Remote array mapping
Electrical component location is provided. Employed location techniques may include providing a cycling signal, having components to be located sense the cycling signal at the same time, report back the sensed signal, and determining relative locations for one or more of the components using the sensed signals reported by the components.
Latest Enphase Energy, Inc. Patents:
- Methods and apparatus for maintaining a power conversion system
- Method and apparatus for provisioning an alternative energy source generator
- Partial-resonant converters for PV applications
- Active electromagnetic interference cancellation circuits
- Gallium nitride bi-directional high electron mobility transistor in switched mode power converter applications
This invention was made with government support under DE-EE0006035 awarded by The U.S. Department of Energy. The government has certain rights in the invention.
BACKGROUNDPhotovoltaic (PV) cells, commonly known as solar cells, are devices for conversion of solar radiation into electrical energy. Generally, solar radiation impinging on the surface of, and entering into, the substrate of a solar cell creates electron and hole pairs in the bulk of the substrate. The electron and hole pairs migrate to p-doped and n-doped regions in the substrate, thereby creating a voltage differential between the doped regions. The doped regions are connected to the conductive regions on the solar cell to direct an electrical current from the cell to an external circuit. When PV cells are combined in an array such as a PV module, the electrical energy collected from all of the PV cells can be combined in series and parallel arrangements to provide power with a certain voltage and current.
PV modules are installed in a layout at an installation site. The installation process involves an installer placing rows of PV modules and connecting these PV modules together into one or more groupings of the installation layout. The PV modules may be connected in groupings of various numbers and have several groupings at an installation site. The groupings may be uniform, for example six PV modules in each grouping, and nonuniform, for example, four PV modules in two groups and six PV modules in one group. Cabling and connections are also installed by an installer to connect and support the PV modules of a grouping and for the PV system installation as a whole. Once finished, the cabling and connections for the groupings of the PV modules, and of the PV system installation remain in place, to permit the PV modules, and the whole installation, to transmit the electrical power the system is generating.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter of the application or uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, or the following detailed description.
This specification includes references to “one embodiment” or “an embodiment” or “some embodiments.” The appearances of the phrases “in one embodiment” or “in an embodiment” or “some embodiments” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
Terminology. The following paragraphs provide definitions and/or context for terms found in this disclosure (including the appended claims):
“Comprising.” This term is open-ended. As used in the appended claims, this term does not foreclose additional structure or steps.
“Configured To.” Various units or components may be described or claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to connote structure by indicating that the units/components include structure that performs those task or tasks during operation. As such, the unit/component can be said to be configured to perform the task even when the specified unit/component is not currently operational (e.g., is not on/active). Reciting that a unit/circuit/component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112, sixth paragraph, for that unit/component.
“First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.). For example, reference to a “first” PV module or other component does not necessarily imply that this PV module or other component is the first module or component in a sequence; instead the term “first” is used to differentiate this PV module or component from another PV module or component (e.g., a “second” PV module).
“Based On.” As used herein, this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors. Consider the phrase “determine A based on B.” While B may be a factor that affects the determination of A, such a phrase does not foreclose the determination of A from also being based on C. In other instances, A may be determined based solely on B.
“Coupled”—The following description refers to elements or nodes or features being “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically.
“Inhibit”—As used herein, inhibit is used to describe a reducing or minimizing effect. When a component or feature is described as inhibiting an action, motion, or condition it may completely prevent the result or outcome or future state completely. Additionally, “inhibit” can also refer to a reduction or lessening of the outcome, performance, and/or effect which might otherwise occur. Accordingly, when a component, element, or feature is referred to as inhibiting a result or state, it need not completely prevent or eliminate the result or state.
In addition, certain terminology may also be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard”, and “inboard” describe the orientation and/or location of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
In the following description, numerous specific details are set forth, such as specific operations, in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known techniques are not described in detail in order to not unnecessarily obscure embodiments of the present disclosure.
This specification describes systems employing a location testing module, which can include testing for the location of electrical components positioned away from the module. Following this description more specific and detailed explanations, which include PV modules and microinverters follow. Permutations on each example are also provided, while still more are possible, and various examples are provided throughout.
