.6E−06
BGN 711 1.31 (1.11, 1.55) 0.001
FAP 711 1.48 (1.16, 1.87) 0.002
INHBA 711 1.35 (1.13, 1.62) 0.001
Ki_67 711 0.63 (0.47, 0.83) 0.001
MYBL2 711 0.98 (0.74, 1.28) 0.86
cMYC 711 0.93 (0.79, 1.11) 0.44
GADD45B 711 1.17 (0.95, 1.44) 0.14
TABLE 9
Results of the meta analysis and stratified Cox models
META Stratified
analysis Cox Model
Gene HR 95% CI HR 95% CI
Axin_2 0.99 (0.89, 1.09) 1.00 (0.95, 1.05)
BIK 0.75 (0.64, 0.88) 0.74 (0.65, 0.83)
EFNB2 1.37 (1.23, 1.54) 1.38 (1.26, 1.52)
HSPE1 0.77 (0.67, 0.88) 0.80 (0.73, 0.89)
MAD2L1 0.67 (0.61, 0.75) 0.67 (0.61, 0.75)
RUNX1 1.38 (1.14, 1.68) 1.38 (1.23, 1.55)
BGN 1.29 (1.19, 1.39) 1.28 (1.19, 1.38)
INHBA 1.29 (1.19, 1.39) 1.29 (1.19, 1.39)
FAP 1.23 (1.15, 1.31) 1.24 (1.15, 1.34)
Ki_67 0.74 (0.69, 0.81) 0.75 (0.68, 0.84)
cMYC 0.84 (0.78, 0.90) 0.83 (0.76, 0.90)
MYBL2 0.86 (0.79, 0.93) 0.86 (0.80, 0.94)
GADD45B 1.20 (1.12, 1.29) 1.23 (1.11, 1.37)