Turning now to
In embodiments, the location testing module 110 may be configured to determine the location of one or more wired components. These wired components may be connected in parallel into groupings as shown in
In operation, the LTM 110 may coordinate testing at one or more of the components to determine the relative position of the tested components to other components in the group and the location as between groups as well. This testing may include having components locally sample a voltage, current, frequency, or other variable at a planned instant of time or during some narrow range of time and then determining, using these samples, the relative position of one or more of the components. The testing may also include using different voltages, currents and frequencies as part of a testing protocol. To coordinate sampling, an alert may be sent by the LTM 110 to have one or more of the components auto-sample at a target time or period of time. During this target time or period of time the junction may decouple the external system 140 and the test signal generator 120 may send a test signal to the components over cabling 191, 192, 193, and 194. The test signal may be sent to fewer than all of the cabling past the junction 130 if, for example, only one of the groups of components is being tested.
At the predetermined time or period of time, each component may measure the received signal and report subsequently report the signal value measured by that particular component. The LTM 110 may use these measured signals to determine the relative position of components in a group, whether a component is in a first group, a second group, or a still different group, etc. and for other reasons as well. The LTM may make these determinations by comparing observed values measured and ranking the observed measured values. Components reporting values falling within a first range may be considered to be in a first grouping, components reporting values falling within a second range may be considered to be in a second grouping, etc. Also, within ranges components may be further ranked as being closer or further from the junction 130 or other device depending upon the observed and reported value measured during the target time period.
Sensors 151, 152, 153, 154, and 155 may also be employed to verify reported values from the components, to provide relative objective readings, and for other reasons as well, such as determining the status of the cabling connected to the components being located. The components in a grouping are preferably connected to each other in parallel. These groupings may be share a junction 130 or use other topologies as well. In embodiments, therefore, when an external system is decoupled or otherwise determined to be inactive, an LTM 110 may operate to determine the grouping of a wired component, the relative position of components in a grouping, and report these findings outside the local system for various uses, including verification of system construction, versification of system operation, and for other reasons as well.
In embodiments, if a first round or subsequent round of testing is inconclusive or wants to be made more accurate, the LTM may adjust one or more of testing voltages, testing currents or testing frequencies in order to hone in on appropriate testing delineations to identify groups apart from other groups of components being tested, to locate individual components relative to other individual components, and for other reasons as well.
Turning now to
Once determinations are performed, if acceptable results are reached, the calibration cycle may be started again and if unacceptable results are reached the process may cycle back to Block 220 and perform steps subsequent thereto. Adjustments may also be made before, during, and after iterative test cycles, For example, if a first round or subsequent round of testing is inconclusive or wants to be made more accurate, the LTM may adjust one or more of testing voltages, testing currents or testing frequencies during performance of block 230 or at other times as well, in order to hone in on appropriate testing delineations to identify groups apart from other groups of components being tested, to locate individual components relative to other individual components, and for other reasons as well. Thus, a first iterative test may be performed at a first voltage frequency, the frequency may be adjusted for a second round of testing, and the results compared to determine accuracy of the iterative tests as well as the possible need for testing at third frequency or voltage or current or other variable. By performing multiple iterative testing the LTM may identify a preferred testing setup for the topology being tested. Thus, if one or more components goes offline or otherwise changes the order of a grouping, the optimized testing settings from earlier tests may be used by the LTM to determine which component is malfunctioning as well as if the groupings have changed in some way, e.g., the addition of another component in a grouping, the addition of a new grouping, and the removal of a grouping.
In both connection techniques, the “first” PV Module (L or X in
After the whip cable 350, in embodiments, AC wires may extend from the rooftop (typically a roof, though maybe any mounting surface some distance from the subpanel) to the subpanel 340. Embodiments may employ “drop” cables 330, which are shown in
The drop cable, which may be housed in a conduit that may not be necessary for each branch circuit, depending on the cable design, is shown as terminating into a subpanel through circuit breakers 341. This subpanel may be called an aggregation or “agg” panel. The subpanel combines the current from the branch circuits through the bus bars 342 as shown and provides a larger breaker 343 to the main service panel. In embodiments, if the wires are housed in proper conduits, it may not be necessary to provide very large breakers, though it is probably considered good practice to provide a safety margin when sizing these breakers.
Also attached to the subpanel is a gateway device, or PV Supervisor 380. This gateway device 380 may be connected via a breaker and be equipped with powerline carrier (PLC) communication capability so that it may communicate electrically with the PV Modules. Other communication techniques, such as wireless or dedicated wires are also possible.
The entire system of
In embodiments, the gateway device 380 may be housed with the subpanel 340 to form a single unit. This combined approach may allow fewer circuit breakers and the addition of other circuitry, such as switches/relays, sensing, and other signal circuitry.
In embodiments, an installer or owner of a PV module system may desire to know the exact electrical schematic (or “map”) of the system 300. For example, as shown in
Consistent and different cycling voltages may be used as test signals in embodiments. These test signals may be generated in various locations in embodiments. These can include with the LTM in a centralized controller, as a stand-alone unit, and as part of one or more of the components to be located.
Also shown is a bulk capacitor 550 that provides a substantially constant voltage to the bridge during normal inverter operation. A discharge circuit 560 is also shown—this may be an explicit circuit or just the parasitic resistance of the capacitor and other parallel circuitry. In effect, the discharge circuit 560 will discharge the bulk capacitor, usually slowly, in absence of a charging means. For example, when the microinverter has been inactive for some time, the bulk capacitor voltage will typically be near zero volts.
Also shown is a current sense function 570, which may be a small resistance coupled to an amplifier. This sensor may be used to monitor a proxy for the microinverter output current. It is possible to place the current sense on other wires with similar effect. Voltage sense functionality may also be employed or employed instead of current sense functionality in embodiments.
In embodiments, for branch circuits connected in parallel at the subpanel bus bars, there is another network of impedances as shown in
In embodiments, when microinverter output stages are employed for test signal generation, the microinverter may either operate as a passive/measurement device or as an active/signal generating device. In the active case, the microinverter output bridge (
In embodiments, very little power should be consumed, as the load will be simply the collection of branch and microinverter impedances, which collectively have a high impedance. It is preferred that the bulk capacitor voltage not be too high (such as 20 V) so as not to create a shock hazard and not also be too low (such as below 1 V) so that some significant voltage can reach other microinverters through the branch impedances, which can attenuate the voltage more the farther they are from the source.
In embodiments it is preferred that the frequency of the active microinverter should be high enough so that the Z1 and Zwd are significant but not so high that the output filter substantially attenuates the bridge output voltage. In embodiments, 20 kHz may be below the cut-off frequency of the output filter of the microinverter yet high enough to observe significant impedance in the branch circuit. Other frequencies and frequencies with alternating voltages as well as voltages that do not switch back and forth from positive to negative may also be employed.
The remaining microinverters may be kept inactive, meaning that they are not actively switching their output bridge to generate a test signal. They preferably, provided enough power is available from the sun or other source, may be “awake” and capable of communicating and making internal measurements.
In embodiments, an inactive microinverter can appear to the branch circuit as little more than a full-wave rectifier. As is shown in
From this diagram, one can see that the voltage provided by W, in this topology, will be received at the terminals of each microinverter by a complicated parallel/series network of impedances. As such, the bulk voltage measurements will likely be different (within measurement accuracy) as long as impedances Z1 and Zwd are significant enough at the frequency in question (e.g., 20 kHz).
The above describes how a microinverter can be used to generate a signal resulting differing bulk voltages in the other microinverters. A subsequent step is to use this data to map the array. In one approach, a microinverter, via software running in a gateway or system controller, may be selected or may self-select. As such, the gateway or system controller has already “discovered” the microinverters and recorded their serial numbers (which we simplify as letters: A, B, . . . etc.). Choosing any of these microinverters, such as W in this example, the gateway or system controller may send a signal to W instructing it to produce a test voltage from its output bridge (e.g., 20 V at 20 kHz, or other suitable combination). After waiting a short time, the gateway or system controller may then poll all the microinverter (including W) to report their bulk voltages. Since polling can take time and the voltages may drift slightly, it is advisable for the gateway or system controller to first issue a “snap” signal, which is a broadcast message for each microinverter to simultaneously take a snapshot of its bulk voltage measurement and store for later retrieval. In that case, the polling simply involves “picking off” the stored bus voltage measurements.
Once all measurements are retrieved, the bulk voltages can be sorted according to the value and serial number. In embodiments, the bulk voltages may be clustered and somewhat more tightly grouped. In the case of two branches, two clusters of voltages that are relatively closer may each be identified. In
The process can be further refined to attempt to identify the clusters more clearly or to identify the actual connectivity of from microinverter to microinverter by applying successive test voltages. After instructing W, for example, to apply a test voltage and polling the measurements, the gateway or system controller can then instruct W to remove its voltage. At this juncture, the bulk voltages will discharge through their discharge circuits, which may take seconds or longer. As an improvement, the microinverters could be equipped with a special command to almost instantly discharge their bulk voltages via turning on internal loads or briefly shorting out the capacitors via the MOSFET switches, or other suitable means.
After the system has returned to an inactive, zero voltage state, another microinverter can be activated with a test voltage and the process above repeated. The gateway or system controller can then cluster the voltages and may determine that all the same microinverters are on the same branch circuit. If not, then more measurements are required to identify the branch circuits more confidently. If so, then the patterns in voltage can again be analyzed for patterns that may indicate the particular arrangement of microinverters. In this case, since a first microinverter is mostly closely connected to the subpanel in Branch 2, by circuit analysis each of the voltages M-W should be lower than X. These reported values would clearly identify X as the closest microinverter to the subpanel. The remaining voltages, M-W, would be ordered from greatest to least to confirm their order is indeed X, W, V, U, . . . , M, from subpanel to end cap, as depicted in
Likewise, multiple test voltage and measurement cycles can be repeated to confirm that the estimated ordering is correct, proceeding systematically through both branch circuits. Embodiments may employ iterative algorithms for more efficiently and reliably obtaining the electrical map of the array.
There may be selective considerations in embodiments. First, for certain frequencies and combinations of inverters and drop/whip cable lengths, significant resonances may develop. In such a case, the bulk voltages may not increase or decrease monotonically along the chain of microinverters. To combat this, embodiments may employ multiple frequencies to be tested to work towards identifying such behavior. Second, it is possible that a more abnormal voltage appears, possibly identifying more clusters than branch circuits or other unnatural behavior is reported back. Thus, sampling, reporting, and analysis may indicate a flaw in the branch wiring, such as a short circuit or poorly latched connector. Embodiments, may, therefore, generate an error code in such situations and instruct the installer or other user to inspect the wiring before proceeding or whenever the testing occurred.
In embodiments, it is possible to utilize additional circuitry in the gateway as a signal generator. That is, the gateway could impose a given voltage and frequency on the line with the microinverters inactive. An advantage to this approach is that the electrical location of the gateway is known, so that the gateway or system controller may have more information on which to base estimates of electrical location of microinverters. Such a technique may be combined with manual opening and closing of breakers, or automated opening and closing of switches or relays, to identify branches and connectivity of microinverters. Furthermore, the gateway or system controller may be equipped with its own peak detector circuit so that the subpanel voltage could be considered in the voltage sorting schemes proposed above.
Still further, in embodiments, the signal generator may be a PLC communication circuit itself, which produces, inherently, a high frequency sinusoidal signal coupled to the power line. In embodiments, the current sensor may also be employed using this methodology, however the PLC circuitry is considered to be preferred due to inherent accuracy. Likewise, a bulk voltage sensor may also be employed for signal generation along with the PLC circuitry.
In use, the PVS controller 1000 may manage and carry-out the location techniques described herein and report its results to system management module 1010. This system management module may be at the PV installation as well as remote from the PV installation, for example at a completely different installation site or a remote command center. The module 1010 may provide instructions to the PVS controller before during and after testing and may provide other functionality as well. The system management module may rely on other resources to determine a course of action after receiving location reports or analysis. These resources may include maintenance services, diagnostic services, and other services as well. Thus, in embodiments, the PVS controller may carry out the location services with and without assistance from external sources and this assistance may include instructions for testing schedules, instructions for mitigation schedules, and troubleshooting assistance.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of this disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of this application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
Claims
1. A system for mapping an array of electrical components comprising:
- a plurality of electrical components, each of the electrical components in the plurality distinct from each other, each of the electrical components spaced apart from each other, the electrical components arranged in at least one array and connected to at least one other electrical component;
- a frequency generator, the frequency generator configured to generate a frequency signal different from a base operating frequency, the frequency generator configured to send the signal to each of the electrical components in the plurality;
- a plurality of sensors, each of the sensors of the plurality configured to measure, at the same time, a voltage or current at each of the plurality of electrical components, the voltage or current reflecting the amplitude of the cycling frequency signal sent by the frequency generator and received at the electrical component being measured by the sensor; and
- a system analyzer configured to determine a relative position of electrical components with respect to other electrical components based on a plurality of the voltages or currents measured by the sensors and attributable to different electrical components of the plurality.
2. The system of claim 1 wherein each of the electrical components of the plurality are arranged in an array in parallel with each other and are connected via at least one insulated wire.
3. The system of claim 1 wherein each electrical component comprises a microinverter power train.
4. The system of claim 1 wherein the plurality includes eight or more components in at least two one-dimensional arrays.
5. The system of claim 1 wherein the frequency generator is located in one of the plurality of electrical components.
6. The system of claim 1 wherein the frequency generator is not located in one of the plurality of electrical components.
7. The system of claim 1 wherein the base operating frequency is 60 Hz of alternating voltages and wherein the frequency generator is further configured to generate the cycling frequency signal when the system is not connected to a mains power grid.
8. The system of claim 1 wherein at least one of the electrical components is configured to serve as the frequency generator and is further configured to generate a frequency signal faster than 60 cycles per second, and is further configured to send a signal at the frequency generated, to each of the other electrical components in the plurality.
9. A process for mapping an array of installed microinverters comprising:
- during a period of disconnection from a mains power grid, generating a test signal at a frequency greater than 60 cycles per second and sending the test signal into an array of microinverters to be tested;
- within a bracketed amount of time previously acknowledged by each of the microinverters being tested, sensing a voltage or a current generated from that microinverters receipt of the test signal; and
- determining whether the tested microinverters are in the same array or in a different array based the sensed value for each of the microinverters being tested.
10. The process of claim 9 further comprising:
- determining the relative position of each of the microinverters in the same array relative to each other.
11. The process of claim 9 wherein the bracketed amount of time is 50 milliseconds or less.
12. The process of claim 9 wherein the test signal is generated by one of the microinverters.
13. The process of claim 9 wherein the test signal is a square wave and is generated by one of the microinverters using a power train of the microinverter.
14. The process of claim 9 wherein the test signal is generated by a photovoltaic system controller, the system controller remote from the array of microinverters and otherwise serving to monitor performance of the array of microinverters.
15. A device for remote mapping of installed photovoltaic modules comprising:
- a system controller for an array of photovoltaic (PV) modules, the PV modules located apart from the system controller and arranged relative to each other in one or more arrays, wherein the system controller is configured to send a cycling test signal, at a time previously acknowledged by each of the PV modules being tested, to each of the PV modules when the PV modules are not generating AC for the mains grid, evaluate a sensed voltage or current associated with each of the PV modules, the sensed voltage or current generated at the particular PV module and reflective of the cycling test signal sent by the system controller, and determine whether each of the PV modules lie along the same branch circuit based on the evaluated sensed voltage or current.
16. The device of claim 15 wherein the system controller is further configured to determine the relative position of each PV module on the same branch circuit.
17. The device of claim 15 further comprising:
- a gateway, the gateway configured to communicate evaluation results and for receipt of testing instructions to be performed with regard to the PV modules.
18. The device of claim 15 wherein the cycling test signal is a square wave and has a frequency greater than 60 cycles per second.
19. The device of claim 15 wherein the evaluation includes adjusting for impedances of branch circuits and drop lines between the system controller and the PV modules being evaluated.
20. The device of claim 15 wherein the system controller is further configured to decouple the PV modules from a mains power grid before sending the cycling test signal.
20090234692 | September 17, 2009 | Powell |
20090304227 | December 10, 2009 | Kennedy |
20120206118 | August 16, 2012 | Williams |
20120300347 | November 29, 2012 | Fahrenbruch |
20130346054 | December 26, 2013 | Mumtaz |
20140003110 | January 2, 2014 | Rothblum |
20140055900 | February 27, 2014 | Luebke |
20140368058 | December 18, 2014 | Orr et al. |
20150340868 | November 26, 2015 | Chapman |
20160043684 | February 11, 2016 | Harif |
2014-11203 | September 2014 | JP |
- International Search Report and Written Opinion, PCT Application PCT/US2017/056463, dated Jan. 31, 2018.
Type: Grant
Filed: Oct 14, 2016
Date of Patent: Mar 12, 2019
Patent Publication Number: 20180109224
Assignee: Enphase Energy, Inc. (Petaluma, CA)
Inventors: Patrick L Chapman (Austin, TX), Fernando Rodriguez (Austin, TX), Philip Rothblum (Austin, TX), Anant K Singh (Richardson, TX)
Primary Examiner: Daniel Miller
Application Number: 15/294,098
International Classification: H02S 50/00 (20140101);